Replica Symmetry Breaking for mean field spin glass models

Qiang Zeng CUNY Queens College

Vanderbilt University September 15, 2018

A B M A B M

Outline

2 Replica Symmetry Breaking for mixed *p*-spin models

3 Replica Symmetry Breaking for spherical mixed p-spin models

過 ト イヨ ト イヨト

Outline

Models and background

2) Replica Symmetry Breaking for mixed *p*-spin models

3 Replica Symmetry Breaking for spherical mixed p-spin models

くほと くほと くほと

• In the 1960s, physicists observed a low temperature state of certain magnetic alloys, such as CuMn, which is distinct from conventional ferromagnetic materials. This new state is called spin glass.

A B F A B F

Figure: Wikipedia

くほと くほと くほと

Figure: Wikipedia

• Models: $RKKY \Rightarrow Edward-Anderson \Rightarrow Sherrington-Kirkpatrick$, etc.

< 注入 < 注入

Figure: Wikipedia

- Models: RKKY \Rightarrow Edward–Anderson \Rightarrow Sherrington–Kirkpatrick, etc.
- Application to combinatorial optimization problems

< 3 > < 3 >

 A dean wants to divide N people into two groups with smallest number of conflicts. σ_i ∈ {-1,1}, i = 1,..., N.

くほと くほと くほと

- A dean wants to divide N people into two groups with smallest number of conflicts. σ_i ∈ {−1, 1}, i = 1,..., N.
- g_{ij} represents the relationship between i and j:
 - like each other: $g_{ij} > 0$;
 - don't like each other: $g_{ij} < 0$.

A B F A B F

- A dean wants to divide N people into two groups with smallest number of conflicts. σ_i ∈ {−1, 1}, i = 1,..., N.
- g_{ij} represents the relationship between i and j:
 - like each other: $g_{ij} > 0$;
 - don't like each other: $g_{ij} < 0$.
- Goal: maximize the "happiness" function!

Maximize
$$\sum_{i,j=1}^{N} g_{ij}\sigma_i\sigma_j, \quad \sigma = (\sigma_1, ..., \sigma_N) \in \{-1, 1\}^N.$$

- A I I I A I I I I

- A dean wants to divide N people into two groups with smallest number of conflicts. σ_i ∈ {−1, 1}, i = 1,...,N.
- g_{ij} represents the relationship between i and j:
 - like each other: $g_{ij} > 0$;
 - don't like each other: $g_{ij} < 0$.
- Goal: maximize the "happiness" function!

Maximize
$$\sum_{i,j=1}^{N} g_{ij}\sigma_i\sigma_j, \quad \sigma = (\sigma_1,...,\sigma_N) \in \{-1,1\}^N.$$

• Frustration:

The Sherrington–Kirkpatrick (SK) model (1975)

• Spins $\sigma = (\sigma_1, ..., \sigma_N) \in \{\pm 1\}^N$; Hamiltonian (or energy)

$$H_N(\sigma) = \frac{1}{\sqrt{N}} \sum_{1 \le i,j \le N} g_{ij} \sigma_i \sigma_j.$$

• g_{ij} : independent normal (=Gaussian) N(0,1): $\mathbb{E}g_{ij} = 0$, $\mathbb{E}g_{ij}^2 = 1$.

- 本間 医 本語 医 本語 医二語

The Sherrington-Kirkpatrick (SK) model (1975)

• Spins $\sigma = (\sigma_1, ..., \sigma_N) \in \{\pm 1\}^N$; Hamiltonian (or energy)

$$H_N(\sigma) = \frac{1}{\sqrt{N}} \sum_{1 \le i, j \le N} g_{ij} \sigma_i \sigma_j.$$

g_{ij}: independent normal (=Gaussian) N(0,1): Eg_{ij} = 0, Eg²_{ij} = 1.
Covariance:

$$\mathbb{E}H_N(\sigma)H_N(\tau) = N\Big(\frac{1}{N}\sum_i \sigma_i\tau_i\Big)^2.$$

Given by inner product (thus distance) of two spins!

The Sherrington-Kirkpatrick (SK) model (1975)

• Spins $\sigma = (\sigma_1, ..., \sigma_N) \in \{\pm 1\}^N$; Hamiltonian (or energy)

$$H_N(\sigma) = \frac{1}{\sqrt{N}} \sum_{1 \le i,j \le N} g_{ij} \sigma_i \sigma_j.$$

g_{ij}: independent normal (=Gaussian) N(0,1): Eg_{ij} = 0, Eg²_{ij} = 1.
Covariance:

$$\mathbb{E}H_N(\sigma)H_N(\tau) = N\Big(\frac{1}{N}\sum_i \sigma_i \tau_i\Big)^2.$$

Given by inner product (thus distance) of two spins! Define the overlap for $\sigma^1 \sigma^2 \in [+1]^N$

• Define the overlap for $\sigma^1, \sigma^2 \in \{\pm 1\}^N$,

$$R_{1,2} = R(\sigma^1, \sigma^2) = \frac{1}{N} \sum_{i=1}^N \sigma_i^1 \sigma_i^2.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Fundamental problem and quantities

• The problem: compute the ground state energy

$$\max_{\sigma \in \{\pm 1\}^N} H_N(\sigma).$$

• Statistical mechanics: smooth approximation through the partition function

$$Z_{N,\beta} = \sum_{\sigma \in \{\pm 1\}^N} e^{\beta H_N(\sigma)}, \quad \beta = 1/T,$$

and the free energy

$$F_{N,\beta} = \frac{1}{\beta N} \log Z_{N,\beta}.$$

• • = • • = •

Fundamental problem and quantities

• The problem: compute the ground state energy

$$\max_{\sigma \in \{\pm 1\}^N} H_N(\sigma).$$

• Statistical mechanics: smooth approximation through the partition function

$$Z_{N,\beta} = \sum_{\sigma \in \{\pm 1\}^N} e^{\beta H_N(\sigma)}, \quad \beta = 1/T,$$

and the free energy

$$F_{N,\beta} = \frac{1}{\beta N} \log Z_{N,\beta}.$$

• High temperature: T large and β small; low temperature: T small and β large; zero temperature: T = 0 and $\beta = \infty$.

過 ト イヨ ト イヨト

Fundamental problem and quantities

• The problem: compute the ground state energy

$$\max_{\sigma \in \{\pm 1\}^N} H_N(\sigma).$$

• Statistical mechanics: smooth approximation through the partition function

$$Z_{N,\beta} = \sum_{\sigma \in \{\pm 1\}^N} e^{\beta H_N(\sigma)}, \quad \beta = 1/T,$$

and the free energy

$$F_{N,\beta} = \frac{1}{\beta N} \log Z_{N,\beta}.$$

• Free energy vs. ground state energy

$$\frac{1}{N} \max_{\sigma \in \{\pm 1\}^N} H_N(\sigma) \le \frac{1}{\beta N} \log Z_{N,\beta} \le \frac{\log 2}{\beta} + \frac{1}{N} \max_{\sigma \in \{\pm 1\}^N} H_N(\sigma).$$

• • = • • = •

The problem:

$$\frac{1}{\beta N} \log \sum_{\sigma \in \{\pm 1\}^N} e^{\beta H_N(\sigma)} \ \text{ as } \ N \to \infty.$$

- 4 週 ト - 4 三 ト - 4 三 ト

The problem:

$$\frac{1}{\beta N} \log \sum_{\sigma \in \{\pm 1\}^N} e^{\beta H_N(\sigma)} \text{ as } N \to \infty.$$

 $\lim_{N\to\infty} \frac{1}{\beta N} \log Z_{N,\beta} = \inf \{ \mathcal{P}_{\beta}(\mu) : \mu \in \operatorname{Prob}[0,1] \}.$

・ロト ・聞ト ・ヨト ・ヨト

The problem:

$$\frac{1}{\beta N} \log \sum_{\sigma \in \{\pm 1\}^N} e^{\beta H_N(\sigma)} \text{ as } N \to \infty.$$

 $\lim_{N\to\infty} \frac{1}{\beta N} \log Z_{N,\beta} = \inf \{ \mathcal{P}_{\beta}(\mu) : \mu \in \operatorname{Prob}[0,1] \}.$

2
$$\mathbb{E}G_{N,\beta}^{\otimes 2}(|R_{1,2}| \in B) \to \mu_{\beta}(B)$$
 as $N \to \infty$. Here

•
$$G_{N,\beta}(\sigma) := \frac{1}{Z_{N,\beta}} e^{\beta H_N(\sigma)}$$
 is the Gibbs measure,

イロト 不得下 イヨト イヨト 二日

The problem:

$$\frac{1}{\beta N} \log \sum_{\sigma \in \{\pm 1\}^N} e^{\beta H_N(\sigma)} \text{ as } N \to \infty.$$

 $\lim_{N\to\infty} \frac{1}{\beta N} \log Z_{N,\beta} = \inf \{ \mathcal{P}_{\beta}(\mu) : \mu \in \operatorname{Prob}[0,1] \}.$

2
$$\mathbb{E}G_{N,\beta}^{\otimes 2}(|R_{1,2}| \in B) \to \mu_{\beta}(B)$$
 as $N \to \infty$. Here

•
$$G_{N,\beta}(\sigma) := \frac{1}{Z_{N,\beta}} e^{\beta H_N(\sigma)}$$
 is the Gibbs measure,

 μ_β := argmin P_β(μ) is the Parisi measure or functional order parameter.

③ $G_{N,\beta}$ are asymptotically ultrametric:

$$d(\sigma^1, \sigma^2) \le \max\{d(\sigma^1, \sigma^3), d(\sigma^2, \sigma^3)\}.$$

▲圖▶ ★ 国▶ ★ 国▶

The problem:

$$\frac{1}{\beta N} \log \sum_{\sigma \in \{\pm 1\}^N} e^{\beta H_N(\sigma)} \text{ as } N \to \infty.$$

 $\lim_{N\to\infty} \frac{1}{\beta N} \log Z_{N,\beta} = \inf \{ \mathcal{P}_{\beta}(\mu) : \mu \in \operatorname{Prob}[0,1] \}.$

$$\mathbb{E} G_{N,\beta}^{\otimes 2}(|R_{1,2}| \in B) \to \mu_{\beta}(B) \text{ as } N \to \infty.$$
 Here

•
$$G_{N,\beta}(\sigma) := \frac{1}{Z_{N,\beta}} e^{\beta H_N(\sigma)}$$
 is the Gibbs measure,

 μ_β := argmin P_β(μ) is the Parisi measure or functional order parameter.

③ $G_{N,\beta}$ are asymptotically ultrametric:

$$d(\sigma^1, \sigma^2) \le \max\{d(\sigma^1, \sigma^3), d(\sigma^2, \sigma^3)\}.$$

The Parisi Full-step Replica Symmetry Breaking (FRSB) prediction: at low temperature, the symmetry of replicas is broken infinitely many times.

ヘロト 人間 とくほ とくほ とう

Remarks about the Parisi predictions

• The Parisi functional: for $\mu \in \operatorname{Prob}[0,1]$

$$\mathcal{P}_{\beta}(\mu) := \frac{\log 2}{\beta} - \int_0^1 \beta \mu[0, s] s \mathrm{d}s + \Psi_{\mu, \beta}(0, 0),$$

where $\Psi_{\mu,\beta}(t,x)$ is the solution to

$$\partial_t \Psi_{\mu,\beta}(t,x) = -\partial_{xx} \Psi_{\mu,\beta}(t,x) - \beta \mu[0,t] (\partial_x \Psi_{\mu,\beta}(t,x))^2$$

for $(t,x) \in [0,1) \times \mathbb{R}$ with boundary condition $\Psi_{\mu,\beta}(1,x) = \frac{\log \cosh \beta x}{\beta}$.

- 4個 ト 4 ヨ ト 4 ヨ ト 三 ヨ

Remarks about the Parisi predictions

• The Parisi functional: for $\mu \in \operatorname{Prob}[0,1]$

$$\mathcal{P}_{\beta}(\mu) := \frac{\log 2}{\beta} - \int_0^1 \beta \mu[0, s] s \mathrm{d}s + \Psi_{\mu, \beta}(0, 0),$$

where $\Psi_{\mu,\beta}(t,x)$ is the solution to

$$\partial_t \Psi_{\mu,\beta}(t,x) = -\partial_{xx} \Psi_{\mu,\beta}(t,x) - \beta \mu[0,t] (\partial_x \Psi_{\mu,\beta}(t,x))^2$$

for $(t, x) \in [0, 1) \times \mathbb{R}$ with boundary condition $\Psi_{\mu,\beta}(1, x) = \frac{\log \cosh \beta x}{\beta}$. • The Gibbs measures:

$$G_{N,\beta}(\sigma) := \frac{1}{Z_{N,\beta}} e^{\beta H_N(\sigma)}$$

Typically, low temperature problems are harder!

The pure *p*-spin model (Derrida, 1981)

• For
$$p \geq 3$$
, $\sigma = (\sigma_1, ..., \sigma_N) \in \{\pm 1\}^N$
$$H_N(\sigma) = \frac{1}{N^{(p-1)/2}} \sum_{1 \leq i_1, ..., i_p \leq N} g_{i_1, ..., i_p} \sigma_{i_1} \cdots \sigma_{i_p},$$
$$g_{i_1, ..., i_p} \text{ independent } N(0, 1).$$

• Covariance

$$\mathbb{E}H_N(\sigma^1)H_N(\sigma^2) = NR_{1,2}^p.$$

3

(日) (周) (三) (三)

The mixed *p*-spin model

•
$$\sigma = (\sigma_1, \dots, \sigma_N) \in \{\pm 1\}^N,$$
$$H_N(\sigma) = \sum_{p \ge 2} \frac{c_p}{N^{(p-1)/2}} \sum_{1 \le i_1, \dots, i_p \le N} g_{i_1, \dots, i_p} \sigma_{i_1} \cdots \sigma_{i_p},$$
$$g_{i_1, \dots, i_p} \text{ independent } N(0, 1).$$

Covariance

$$\mathbb{E}H_N(\sigma^1)H_N(\sigma^2) = N\xi(R_{1,2}),$$

where $\xi(x) = \sum_{p=2}^{\infty} c_p^2 x^p$.

- The SK model: $\xi(x) = x^2$.
- The pure *p*-spin model: $\xi(x) = x^p, p \ge 3$.

3

イロト 不得下 イヨト イヨト

The mixed *p*-spin model

•
$$\sigma = (\sigma_1, \dots, \sigma_N) \in \{\pm 1\}^N,$$
$$H_N(\sigma) = \sum_{p \ge 2} \frac{c_p}{N^{(p-1)/2}} \sum_{1 \le i_1, \dots, i_p \le N} g_{i_1, \dots, i_p} \sigma_{i_1} \cdots \sigma_{i_p},$$
$$g_{i_1, \dots, i_p} \text{ independent } N(0, 1).$$

Covariance

$$\mathbb{E}H_N(\sigma^1)H_N(\sigma^2) = N\xi(R_{1,2}),$$

where $\xi(x) = \sum_{p=2}^{\infty} c_p^2 x^p$.

- The SK model: $\xi(x) = x^2$.
- The pure *p*-spin model: $\xi(x) = x^p, p \ge 3$.
- ξ is generic if

$$span\{1, x, x^p : c_p \neq 0\}$$
 is dense in $C[-1, 1]$.

Image: Image:

SK and pure *p*-spin are not generic!

Parisi predictions for mixed *p*-spin model: progress

The Parisi predictions have driven the field for the last 40 years.

- The Parisi formula: $\lim_{N\to\infty} \frac{1}{\beta N} \log Z_{N,\beta} = \inf_{\mu\in \operatorname{Prob}[0,1]} \mathcal{P}_{\beta}(\mu)$. Talagrand (Ann. Math. 2006): true for convex ξ .
- The Parisi ultrametricity conjecture
 Panchenko (Ann. Math. 2013): true for generic ξ.
- The Parisi FRSB prediction Auffinger–Chen–Z. (2017): true at T = 0 for any ξ .

・ 何 ト ・ ヨ ト ・ ヨ ト

Parisi FRSB prediction: significance

• FRSB is indispensable in Parisi's original deduction of his formula.

• • = • • = •

Parisi FRSB prediction: significance

- FRSB is indispensable in Parisi's original deduction of his formula.
- It indicates phase transition: for the SK model $\beta_c = \frac{1}{\sqrt{2}}$,

Parisi FRSB prediction: significance

- FRSB is indispensable in Parisi's original deduction of his formula.
- It indicates phase transition: for the SK model $\beta_c = \frac{1}{\sqrt{2}}$,

• For pure *p*-spin model (i.e. $\xi(x) = x^p$): Gardner transition (1985)

$$\log Z_N = \lim_{\ell \to 0} \frac{Z_N^\ell - 1}{\ell}.$$

3

$$\log Z_N = \lim_{\ell \to 0} \frac{Z_N^\ell - 1}{\ell}.$$

• Replica Symmetric (RS): all the ℓ replicas are the same (symmetric).

$$\log Z_N = \lim_{\ell \to 0} \frac{Z_N^\ell - 1}{\ell}.$$

• 1-RSB: ℓ replicas should be divided into two distinct groups (Break Replica Symmetry).

$$\log Z_N = \lim_{\ell \to 0} \frac{Z_N^\ell - 1}{\ell}.$$

• 2-RSB: each group should be divided into two distinct subgroups.

$$\log Z_N = \lim_{\ell \to 0} \frac{Z_N^\ell - 1}{\ell}.$$

• FRSB: the procedure should proceed infinitely many times.

Models and background

2 Replica Symmetry Breaking for mixed *p*-spin models

3 Replica Symmetry Breaking for spherical mixed p-spin models

Qiang Zeng (CUNY Queens College)

くほと くほと くほと

Main result I: FRSB at zero temperature

Recall $\mu_{\beta} := \operatorname{argmin} \mathcal{P}_{\beta}(\mu)$ is the functional order parameter. A model ξ is

- Replica Symmetric (RS) if $\# \operatorname{supp} \mu_{\beta} = 1$,
- ► *k*-step Replica Symmetry Breaking (*k*-RSB) if $\# \operatorname{supp} \mu_{\beta} = k + 1$,
- Full-step Replica Symmetry Breaking (FRSB) if $\# \operatorname{supp} \mu_{\beta} = \infty$.

Main result I: FRSB at zero temperature

• Parisi formula for ground state energy (Auffinger–Chen, AoP 2017): for any ξ ,

$$\lim_{N\to\infty}\max_{\sigma\in\{\pm 1\}^N}\frac{H_N(\sigma)}{N}=\inf\{\mathcal{P}(\boldsymbol{\gamma}):\boldsymbol{\gamma}\in\mathrm{Meas}[0,1)\}.$$

Here $\mathcal{P}(\gamma)$ is the Parisi functional at zero temperature:

$$\mathcal{P}(\gamma) = \Psi_{\gamma}(0,h) - \frac{1}{2} \int_{0}^{1} t\xi''(t)\gamma([0,t])dt,$$

$$\partial_{t}\Psi_{\gamma}(t,x) = -\frac{\xi''(t)}{2} (\partial_{xx}\Psi_{\gamma}(t,x) + \gamma([0,t])(\partial_{x}\Psi_{\gamma}(t,x))^{2}),$$

$$\Psi_{\gamma}(1,x) = |x|.$$

- 4 目 ト - 4 日 ト - 4 日 ト

Main result I: FRSB at zero temperature

• Parisi formula for ground state energy (Auffinger–Chen, AoP 2017): for any ξ ,

$$\lim_{N\to\infty}\max_{\sigma\in\{\pm 1\}^N}\frac{H_N(\sigma)}{N}=\inf\{\mathcal{P}(\boldsymbol{\gamma}):\boldsymbol{\gamma}\in\mathrm{Meas}[0,1)\}.$$

Here $\mathcal{P}(\gamma)$ is the Parisi functional at zero temperature:

Theorem (Auffinger-Chen-Z. arXiv:1703.06872)

Let $\gamma^* = \operatorname{argmin} \mathcal{P}(\gamma)$ be the functional order parameter (or the Parisi measure) at zero temperature. Then for any ξ ,

$$\#\operatorname{supp}\gamma^* = \infty.$$

In other words, FRSB holds at zero temperature for any mixed p-spin model.

Consequences

Theorem

For any ξ , $\# \operatorname{supp} \mu_{\beta} \to \infty$ as $\beta \to \infty$.

3

ヘロト 人間 ト くほ ト くほ トー

Consequences

Theorem

For any ξ , $\# \operatorname{supp} \mu_{\beta} \to \infty$ as $\beta \to \infty$.

It follows from the fact $\beta \mu_{\beta} \Rightarrow \gamma^*$.

3

ヘロト 人間 ト くほ ト くほ トー

Consequences

Theorem

For any ξ , $\# \operatorname{supp} \mu_{\beta} \to \infty$ as $\beta \to \infty$.

It follows from the fact $\beta \mu_{\beta} \Rightarrow \gamma^*$.

Corollary

For the pure *p*-spin model $\xi(x) = x^p$, the Gardner 1-RSB phase cannot exist for arbitrarily low temperature.

A B F A B F

FRSB: progress and history

- The SK model is RS in the high temperature regime $\beta < \frac{1}{\sqrt{2}}$ (Aizenman–Lebowitz–Ruelle, CMP 1987).
- The SK model is not RS in the low temperature regime $\beta > \frac{1}{\sqrt{2}}$ (Toninelli, Europhys. Lett. 2002).
- For sufficiently low temperature the mixed *p*-spin model is at least 2-RSB (Auffinger-Chen, PTRF 2015).

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ …

• Parisi prediction for mixed *p*-spin model at low but positive temperature: for any $\xi(x) = \sum_{p=2}^{\infty} c_p^2 x^p$, $\exists \beta_c > 0$ such that the model is FRSB for $\beta > \beta_c$.

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ …

- Parisi prediction for mixed *p*-spin model at low but positive temperature: for any $\xi(x) = \sum_{p=2}^{\infty} c_p^2 x^p$, $\exists \beta_c > 0$ such that the model is FRSB for $\beta > \beta_c$.
- Gardner transition for pure *p*-spin model.

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ …

- Parisi prediction for mixed *p*-spin model at low but positive temperature: for any $\xi(x) = \sum_{p=2}^{\infty} c_p^2 x^p$, $\exists \beta_c > 0$ such that the model is FRSB for $\beta > \beta_c$.
- Gardner transition for pure *p*-spin model.
- Conjecture: in the FRSB phase, μ_{β} has an absolutely continuous part.

通 ト イヨ ト イヨ ト

- Parisi prediction for mixed *p*-spin model at low but positive temperature: for any $\xi(x) = \sum_{p=2}^{\infty} c_p^2 x^p$, $\exists \beta_c > 0$ such that the model is FRSB for $\beta > \beta_c$.
- Gardner transition for pure *p*-spin model.
- Conjecture: in the FRSB phase, μ_{β} has an absolutely continuous part.
- Conjecture (Oppermann–Sherrington, Phys. Rev. Lett. 2005): for the SK model at zero temperature, the inverse function of $\gamma^*(q)$ is

$$q(x) = \frac{\sqrt{\pi}x}{2\Xi} \operatorname{erf}\left(\frac{\Xi}{x}\right)$$

for some constant $\Xi \approx 1.13$ and $\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt$.

Proof idea for $\# \operatorname{supp} \gamma^* = \infty$

Assume the SK model is 1-RSB. Numerical calculation yields $m_1 \approx 0.817264$. Plot for $m_2 = 1, 2, 3, 4, q_2 \in [0.8, 0.99)$.

★ 3 > < 3 >

Proof idea for $\# \operatorname{supp} \gamma^* = \infty$

Assume the SK model is 1-RSB. Numerical calculation yields $m_1 \approx 0.817264$. Plot for $m_2 = 1, 2, 3, 4, q_2 \in [0.8, 0.99)$.

• Proof by contradiction: assume γ has n atoms, then show that the Parisi functional $\mathcal{P}(\gamma)$ is lowered if we add one more jump in a small neighborhood of 1.

< 注入 < 注入

Proof Sketch I

- Assume $\gamma_P = \gamma$ has n atoms and work with SK model $(\xi(s) = s^2/2, \xi'(s) = s, \xi''(s) = 1).$ • $\gamma(t) = \sum_{i=0}^{n-1} m_i \mathbf{1}_{[q_i, q_{i+1})}(t) + m_n \mathbf{1}_{[q_n, 1)}(t)$ where $q_0 = 0 \le q_1 < q_2 < \dots < q_n < 1,$
 - $m_0 = 0 < m_1 < m_2 < \dots < m_n < \infty.$

• Perturb
$$\gamma(t)$$
: $q = q_{n+1}, 1 = q_{n+2}$,

$$\gamma_q(t) = \sum_{i=1}^{n-1} m_i \mathbf{1}_{[q_i, q_{i+1})}(t) + m_n \mathbf{1}_{[q_n, q]}(t) + \frac{m_{n+1}}{n_{n+1}} \mathbf{1}_{[q, 1]}(t).$$

• Compute $\partial_q \mathcal{P}(\gamma_q)$ as $q \to 1-$.

(人間) とうき くうとう う

Proof Sketch II

• z_0, \ldots, z_{n+1} i.i.d. N(0,1) r.v.'s. Define

$$Y_{n+2} = \Big|\sum_{j=0}^{n+1} z_j \sqrt{q_{j+1} - q_j}\Big|,$$

and iteratively for $1 \le i \le n+1$,

$$Y_i = \frac{1}{m_i} \log \mathbb{E}_{z_i} \exp m_i Y_{i+1},$$

and $Y_0 = \mathbb{E}_{z_0} Y_1$.

• Using Cole–Hopf representation,

$$\mathcal{P}(\gamma_q) = Y_0 - \frac{1}{2} \sum_{i=1}^n m_i \int_{q_i}^{q_{i+1}} t\xi''(t) dt - \frac{m_{n+1}}{2} \int_q^1 t\xi''(t) dt.$$

3

ヘロト 人間 とくほ とくほ とう

Proof Sketch III

It turns out

$$\lim_{q \to 1-} \partial_q \mathcal{P}(\gamma_q) = 0.$$

• After some hard work, one can show

$$\limsup_{q \to 1-} \partial_{qq}^2 \mathcal{P}(\gamma_q) < 0.$$

• Main tool: Gaussian integration by parts

$$\mathbb{E}[zf(z)] = \mathbb{E}[f'(z)], \quad z \sim N(0, 1).$$

(B)

Outline

1 Models and background

2 Replica Symmetry Breaking for mixed *p*-spin models

3 Replica Symmetry Breaking for spherical mixed p-spin models

くほと くほと くほと

The spherical mixed *p*-spin model

•
$$\sigma = (\sigma_1, ..., \sigma_N) \in S_N = \{(\sigma_1, ..., \sigma_N) \in \mathbb{R}^N : \sum_{i=1}^N \sigma_i^2 = N\},\$$

 $H_N(\sigma) = \sum_{p \ge 2} \frac{c_p}{N^{(p-1)/2}} \sum_{1 \le i_1, ..., i_p \le N} g_{i_1, ..., i_p} \sigma_{i_1} \cdots \sigma_{i_p},\$
 $g_{i_1, ..., i_p}$ independent $N(0, 1).$

Covariance

$$\mathbb{E}H_N(\sigma^1)H_N(\sigma^2) = N\xi(R_{1,2}),$$

where $\xi(x) = \sum_{p=2}^{\infty} c_p^2 x^p$.

• The spherical SK model (Kosterlitz–Thouless–Jones, 1976):

$$\xi(x) = x^2.$$

• The spherical pure *p*-spin model for $p \ge 3$:

$$\xi(x) = x^p$$

通 ト イヨ ト イヨ ト

Partition function:

$$Z_{N,\beta} = \int_{S_N} e^{\beta H_N(\sigma)} \lambda_N(\mathrm{d}\sigma).$$

3

- 4 目 ト - 4 日 ト - 4 日 ト

Partition function:

$$Z_{N,\beta} = \int_{S_N} e^{\beta H_N(\sigma)} \lambda_N(\mathrm{d}\sigma).$$

• The Parisi formula holds (Talagrand, PTRF 2006)

$$\lim_{N \to \infty} \frac{1}{\beta N} \log Z_{N,\beta} = \inf \{ \mathcal{Q}_{\beta}(\mu) : \mu \in \operatorname{Prob}[0,1] \}.$$

過 ト イヨ ト イヨト

Partition function:

$$Z_{N,\beta} = \int_{S_N} e^{\beta H_N(\sigma)} \lambda_N(\mathrm{d}\sigma).$$

• The Parisi formula holds (Talagrand, PTRF 2006)

$$\lim_{N \to \infty} \frac{1}{\beta N} \log Z_{N,\beta} = \inf \{ \mathcal{Q}_{\beta}(\mu) : \mu \in \operatorname{Prob}[0,1] \}.$$

• For T = 0 (Chen–Sen, CMP 2017; Jagannath–Tobasco, CMP 2017)

$$\lim_{N \to \infty} \frac{1}{N} \max_{\sigma \in S_N} H_N(\sigma) = \inf \{ \mathcal{Q}(\gamma) : \gamma \in \text{Meas}[0,1) \}.$$

過 ト イヨ ト イヨト

Partition function:

$$Z_{N,\beta} = \int_{S_N} e^{\beta H_N(\sigma)} \lambda_N(\mathrm{d}\sigma).$$

• The Parisi formula holds (Talagrand, PTRF 2006)

$$\lim_{N \to \infty} \frac{1}{\beta N} \log Z_{N,\beta} = \inf \{ \mathcal{Q}_{\beta}(\mu) : \mu \in \operatorname{Prob}[0,1] \}.$$

• For T = 0 (Chen–Sen, CMP 2017; Jagannath–Tobasco, CMP 2017)

$$\lim_{N \to \infty} \frac{1}{N} \max_{\sigma \in S_N} H_N(\sigma) = \inf \{ \mathcal{Q}(\gamma) : \gamma \in \text{Meas}[0,1) \}.$$

• Let $\mu_{\beta} := \operatorname{argmin} \mathcal{Q}_{\beta}(\mu),$ $\gamma^* := \operatorname{argmin} \mathcal{Q}(\gamma).$

• The level of RSB is classified by $\# \operatorname{supp} \mu_{\beta}$ and $\# \operatorname{supp} \gamma^*$.

イロト 不得下 イヨト イヨト 二日

Replica Symmetry Breaking for spherical models

- Panchenko-Talagrand (AoP 2007): at positive temperature,
 - the spherical SK model is RS;
 - ▶ the spherical pure *p*-spin model is RS for $\beta \leq \beta_c$, and 1-RSB for $\beta > \beta_c$.
- Auffinger-Chen (PTRF 2015): at positive temperature, some 2 + p spin models (i.e. $\xi(x) = (1 \lambda)x^2 + \lambda x^p$) are FRSB.
- Chen–Sen (CMP 2017): the zero temperature $\beta = \infty$ case is the same as the low temperature case.

イロト イポト イヨト イヨト

RSB for spherical models: conjecture and prediction

• Bolthausen (Survey 2007): for spin glass models, $K = 1, 2, \infty$ (RS, 1-RSB, FRSB) seem to be the only ones coming up "naturally".

伺下 イヨト イヨト

RSB for spherical models: conjecture and prediction

- Bolthausen (Survey 2007): for spin glass models, $K = 1, 2, \infty$ (RS, 1-RSB, FRSB) seem to be the only ones coming up "naturally".
- Crisanti-Leuzzi (Phys. Rev. B 2007) predicted 2-RSB model exists at certain positive temperature for some 3 + 16 model $(\xi(x) = (1 \lambda)x^3 + \lambda x^{16})$.

▲圖▶ ▲ 圖▶ ▲ 圖▶ …

RSB for spherical models: conjecture and prediction

- Bolthausen (Survey 2007): for spin glass models, $K = 1, 2, \infty$ (RS, 1-RSB, FRSB) seem to be the only ones coming up "naturally".
- Crisanti-Leuzzi (Phys. Rev. B 2007) predicted 2-RSB model exists at certain positive temperature for some 3 + 16 model $(\xi(x) = (1 \lambda)x^3 + \lambda x^{16})$.
- Auffinger–Ben Arous (AoP 2013) conjectured at zero temperature excluding SK, there is a classification of spherical mixed *p*-spin models: either 1-RSB (pure-like) or FRSB (full mixture).

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

Main result II: 2-RSB exists for spherical models

Theorem (Auffinger–Z. CMP 2019+)

At zero temperature, there exist 2-RSB spherical s + p models $(\xi(x) = (1 - \lambda)x^s + \lambda x^p)$ in both pure-like and full mixture regimes.

Figure: Auffinger-Ben Arous (AoP_2013)

Qiang Zeng (CUNY Queens College)

RSB for spin glasses

Consequence for energy landscape of $H_N(\sigma)$

Corollary

If ξ is a 2-RSB model (with some mild extra properties), we have for any $\varepsilon > 0$ there exist $\eta, K > 0$ such that for all $N \ge 1$,

$$\mathbb{P}_{N}(\eta, [-1+\varepsilon, -q-\varepsilon] \cup [-q+\varepsilon, -\varepsilon] \cup [\varepsilon, q-\varepsilon] \cup [q+\varepsilon, 1-\varepsilon]) \\ \leq K e^{-N/K},$$

where for any Borel set $A \subset [-1, 1]$,

$$\mathbb{P}_N(\eta, A) := \mathbb{P}(\exists \sigma^1, \sigma^2 \in \mathcal{L}(\eta), \text{ with } R_{1,2} \in A).$$

and

$$\mathcal{L}(\eta) := \big\{ \sigma \in S_N : H_N(\sigma) \ge N(\max_{\sigma' \in S_N} H_N(\sigma') - \eta) \big\}.$$

In words, with overwhelming probability, near maxima have distance within $\sqrt{2\varepsilon}$, or $\sqrt{2(1-q\pm\varepsilon)}$ apart, or $\sqrt{2(1\pm\varepsilon)}$ apart (orthogonal).

Some open questions

- Easy criterion for 2-RSB at zero temperature?
- k-RSB ($2 \le k < \infty$) for positive temperature?
- In general, classify the RSB phase diagram?

< 3 > < 3 >

Thank you very much for your attention!

くほと くほと くほと