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Finite Input-Output Games

These are games where two cooperating but non-communicating
players, Alice and Bob try to give correct answers to questions
posed by the Referee.
For each round of the game, the cooperating players each receive
an input, i.e., a question, from the Referee from some finite set of
inputs IA, IB .
They must each produce an output, i.e., an answer, belonging to
some finite set OA,OB .
The game G has rules given by a function

λ : IA × IB × OA × OB → {0, 1}

where λ(x , y , a, b) = 1 means that if Alice and Bob receive inputs
x , y , respectively and produce respective outputs a, b, then they
win. If λ(x , y , a, b) = 0, they lose.
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They both know the rule function and can jointly create a strategy
for winning, but once the game starts Alice and Bob must produce
their outputs without knowing what input the other received and
without knowing what output the other produced. This is what is
meant by non-communicating.

A deterministic strategy is a pair of functions, fA : IA → OA,
fB : IB → OB so that when Alice and Bob receive inputs x , y then
they give outputs, fA(x), fB(y).
A deterministic strategy is called perfect if it always wins, i.e.,
λ(x , y , fA(x), fB(y)) = 1, ∀x , y .
A random strategy just means that each time they receive the
input pair (x , y) they do not necessarily produce the same output.
In this case there is a conditional probability density p(a, b|x , y)
that represents the probabiity that they output the pair (a, b) given
that they received input (x , y).
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A random strategy is called perfect if

λ(x , y , a, b) = 0 =⇒ p(a, b|x , y) = 0,

so there is 0 probability of them producing an incorrect output.

It turns out that there are many games with no perfect
deterministic strategy and no perfect classical random strategy, but
they do have perfect quantum strategies.
The goal of this talk is to show that for a certain family of such
games, called synchronous games, we can construct a *-algebra
whose representation theory completely characterizes these
behaviours.
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Synchronous games

A game is called synchronous if IA = IB , OA = OB and whenever
the players receive the same input(question) they must produce the
same output(answer). If p(a, b|x , y) represents the probability that
when receiving inputs x , y the players produce outputs a, b,
respectively, then to always win a synchronous game this must
satisfy,

∀x , p(a, b|x , x) = 0 whenever a 6= b

such densities are called synchronous.
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Graph Homomorphisms

Given two graphs G = (V (G ),E (G )) and H = (V (H),E (H)) a
homomorphism from G to H is a function f : V (G )→ V (H) such
that

(v ,w) ∈ E (G ) =⇒ (f (v), f (w)) ∈ E (H),

we write G → H to indicate that there is a graph homomorphism
from G to H.
Many graph parameters are defined using graph homomorphisms
and the complete graph, Kc , on c vertices.

I χ(G ) = min{c : G → Kc}(chromatic number)

I ω(G ) = max{c : Kc → G}(clique number)

I α(G ) = max{c : Kc → G}(independence number), where G
is the graph with the same vertex set but the opposite edges.
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The Graph Homomorphism Game

Given graphs G and H on n and m vertices, the game goes as
follows: The Referee gives Alice and Bob a pair of vertices x , y
from V (G ) and they reply with a pair of vertices a, b from V (H)
.They win provided:

I x = y =⇒ a = b,

I (x , y) ∈ E (G ) =⇒ (a, b) ∈ E (H)

This game has a perfect deterministic strategy iff there is a graph
homomorphism from G to H. In a similar fashion, the graph
homomorphism game from G to Kc has a perfect deterministic
strategy iff χ(G ) ≤ c . In this manner the above graph parameters
all have game theoretic interpretations.
Also given a pair of graphs, there is a graph isomorphism game,
which has a perfect deterministic strategy iff the two graphs are
isomorphic.
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The syncBCS game

Suppose Ax = b is an m × n linear system over Z/2; that is,
A = (ai ,j) ∈Mm,n(Z/2) and b ∈ (Z/2)n.
Idea of the game is that Alice and Bob want to convince the
Referee that they have a solution x to Ax = b.
Let Ri denote the i-th row of A so that a solution to Ax = b would
need to satisfy Ri · x = bi .
In the syncBCS game a Referee chooses rows i , j , Alice receives i ,
Bob receives j and they each produce an output vector,
v ,w ∈ (Z/2)n.
They win if:

I when i = j =⇒ x = y ,

I Ri · v = bi and Rj · w = bj ,

I ai ,k = 0 =⇒ vk = 0 and aj ,k = 0 =⇒ wk = 0,

I whenever ai ,k = aj ,k = 1, then vk = wk .
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Conditional Quantum Probabilities: Tsirelson and Connes

Suppose that Alice and Bob each have n quantum experiments
and each experiment has m outcomes. We let p(a, b|x , y) denote
the conditional probability that Alice gets outcome a and Bob gets
outcome b given that they perform experiments x and y
respectively. There are several possible models for describing the
set of all such tuples.
One model is that Alice and Bob have finite dimensional state
spaces HA and HB . For each experiment x , Alice has projections
{Ex ,a, 1 ≤ a ≤ m} such that

∑
a Ex ,a = IA. Similarly, for each y ,

Bob has projections {Fy ,b : 1 ≤ b ≤ m} such that
∑

b Fy ,b = IB .
They share an entangled state ψ ∈ HA ⊗HB and

p(a, b|x , y) = 〈ψ|Ex ,a ⊗ Fy ,b|ψ〉.
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We let Cq(n,m) = {p(x , y |a, b) : obtained as above } ⊆ Rn2m2
.

We let Cqs(n,m) denote the possibly larger set that we could
obtain if we allowed the spaces HA and HB to also be infinite
dimensional.
We let Cqc(n,m) denote the possibly larger set that we could
obtain if instead of requiring the common state space to be a
tensor product, we just required one common state space, and
demanded that Ea,xFy ,b = Fy ,bEx ,a for all a, b, x , y , this is called
the commuting model.
Tsirelson was the first to examine these sets and study the relations
between them. In fact, he wondered if they could all be equal.
Here are some of the things that we know/don’t know about these
sets.
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I Cq(n,m) ⊆ Cqs(n,m) ⊆ Cqc(n,m).

I Cq(n,m)− = Cqs(n,m)− := Cqa(n,m) ⊆ Cqc(n,m) and this
can be identified with the states on a minimal tensor product.

I Cqc(n,m) is closed and can be identified with the states on a
maximal tensor product.

I (JNPPSW + Ozawa)Cq(n,m)− = Cqc(n,m), ∀n,m iff
Connes’ Embedding conjecture has an affirmative answer.

I (Slofstra, March 2017) there exists a n ∼ 100, such that
Cq(n, 8) is not closed.

I (Dykema, P, Prakash) Cq(n,m) and Cqs(n,m) are not closed
∀n ≥ 5,m ≥ 2.

I (Coladangelo, Stark) Cq(4, 3) 6= Cqs(4, 3).
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For t = q, qs, qa, qc we will say that a game with n inputs and m
outputs has a perfect t-strategy if there exists
p(a, b|x , y) ∈ Ct(n,m) such that

λ(x , y , a, b) = 0 =⇒ p(a, b|x , y) = 0.

Slofstra’s result came from his construction of a binary constraint
system(BCS) game with a perfect qa-strategy but no perfect
q-strategy.
Our work characterizes the existence of perfect t-strategies in
terms of a *-algebra constructed from the game.
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The *-algebra of a synchronous game

Let G = (I ,O, λ) be a synchronous game. By the *-algebra of the
game, A(G), we mean the ”universal” *-algebra generated by
projections {ex ,a : x ∈ I , a ∈ O} satisfying:

I ∀x ∈ I ,
∑

a∈O ex ,a = I ,

I λ(a, b, x , y) = 0 =⇒ ex ,aey ,b = 0

Theorem (HMPS, KPS)

Let G be a synchronous game then:

I G has a perfect deterministic strategy iff A(G) has a
non-trivial one-dimensional representation,

I G has a perfect q-strategy iff G has a perfect qs-strategy iff
A(G) has a non-trivial finite dimensional representation.

I G has a perfect qc-strategy iff A(G) has a trace.

I G has a perfect qa-strategy iff A(G) has a hyperlinear trace.
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The graph isomorphism algebra

If G ,H are two graphs with |V (G )| = |V (H)| = N, then
A(Iso(G ,H)) is generated by N2 projections
eg ,h, g ∈ V (G ), h ∈ V (H) and the relations induced by the rule
function are equivalent to:

I
∑

h eg ,h = 1,
∑

g eg ,h = 1, so that we have the relations for

the generators of the quantum symmetric group S+
N ,

I ∀g ∈ V (G ), h ∈ V (H),
∑

g ′∼g eg ′,h =
∑

h′∼h eg ,h′ , where we
write x ∼ y to mean that (x , y) is an edge.

The second relation can also be written as
AG ◦ (eg ,h) = (eg ,h) ◦ AH , where AX is the adjacency matrix of the
graph X .
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Equivalences among games

Given A ∈ Mm,n(Z/2) and b ∈ (Z/2)n there is a graph on 2km
vertices, GA,b with the following properties:

Theorem (KPS)

Let A and b be as above and let t ∈ {deterministic , q, qa, qc} then
the following are equivalent:

I synBCS(A, b) has a perfect t-strategy,

I Iso(GA,0,GA,b) has a perfect t-strategy,

I ωt(GA,b) = m.

Finally, using Slofstra’s construction of a BCS game with a perfect
qa-strategy but no perfect q-strategy, we are able to prove that
there exists a m× n matrix with m ∼ 100 and a vector b such that
syncBCS(A, b) has a perfect qa-strategy but no perfect q-strategy.
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This implies that there exist a sequence of integers nk , and for
each g , h, a sequence of projections Eg ,h,k ∈ Mnk such that:

I ‖
∑

h Eg ,h,k − Ink‖2 → 0, ‖
∑

g Eg ,h,k − Ink‖2 → 0 as k →∞,
I ∀g , h, ‖

∑
g ′∼g Eg ′,h,k −

∑
h′∼h Eg ,h′,k‖2 → 0,

but one can not have exact solutions to both these equations in
Mn for any n.
This suggests the following problem: Are nearly magic
permutations, near to magic permutations?
Explicitly: for a fixed N, does there exist δ = δ(ε)→ 0 as ε→ 0,
independent of n, such that if Eg ,h ∈ Mn, 1 ≤ g , h ≤ N are
projections with ‖

∑
h Eg ,h − In‖2 < ε and ‖

∑
g Eg ,h − In‖2 < ε

then there exist projections Fg ,h with
∑

h Fg ,h =
∑

g Fg ,h = In and
‖Eg ,h − Fg ,h‖2 < δ ?
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Further results and problems

I HMPS prove that A(Hom(K4,K3)) = (0). Hence algebras of
games can be 0.

I HMPS also show that A(Hom(K5,K4)) 6= (0),but this
*-algebra can have no representation on a Hilbert space
because it contains 4 projections whose sum is −I .

I Does there exist a synchronous game such that its C*-algebra
is non-zero but has no traces?

I Tobias Fritz proves that every *-algebra of a synchronous
game is a hypergraph *-algebra and conversely.

I Fritz proves that if ZFC is consistent, then there is a
synchronous game G such that whether or not A(G) has a
representation on a Hilbert space is undecidable.
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