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Study designs involving clustering in some study arms, but not all study arms, are common in
clinical treatment-outcome and educational settings. For instance, in a treatment arm, persons
may be nested in therapy groups, whereas in a control arm there are no groups. Methodological
approaches for handling such partially nested designs have recently been developed in a
multilevel modeling framework (MLM-PN) and have proved very useful. We introduce two
alternative structural equation modeling (SEM) approaches for analyzing partially nested data:
a multivariate single-level SEM (SSEM-PN) and a multiple-arm multilevel SEM (MSEM-PN).
We show how SSEM-PN and MSEM-PN can produce results equivalent to existing MLM-
PNs and can be extended to flexibly accommodate several modeling features that are difficult
or impossible to handle in MLM-PNs. For instance, using an SSEM-PN or MSEM-PN, it is
possible to specify complex structural models involving cluster-level outcomes, obtain absolute
model fit, decompose person-level predictor effects in the treatment arm using latent cluster
means, and include traditional factors as predictors/outcomes. Importantly, implementation
of such features for partially nested designs differs from that for fully nested designs. An
empirical example involving a partially nested depression intervention combines several of
these features in an analysis of interest for treatment-outcome studies.

A common design in treatment-outcome studies involves
clustering in one or more study arms but not in other arm(s);
such designs can be called partially nested. Whereas in fully
nested studies groups may be randomized to condition, in
partially nested studies individuals may be randomly as-
signed to condition, and then groups (clusters) may be con-
structed in the treatment arm for the purpose of treatment
administration. Many such partially nested studies compare
group therapy treatment (with persons nested within therapy
groups) versus a wait-list or medication-only control condi-
tion (e.g., Compas et al., 2009, 2011; Dannon, Gon-Usishkin,
Gelbert, Lowengrub, & Grunhaus, 2004; Haugli, Steen,
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Laerum, Nygard, & Finset, 2001; Heller-Boersma, Schmidt,
& Edmonds, 2007; Jarrett et al., 1999; Ladouceur et al.,
2000; Pisinger, Vestbø, Borch-Johnsen, & Jørgensen, 2005;
Price & Anderson, 2011; Thomas et al., 2010; Thompson,
Gallagher, & Breckenridge, 1987; Van Minnen, Hoogduin,
Keijsers, Hellenbrand, & Hendriks, 2003). Other examples
involve educational studies comparing problem-solving out-
comes in individual versus collaborative team environments
(Kirschner, Paas, Kirschner, & Janssen, 2011; Vadasy &
Sanders, 2008) or public health studies comparing outcomes
from patients assigned to individual versus paired HIV coun-
seling (Becker, Mlay, & Schwandt, 2010). Indeed, a recent
review found partially nested designs used in approximately
one third of randomized trials (Bauer, Sterba, & Hallfors,
2008).

In such partially nested designs, the common assump-
tion of independently distributed observations is violated
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94 STERBA ET AL.

for observations in the clustered arm(s). Outcomes within
a clustered arm may be correlated because, for instance in an
educational intervention, fast-learning readers interact with
and elevate the performance of other students in their cluster.
Correlated outcomes in some study arms complicate anal-
ysis of treatment effects and necessitate the explanation of
variability both within and across clusters. The analytical
challenges in the partial nesting context differ from those
in other designs with naturally occurring singletons (single-
person clusters), such as when all but one cluster member
are absent due to subject-initiated missing data. In the partial
nesting context, the singletons’ presence is systematically
paired with a covariate (study arm), and different model-
implied variances and/or effects are theoretically anticipated
in the nested versus nonnested arms (Sanders, 2011).

Methodologists have begun to attend to the analysis of
data from such partially nested designs. Bauer et al. (2008),
Lee and Thompson (2005), Moerbeek and Wong (2008), and
Roberts and Roberts (2005) adapted a multilevel model for
partially nested data (MLM-PN)—accommodating nesting
only in the clustered study arm(s) but not in the unclustered
study arm(s). In simulation studies, others have compared this
approach with alternatives involving (a) ignoring the cluster-
ing entirely or (b) pretending all observations are clustered
with the same intraclass correlation (ICC) and applying a
standard multilevel model (Baldwin, Bauer, Stice, & Rohde,
2011; Korendijk, Maas, Hox, & Moerbeek, 2012; Sanders,
2011). The MLM-PN’s estimates were unbiased and it out-
performed alternatives (a) and (b) in terms of efficiency and
Type I error. Comparatively, standard errors of the treatment
effect were biased for alternatives (a) and (b), and variance
component estimates were biased and uninterpretable for al-
ternative (b) (Korendijk et al., 2012).1 Other recent work has
used this MLM-PN approach in sample size planning for
optimal power (Candel & Van Breukelen, 2009, 2010; Mo-
erbeek & Wong, 2008). In sum, this MLM-PN approach has
proved very useful to date.

Social science and health researchers conducting
treatment-outcome studies, however, often are interested in
capitalizing on the flexibility of a structural equation model-
ing (SEM) framework when evaluating complex hypotheses;
these researchers may also be interested in evaluating abso-
lute model fit (Beran & Violato, 2010; Cole, Maxwell, Arvey,
& Salas, 1993; Hoyle & Smith, 1994; Russell, Kahn, Spoth,
& Altmaier, 1998; Tomarken & Waller, 2005). Researchers
conducting partially nested treatment-outcome studies are

1Some of these simulations also compared the MLM-PN with other al-
ternatives including (a) treatment clusters as fixed effects; (b) assigning all
control persons the same subject identifier and considering them as consti-
tuting a single large cluster when fitting a standard MLM; or (c) after study
completion, dividing control persons arbitrarily into multiperson “clusters”
to mimic the data structure in the treatment arm and then fitting a standard
MLM. The MLM-PN also performed favorably vis-à-vis these alternatives
(Baldwin et al. 2011; Korendijk et al., 2012; Sanders, 2011).

no exception. In particular, extending the MLM-PN to ac-
commodate complex structural relations among multivariate
outcomes can be less straightforward; including cluster-level
outcomes or traditional factor predictors/outcomes is not pos-
sible, and there are limited options for decomposing person-
level predictor effects into between- and within-cluster
effects.

To address this need, we introduce two flexible SEM
approaches for handling partially nested data. We show that
both are statistically equivalent to the existing MLM-PN—
when the MLM-PN is applicable. One SEM approach, a
multivariate single-level SEM (SSEM-PN), can be imple-
mented in standard SEM software. The other SEM approach
involves a multiple-arm2 multilevel SEM (MSEM-PN). All
approaches require raw data and accommodate subject-
initiated missing data on outcomes in any study arm under the
missing-at-random assumption of full information maximum
likelihood (FIML). Particular patterns of design-induced
missingness are a by-product of the partial nesting design
itself (described later). When estimating SSEM-PNs or
MSEM-PNs, SEM software may provide absolute fit indices
by default; however, these are untrustworthy. They are com-
puted using a likelihood for a default saturated model that
does not include relevant design-based constraints. Comput-
ing interpretable absolute fit indices for nonsaturated SSEM-
PNs and MSEM-PNs that do not employ random slopes
requires separate specification of a saturated model that
accounts for design-based constraints: exchangeability of
persons within cluster in the treatment arm (following Bauer,
2003) and independence of persons across arms. Two exam-
ples are given later. For all approaches–MLM-PN, SSEM-
PN, and MSEM-PN—model selection can also involve
information criteria and likelihood ratio difference tests.

In the first part of this article, we review the MLM-
PN. Then we introduce the SSEM-PN and MSEM-PN in
equations and path diagrams. We explain how these SEM
approaches can equivalently represent each feature of the
MLM-PN approach, including residual variances that are
homoscedastic versus heteroscedastic across study arm,
individual-level and cluster-level predictors, and multiple
study arms. Simulated examples illustrate the equivalency
of the SEM alternatives with the MLM-PN. After estab-
lishing this equivalency, we turn to two illustrative con-
texts where the added flexibility of the SEM approaches
poses benefits: (a) when including cluster-level outcomes
among multivariate outcomes and (b) when interest is in
decomposing person-level predictor effects into within- and
between-cluster components in the treatment arm. Both of
these contexts are later incorporated into an empirical exam-
ple analysis using a partially nested depression intervention

2We use the term “multiple-arm model” in place of the more conventional
SEM term “multiple-group model” because we have already used the word
“group” to refer to cluster (as in therapy group).
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SEMS FOR PARTIALLY NESTED DATA 95

design. Discussion focuses on considerations when choosing
among MLM-PN, SSEM-PN, and MSEM-PN in practice, as
well as further modeling possibilities. For all fitted SSEM-
PNs and MSEM-PNs, Mplus (L. K. Muthén & Muthén,
1998–2013) syntax is given in an online Appendix; LIS-
REL (Jöreskog & Sörbom, 2006) syntax is also provided for
select examples.3 Although we use a conventional matrix rep-
resentation for the SSEM-PN, we present the MLM-PN and
MSEM-PN in scalar format for simplicity. Corresponding
matrix representations are provided in our online Appendix
at www.vanderbilt.edu/peabody/sterba/appxs.htm

REVIEW OF THE MULTILEVEL MODELING
APPROACH FOR HANDLING PARTIAL

NESTING (MLM-PN)

We begin by reviewing the multilevel modeling approach for
handling partial nesting (MLM-PN; Bauer et al., 2008; Lee
& Thompson, 2005; Moerbeek & Wong, 2008; Roberts &
Roberts, 2005) in which the number of arms, A, equals 2.
Here the treatment arm is clustered and the control arm is
unclustered; however, we can alternatively think of each per-
son in the control arm as constituting his or her own cluster.
Key features of the MLM-PN are the allowance for different
model-implied variances in the control and treatment arms
and allowance for separation of between-cluster and within-
cluster outcome variability only in the treatment arm. To
accomplish this, a random effect for a treatment indicator
(coded treat = 0 for controls, treat = 1 for treated) is used
in lieu of a random intercept to account for clustering. When
treat = 1, the model includes a single random effect allowing
for correlated observations within cluster, but when treat =
0, this random effect drops out of the model:

Level 1: yij = β0j + β1j treatij + rij (1)

Level 2: β0j = γ00

β1j = γ10 + u1j

Reduced form: yij = γ00 + γ10treatij + u1j treatij + rij .

yij is the outcome for person i (where i = 1. . .Nj) in cluster
j (where j = 1. . . J). J is the total number of clusters. Hence,
J is the sum of all (multiple-person) clusters in the treatment
arm plus all (singleton) clusters in the control arm. Nj is the
number of persons in the jth cluster. Usually Nj >1 in the
treatment arm (though fewer could arise in practice due to
subject-initiated missing data) but Nj = 1 in the control arm.
The total number of persons in the sample is N. β0j is the
latent intercept for cluster j, with mean γ00 interpreted as the

3Equations in the text correspond with a conditional likelihood formu-
lation (e.g., as used in Mplus). Implementation with LISREL (which uses
a joint likelihood formulation) requires slightly different specification for
some models; examples are given in the online Appendix.

mean in the control arm; it is fixed across clusters. β1j is
the effect of treatment (i.e., difference between control and
treatment) for cluster j, with mean γ10 and cluster-specific
deviation u1j . β1j differs across clusters only when treat =
1 (otherwise the u1j treatij term drops out of the reduced
form expression). Cluster-specific deviations are assumed
normally distributed:

u1j ∼ N (0, τ11). (2)

τ11 is the between-cluster variance in the treatment arm. rij

is a residual, and rij and u1j are assumed independent. rij

are also assumed independent across study arms by design
and may have either homoscedastic (Equation (3a)) or het-
eroscedastic (Equation (3b)) variance across arms:

rij ∼ N (0, σ 2) (3a)

rij |treatij = 1 ∼ N (0, σ 2
t ) (3b)

rij |treatij = 0 ∼ N (0, σ 2
c ).

Imposing homoscedastic residual variances forces the
model-implied variance in the treatment arm (τ11 + σ 2) to
be greater than or equal to that in the control arm (σ 2),
which may not be plausible if the cluster-based treatment ad-
ministration homogenizes outcomes via contagion (Roberts
& Roberts, 2005). Heteroscedastic residual variances across
arms allows for this possibility, permitting σ 2

c >σ 2
t .

Substantively, note that for persons in the control arm σ 2

(or σ 2
c under heteroscedasticity) does not represent “within-

cluster variance” per se, as there is no splitting of variance
into within- and between-cluster components, and each per-
son can be conceptualized as constituting a cluster. Rather,
this parameter simply represents the variance in the control
arm, whereas in the treatment arm σ 2 (or σ 2

t under het-
eroscedasticity) does represent within-cluster variance.

Adding Exogenous Covariates

Person-level (Level 1) covariates such as patient’s duration of
illness (e.g., xij ) have also been included in the MLM-PN. As
noted by Bauer et al. (2008), xij could potentially vary at both
levels in the treatment arm because it can be decomposed
into a cluster j average and an individual deviation from
the cluster j average. Nonetheless, previous examples using
MLM-PN with person-level covariates (e.g., Baldwin et al.,
2011; Bauer et al., 2008; Moerbeek & Wong, 2008; Roberts
& Roberts, 2005) have estimated a single (total) effect for
xij , as in Equation (4).

The Equation (4) MLM-PN includes both a Level 1 xij

and a Level 2 wj (the latter is discussed shortly).

Level 1: yij = β0j + β1j treatij + β2j xij + rij (4)

Level 2: β0j = γ00

β1j = γ10 + γ11wj + u1j

β2j = γ20.
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96 STERBA ET AL.

Reduced form:

yij = γ00 + γ10treatij + γ11treatijwj

+ γ20xij + u1j treatij + rij .

γ20 is a total effect of xij in the treatment arm but a sim-
ple effect in the control arm. Other options for incorporat-
ing xij are deferred to a separate section, after presenting
MLM-PN, SSEM-PN, and MLM-PN. For now we employ
the previously used practice (total effect of xij). Note that al-
lowing interactions of predictors (e.g., xij ) with treatment
in MLM-PN requires construction and addition of prod-
uct terms. SSEM-PN and MSEM-PN will not require this
step.

Including a cluster-level (Level 2) covariate wj in MLM-
PN can present some complexities that were addressed by
Bauer et al. (2008) and Lee and Thompson (2005). The com-
plexities arise when cluster-level predictors (e.g., group co-
hesion) are undefined, and thus missing-by-design, for the
control arm. However, a wj measured at the cluster level
in the treatment arm may sometimes also be measured in
the control arm—where it is synonymously a cluster-level
or person-level predictor. For instance, if a treatment arm
received classroom-based Scholastic Aptitude Test (SAT)
instruction and a comparison arm received individual SAT
tutoring, teacher experience could be considered a cluster-
level predictor measured in both arms. Unless otherwise
stated, here we focus on the situation in which cluster-level
predictors are missing-by-design in the control arm because
this situation presents unique complexities. In this situation,
MLM-PN includes an effect, γ11, for the interaction of treatij
and wj (but not a main effect of wj ) so that the treatijwj

term drops out of the reduced-form expression for controls,
as shown in Equation (4). Also, to prevent all control par-
ticipants from being listwise deleted due to missingness-by-
design on wj (a typical consequence of model fitting with
FIML using a likelihood conditional on predictors), Bauer
et al. (2008) assigned them an arbitrary value on wj . This
assigned value is not a missing data code; we recommend
using 0 because a large number can cause estimation insta-
bility. This assignment does not affect results because the
interaction term drops out of the reduced form expression
for controls.

Adding Study Arms

Finally, adding a third study arm (A = 3) correspond-
ing to a second treatment condition is accomplished in
MLM-PN by forming two dummy treatment indicator vari-
ables treat1ij and treat2ij rather than one and enter-
ing both as person-level predictors. If there is nesting in
the third study arm (e.g., a couples-therapy arm in addi-
tion to the original group-therapy and control arms), a ran-
dom effect, u3j , would be included for treat2ij also, as in

Equation (5).

Level 1: yij = β0j + β1j treat1ij + β2j xij + β3j treat2ij

+rij (5)

Level 2: β0j = γ00

β1j = γ10 + γ11wj + u1j

β2j = γ20

β3j = γ30 + γ31wj + u3j .

Reduced form:

yij = γ00 + (γ10 + γ11wj + u1j )treat1ij + γ20xij

+ (γ30 + γ31wj + u3j )treat2ij + rij .

Again, residual variances can be homoscedastic4 (σ 2), or
heteroscedastic (σ 2

c vs. σ 2
t1

vs. σ 2
t2

), across arms. Because of
the nature of the design, random effects for separate arms are
assumed independent:[

u1j

u3j

]
∼ N

([
0
0

]
,

[
τ11

0 τ33

])
. (6)

If the effect of wj is conjectured to be the same in the
couples- and group-therapy treatment arms, an equality con-
straint γ11 = γ31 could be imposed. If there is no nesting in
the third study arm (e.g., if an individual-therapy arm were
added), then u3j and τ33 are omitted. If wj (e.g., therapist
experience) is a Level 2 predictor in the clustered, group-
therapy arm but is also measured in the individual therapy
arm, an interaction of treat2ij and wj can still be included
in the reduced form expression.

MULTIVARIATE SINGLE-LEVEL SEM
APPROACH FOR HANDLING PARTIAL

NESTING (SSEM-PN)

In the treatment arm of the MLM-PN, a single outcome was
measured cross-sectionally on multiple exchangeable per-
sons (Level 1 units) nested within person-group clusters (e.g.,
therapy groups). In contrast, cross-sectional applications of
SEM measurement models typically involve multiple differ-
ent outcomes (Level 1 units) nested in a person (Level 2
unit), where the multiple different outcomes serve as indica-
tors of common factor(s). However, an SEM measurement
model can instead be applied to a single outcome measured
cross-sectionally on multiple exchangeable persons (Level 1
units) nested within person-group clusters (Level 2 units);
then the outcomes for all persons in a cluster load equally
on a common factor (see, e.g., Bauer, 2003; Mehta & Neale,
2005).

4In practice, homoscedasticity of residual variances across arm is more
commonly considered for unconditional models or when the same Level 1
predictors are used in each arm.
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SEMS FOR PARTIALLY NESTED DATA 97

The multivariate single-level SEM for partial nesting
(SSEM-PN) uses the latter approach in each study arm. In
each arm, the outcome of each person in a cluster loads on
a common intercept factor (i.e., random intercept) with unit
loadings and equal residual variances within cluster. In the
treatment arm, this intercept factor has multiple indicators
(one per person), but in the control arm the intercept fac-
tor has a single indicator. Because the intercept factor has
multiple indicators in the treatment arm, the outcome vari-
ance can be partitioned into between- versus within-cluster
components. Because the intercept factor has only one in-
dicator in the control arm, the outcome variance cannot be
partitioned. Importantly, this SSEM-PN cannot be specified
using a conventional multiple-arm SEM (Jöreskog, 1971)
because this would require the same outcomes to be used in
both arms and would not allow outcomes to be completely
missing for one arm (e.g., Kim, Mun, & Smith, in press;
Widaman, Grimm, Early, Robins, & Conger, 2013).5 Control
arm persons have scores missing-by-design on all but the first
y-variable. Instead, here the SSEM-PN specification is facili-
tated by creating a modified wide-format data set that allows
fitting a different model per arm using different numbers of
variables per arm. We begin by contrasting the data structure
between the MLM-PN and SSEM-PN before turning to the
equations used to specify the SSEM-PN.

For the MLM-PN, data were structured in long format, as
shown in Figure 1. In long format, we used N rows (such that
each row is a person) and 1 + p + q columns: 1 is the total
number of outcome variables, p is the number of person-level
predictors, and q is the number of cluster-level predictors.
SSEM-PN instead requires a modified wide-format data set,
also in Figure 1, in which each of J rows corresponds to a
cluster (of ≥ 1 persons). For the two-arm example, 1 + nt1

columns represent the outcome variable, 1 column represents
an exogenous cluster-level covariate, and nt1 columns repre-
sent an exogenous person-level covariate. nt1 = maxt1 (Nj ),
which is 5 here in our illustration.

Our basic SSEM-PN, where the only predictor is treat-
ment, uses a subset of matrices in the general SEM model
of, for example, B. O. Muthén (2002; see also B. O. Muthén,

5One approach to circumvent this limitation is described shortly in this
article; it involves minor recoding of the outcome variable but in exchange
affords the benefits of (a) a transparent model specification in which all
parameters are interpretable and (b) a likelihood identical to equivalent
MSEM-PNs and MLM-PNs fitted in this article. Some software packages
(e.g., Mplus but not LISREL) permit an alternative approach relying on a
true multiple-arm SEM architecture, but require a trick in which variables
for nonexistent persons are nonetheless included in the control arm model
specification, with their variances fixed to near 0 and their effects held
equal to those in the treatment arm. This approach can encounter estimation
problems for some of the more complex models considered later. It also
entails a less transparent model specification (i.e., half of the specified
model is not interpretable). For these reasons, the latter approach was not
used in the SSEM-PN. Other approaches are discussed in Widaman et al.
(2013) and Kim et al. (in press) in different contexts (e.g., measurement
invariance testing).

1987). Matrices currently used in Equation (7a) have their
elements defined in (7b):

yj = �ηj + εj

ηj = μ + ζ j (7a)

⎡
⎢⎢⎢⎢⎢⎢⎣

yc
1j

yt
1j

yt
2j

yt
3j

yt
4j

yt
5j

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
0 1
0 1
0 1
0 1
0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

[
ηc

j

ηt
j

]
+

⎡
⎢⎢⎢⎢⎢⎢⎣

εc
1j

εt
1j

εt
2j

εt
3j

εt
4j

εt
5j

⎤
⎥⎥⎥⎥⎥⎥⎦

(7b)

[
ηc

j

ηt
j

]
=

[
μc

μt

]
+

[
0
ζ t
j

]

yc
1j is the sole outcome for a person (i.e., singleton cluster) in

the control arm. yt
1j -yt

5j are outcomes for the first through last
(here, fifth) persons in a treatment-arm cluster. This SSEM-
PN is diagrammed in Figure 2, Panel A, for a generic cluster
in the treatment arm (consisting of yt

1j -yt
5j ) and a generic

cluster in the control arm (consisting of yc
1j ). Because persons

in a treatment-arm cluster are considered exchangeable, their
ordering does not matter. If the jth cluster corresponds to a
control cluster, yt

1j -yt
5j are coded as missing-by-design. If

the jth cluster corresponds to a treatment cluster, yc
1j is coded

missing-by-design. Hence, yj is a (1+nt1 ) by 1 vector of
observed outcomes for cluster j.

ηj is an A by 1 vector of latent factors. Recall that A is
the number of arms. ηc

j is the intercept factor in the control
arm and ηt

j is the intercept factor in the treatment arm. � is
a (1+nt1 ) by A design matrix. μ is an A by 1 vector of factor
means. ηc

j has mean μc, corresponding to γ00 from MLM-
PN. ηt

j has mean μt , so μt -μc yields the average treatment
effect, that is, γ10 from MLM-PN.

ζ j is an A by 1 vector of cluster-specific deviations from
factor means, distributed as ζ j ∼ N (0,�):

[
0
ζ t
j

]
∼ N

([
0
0

]
,

[
0
0 ψt

])
. (8)

εj is a (1+ nt1 ) by 1 vector of residuals for cluster j, which
are independent across arm due to the study design and are
distributed as εj ∼ N (0,�ε), where

⎡
⎢⎢⎢⎢⎢⎢⎣

εc
1j

εt
1j

εt
2j

εt
3j

εt
4j

εt
5j

⎤
⎥⎥⎥⎥⎥⎥⎦

∼ N

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

θc
ε

0 θ t
ε

0 0 θ t
ε

0 0 0 θ t
ε

0 0 0 0 θ t
ε

0 0 0 0 0 θ t
ε

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

. (9)

That is, in SSEM-PN’s treatment arm, the cluster-specific
deviation from the mean, ζ t

j , has variance ψt , and the person-
specific residual, εt

ij , has variance θ t
ε . Hence, for the treatment
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98 STERBA ET AL.

Long-format data structure Modified wide-format data structure for SSEM-PN
for MLM-PN or MSEM-PN clusterID tx y1c y1t y2t y3t y4t y5t
clusterID y tx 38 1 . 0.88 2.86 1.53 1.85 2.37

38 0.88 1 39 1 . 1.20 1.80 1.33 1.59 0.95
38 2.86 1 40 1 . 1.32 -2.04 -0.71 -1.15 -0.94
38 1.53 1 41 0 5.17 . . . . .
38 1.85 1 42 0 6.56 . . . . .
38 2.37 1 43 0 6.54 . . . . .
39 1.20 1 44 0 5.03 . . . . .
39 1.80 1
39 1.33 1
39 1.59 1
39 0.95 1
40 1.32 1
40 -2.04 1
40 -0.71 1
40 -1.15 1
40 -0.94 1
41 5.17 0
42 6.56 0
43 6.54 0
44 5.03 0

FIGURE 1 Illustrative data set excerpt for a basic two-arm partial nesting model: long format (for MLM-PN/MSEM-PN) versus modified wide format (for
SSEM-PN). Note. Data shown for three treatment-arm clusters (each containing 5 individuals) and for 4 individuals in the control arm (each labeled with his
or her own clusterID: #41–44). “.” = missing code; tx = treatment; SSEM-PN = multivariate single-level structural equation model (SEM) for partial nesting;
MLM-PN = multilevel model for partial nesting; MSEM-PN = multiple arm multilevel SEM for partial nesting.

arm, outcome variance is partitioned into between-cluster,
ψt , and within-cluster, θ t

ε , components. ψt is equal to τ11

from MLM-PN and θ t
ε matches σ 2

t from MLM-PN. In SSEM-
PN’s control arm, we have the option of either estimating a
variance for a person-specific residual εc

1j (i.e., θc
ε ) or estimat-

ing a variance for a cluster-specific residual ζ c
j (i.e., ψc)—but

not both—in order to represent the outcome variance in the
control arm. Equations (7)–(9) use the former option (as also
illustrated in Figure 2, Panel A). We omit ζ c

j , implying ψc =
0, and include εc

1j with variance θc
ε . Note θc

ε corresponds to σ 2
c

from MLM-PN. However, for completeness, we also depict
the latter option in Figure 2, Panel B, because we use it later
in more complex models. Both options (whether estimating
ψc or θc

ε ) would give the same estimate for the variance in
the control arm. Finally, if homoscedastic residual variances
are desired across treatment and control arms, we constrain
θc
ε = θ t

ε in Equation (9), which then equals σ 2 from the MLM-
PN.6 Equation (9) depicts heteroscedastic residual variances
across arm.

This basic two-arm homoscedastic residual variance
SSEM-PN is not saturated and contains no random slopes. A
researcher could examine its overall fit using absolute model
fit indices (χ2, RMSEA, etc.), computed using the likeli-
hood from the fitted model and the likelihood from a mod-

6In the control arm, if the Level 2 variance (ψc) had instead been esti-
mated, as in Figure 2, Panel B, achieving homoscedastic residual variances
across arm would require the constraint: θ t

ε = ψc .

ified saturated model7 that incorporates design-based con-
straints: exchangeability of persons in the treatment arm (see
Bauer, 2003) and independence of persons across arms. Such
a modified saturated model could entail estimating means,
variances, and covariances of yt

1j -yt
5j (each constrained to

equality for yt
1j -yt

5j ); estimating the mean and variance of
yc

1j ; and not allowing yt
1j -yt

5j to covary with yc
1j . This mod-

ified saturated model totals five free parameters, implying
�df = 1, and is equivalent to a two-arm heteroscedastic
residual variance SSEM-PN. As we later mention in the Dis-
cussion, absolute fit for SSEM-PNs is of increasing interest
when more theory-based constraints are imposed in the fitted
model beyond those required by the design and for identifi-
cation.

Adding Exogenous Covariates

Extending the SSEM-PN to include an exogenous person-
level covariate and cluster-level covariate gives Equation
(10a). Corresponding elements are given in Equation (10b).

yj = �ηj + Kxj + εj

ηj = μ + �wj + ζ j (10a)

7Considerable subject-initiated missing data in a given arm, leading to
low covariance coverage, can preclude calculation of the modified satu-
rated model in Mplus (which does not happen when covariance coverage is
exactly 0).
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SEMS FOR PARTIALLY NESTED DATA 99

FIGURE 2 Multivariate single-level structural equation model for partial nesting (SSEM-PN). Note. In each panel, the diagram is drawn for the jth cluster
in the treatment arm (left side) or control arm (right side) where in the control arm a person is his or her own cluster. Notation in Panel A corresponds to the
two-arm SSEM-PN with heteroscedastic residual variances in Equations (7)–(9). To simplify presentation, residuals (εt

ij , εc
ij , ζ t

j , ζ c
j ) are not shown; only their

variances are shown. Measured variables are depicted by shaded boxes; latent variables by circles; constants by triangles; directed paths by straight arrows;
and (co-)variances by curved arrows.
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100 STERBA ET AL.

⎡
⎢⎢⎢⎢⎢⎢⎣

yc
1j

yt
1j

yt
2j

yt
3j

yt
4j

yt
5j

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
0 1
0 1
0 1
0 1
0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

[
ηc

j

ηt
j

]

+

⎡
⎢⎢⎢⎢⎢⎢⎣

κc 0 0 0 0
κt 0 0 0 0
0 κt 0 0 0
0 0 κt 0 0
0 0 0 κt 0
0 0 0 0 κt

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x1j

x2j

x3j

x4j

x5j

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

εc
1j

εt
1j

εt
2j

εt
3j

εt
4j

εt
5j

⎤
⎥⎥⎥⎥⎥⎥⎦

(10b)

[
ηc

j

ηt
j

]
=

[
μc

μt

]
+

[
0
ωt

1

] [
wj

] +
[

0
ζ t
j

]

xj is a (pnt1 ) by 1 vector of exogenous person-level co-
variates; each person-level covariate is represented by nt1

rows, here x1j − x5j . K is a (1+nt1 ) by (pnt1 ) matrix of re-
gression coefficients for these Level 1 predictors. wj is a
q by 1 vector of cluster-level covariates, here containing a
single wj . � is an A by q matrix of regression coefficients for
cluster-level covariates. For control participants, x2j − x5j

and wj are here missing-by-design.8 ωt
1 corresponds to γ11

from the MLM-PN. Imposing the constraint κt = κc, yield-
ing κ , corresponds to γ20 from the MLM-PN. This equality
constraint was not imposed in Equation (10a) to highlight
that an interaction of xij with treatment is allowed by simply
relaxing this constraint.

Adding Study Arms

Adding a third study arm for a second treatment condition
extends the rows of yj , �, εj , and K by nt2 where nt2 =
maxt2 (Nj ). Adding a third study arm also adds a column to
� and a new row to ηj ,μ,�, and ζ j . (Columns of K and
rows of xj also expand if nt2 > nt1 , which is not the case
here.) For example, if the third study arm is nonnested (e.g.,

8A data management step similar to that used in MLM-PN (Bauer
et al., 2008) is required to prevent listwise deletion of cases with covariate
missingness-by-design (i.e., covariate missingness arising due to the partial
nesting design structure) under FIML when using exogenous predictors and
a conditional likelihood. Some SEM software uses a conditional likelihood
(e.g., Mplus 6.1 or later but not LISREL 8.8); general documentation regard-
ing this data management step is at www.statmodel.com. Here, for controls,
an arbitrary value that is not the missing data code (we use 0) is assigned
to x2j − x5j and wj . This insertion for x2j − x5j does not affect results
because corresponding outcomes yt

2j − yt
5j are missing; this insertion for

wj does not affect results because here its slope for controls is fixed to 0.

an individual therapy arm) then nt2 = 1, and we have⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yc
1j

y
t1
1j

y
t1
2j

y
t1
3j

y
t1
4j

y
t1
5j

y
t2
1j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ ηc

j

η
t1
j

η
t2
j

⎤
⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

κc 0 0 0 0
κt1 0 0 0 0
0 κt1 0 0 0
0 0 κt1 0 0
0 0 0 κt1 0
0 0 0 0 κt1

κt2 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x1j

x2j

x3j

x4j

x5j

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εc
1j

ε
t1
1j

ε
t1
2j

ε
t1
3j

ε
t1
4j

ε
t1
5j

ε
t2
1j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

⎡
⎣ ηc

j

η
t1
j

η
t2
j

⎤
⎦ =

⎡
⎣ μc

μt1

μt2

⎤
⎦ +

⎡
⎣ 0

ω
t1
1

ω
t2
1

⎤
⎦ [

wj

] +
⎡
⎣ 0

ζ
t1
j

0

⎤
⎦

But if the third study arm is clustered, as in a couples
therapy arm, then nt2 = 2, as in Equation (12):⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yc
1j

y
t1
1j

y
t1
2j

y
t1
3j

y
t1
4j

y
t1
5j

y
t2
1j

y
t2
2j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ ηc

j

η
t1
j

η
t2
j

⎤
⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

κc 0 0 0 0
κt1 0 0 0 0
0 κt1 0 0 0
0 0 κt1 0 0
0 0 0 κt1 0
0 0 0 0 κt1

κt2 0 0 0 0
0 κt2 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x1j

x2j

x3j

x4j

x5j

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εc
1j

ε
t1
1j

ε
t1
2j

ε
t1
3j

ε
t1
4j

ε
t1
5j

ε
t2
1j

ε
t2
2j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

⎡
⎣ ηc

j

η
t1
j

η
t2
j

⎤
⎦ =

⎡
⎣ μc

μt1

μt2

⎤
⎦ +

⎡
⎣ 0

ω
t1
1

ω
t2
1

⎤
⎦[

wj

] +
⎡
⎣ 0

ζ
t1
j

ζ
t2
j

⎤
⎦ .

The conditional treatment effect in the third arm is μt2 -μc

(the same as γ30 in MLM-PN). The effect of the person-level
covariate in the third arm is κt2 . If the equality constraint κc

= κt1 = κt2 is imposed, the resultant κ is the same as γ20

from MLM-PN. Again, a treatment by covariate interaction
is easily allowed by relaxing this constraint. The cluster-level
covariate wj may be undefined (and missing-by-design) for
a nonnested third study arm; if so, ω

t2
1 = 0 in Equation (11).
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SEMS FOR PARTIALLY NESTED DATA 101

Otherwise, the effect of wj in the third arm is ω
t2
1 , which is

γ31 in the MLM-PN. A third arm expands dimensions of �

and �ε:
⎡
⎣ 0

ζ
t1
j

ζ
t2
j

⎤
⎦ ∼ N

⎛
⎝

⎡
⎣ 0

0
0

⎤
⎦ ,

⎡
⎣ 0

0 ψt1

0 0 ψt2

⎤
⎦

⎞
⎠ (13)

⎡
⎣ εc

1j

ε
t1
j

ε
t2
j

⎤
⎦ ∼ N

⎛
⎝

⎡
⎣ 0

0
0

⎤
⎦ ,

⎡
⎣ θc

ε

0 θ t1
ε I

0 0 θ t2
ε I

⎤
⎦

⎞
⎠ (14)

where ε
t1
j is nt1×1 and ε

t2
j is nt2×1. Residuals and devia-

tions are again assumed independent across study arm by
design. Specifying homoscedastic4 residual variances across
arm requires the constraint θc

ε = θ t1
ε = θ t2

ε (corresponding
to σ 2 from MLM-PN), and relaxing this constraint allows
heteroscedastic residual variances (corresponding to σ 2

c , σ 2
t1

,
and σ 2

t2
, respectively, from MLM-PN). If the third arm is clus-

tered, ψt2 is the same as τ33 in MLM-PN. For a nonnested
third arm, ζ

t2
j = 0 and ψt2 = 0.

MULTIPLE-ARM MULTILEVEL SEM
APPROACH FOR HANDLING PARTIAL

NESTING (MSEM-PN)

An alternative to adapting a multivariate single-level SEM
for partial nesting is to adapt a multilevel SEM (MSEM) for
partial nesting. In general, MSEM (e.g., Liang & Bentler,
2004; McDonald & Goldstein, 1989; B. O. Muthén, 1990; B.
O. Muthén & Asparouhov, 2009) allows the decomposition
of observed variables into latent between-cluster and within-
cluster components. A multiple-arm MSEM allows different
modeling of latent between-cluster and within-cluster com-
ponents in each arm, and this feature is used in the MSEM-PN
for accommodating the partial nesting structure. Like MLM-
PN, but unlike SSEM-PN, it uses a long-format data structure
(see Figure 1). In long format, here for both arms the out-
come is still the univariate yij regardless of the size of the
jth cluster. A path diagram of a basic two-arm MSEM-PN
is represented in Figure 3, Panel A, for a generic person in
each arm (in contrast to the Figure 2 SSEM-PN representa-
tion for a generic cluster in each arm). Again, in the control
arm, each person is his or her own cluster. The corresponding
MSEM-PN equation is

Between:
Within:

Treatment arm:
yij = ỹt

j + ỹt
ij

ỹt
j = μt + ζ t

j

ỹt
ij = 0 + εt

ij

∣∣∣∣∣∣∣∣

Control arm:
yij = ỹc

j + ỹc
ij

ỹc
j = μc + 0

ỹc
ij = 0 + εc

ij.

(15)

Equations on the left represent the model for the treatment
arm, and equations on the right represent the model for the

control arm. Superscripts t or c refer to arms of the multiple-
arm MSEM-PN within the model specification only and do
not imply data management on the part of the researcher (i.e.,
the outcome is simply yij and does not need to be specially
coded, as in the SSEM-PN). Although there are different
ways to represent multiple-group (here, multiple-arm) mod-
els, here we chose to separately depict scalar equations im-
plied by the MSEM-PN for each arm to most clearly highlight
parameter equivalencies among MSEM-PN, SSEM-PN, and
MLM-PN. The online Appendix provides the corresponding
matrix representation for MSEM-PN, where parameter ma-
trices differing across arm have a (g) superscript, and g = t or
c. Matrix representations are more conventional for MSEM
(e.g., Kaplan, 2009; Liang & Bentler, 2004; B. O. Muthén &
Asparouhov, 2009; Preacher, Zyphur, & Zhang, 2010).

In the treatment arm, the observed outcome in Equation
(15) is decomposed into latent between (ỹt

j ) and latent within
(ỹt

ij ) components. The tildes designate latent components.
The latent between component of the treatment arm has mean
μt and cluster specific deviation from the mean ζ t

j , which is
normally distributed:

ζ t
j ∼ N (0, ψt ). (16)

The latent within component of the treatment arm, ỹt
ij , has a

0 mean (a convention in MSEM is to estimate all means at the
between level) and person-level residual εt

ij . In the control
arm, Equation (15) decomposes yc

ij into latent between (ỹc
j )

and within (ỹc
ij ) components, although ultimately variability

is allowed in only one of the levels. At the between level,
the mean μc of the latent between component in the control
arm (corresponding to γ00 from MLM-PN) is estimated, but
no cluster-specific deviation (ζ c

j ) is included. The average
treatment effect is μt -μc (i.e., γ10 from MLM-PN). At the
within level in the control arm, the latent component ỹc

ij has
a 0 mean and person-level residual εc

ij . Person-level residuals
in both arms are normally distributed and are independent by
design:

εc
ij ∼ N (0, θc

ε ) and εt
ij ∼ N (0, θ t

ε). (17)

Thus, in the treatment arm, the outcome variance is par-
titioned into ψt and θ t

ε , as in SSEM-PN. ψt is equal to τ11

from the MLM-PN and θ t
ε corresponds to σ 2

t from MLM-
PN. In the control arm, as in the SSEM-PN, an equivalent
estimate of the outcome variance can be obtained either by
estimating a variance for a person-level residual εc

ij (i.e., θc
ε )

or by estimating a variance for a cluster-level residual ζ c
j

(i.e., ψc)—but not both. In Equations (15)–(17) we used the
former option (which is illustrated in Figure 3, Panel A), al-
though, for contrast, the latter option is depicted in Figure 3,
Panel B, because we use it later. θc

ε corresponds to σ 2
c from

MLM-PN. Homoscedastic residual variances are obtained by
constraining θc

ε = θ t
ε , which then matches σ 2 from MLM-PN.

Heteroscedastic residual variances are obtained by relaxing
this constraint, as in Equation (17).
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102 STERBA ET AL.

FIGURE 3 Multiple-arm multilevel structural equation model for partial nesting (MSEM-PN). Note. In each panel, the diagram is drawn for the ith person
in the jth cluster in the treatment arm (left side) or control arm (right side). Notation in Panel A corresponds to the two-arm MSEM-PN with heteroscedastic
residual variances in Equations (15)–(17). To simplify presentation, residuals (εt

ij , εc
ij , ζ t

j , ζ c
j ) are not shown; only their variances are shown. Shapes are defined

in the Figure 2 note.
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SEMS FOR PARTIALLY NESTED DATA 103

This two-arm homoscedastic residual variance MSEM-
PN is not saturated and contains no random slopes. Hence,
its absolute fit could be examined as long as fit indices are
computed using a modified saturated model incorporating
the design-based constraints mentioned in the SSEM-PN
section. Here, a modified saturated model is the two-arm
heteroscedastic residual variance MSEM-PN from earlier.
Generally, absolute fit indices for MSEM-PNs are more inter-
esting to examine when additional theory-based constraints
are imposed in the fitted model (see Discussion).

Adding Exogenous Covariates

Adding an exogenous person-level covariate xij and cluster-
level covariate wj to the MSEM-PN yields the following
equations:

Between:
Within:

Treatment arm:
yij = ỹt

j + ỹt
ij

ỹt
j = μt + ωt

1wj + ζ t
j

ỹt
ij = 0 + κtxij + εt

ij

∣∣∣∣∣∣∣∣

Control arm:
yij = ỹc

j + ỹc
ij

ỹc
j = μc + 0

ỹc
ij = 0 + κcxij + εc

ij .

(18)

For controls, wj is here missing-by-design, as is typical.9

A single main effect of xij would be obtained by imposing
the constraint κt = κc to yield a single κ , which would match
γ20 from the MLM-PN. Similar to SSEM-PN, allowing for
an interaction between treatment and xij does not require
formation of product terms; rather, this equality constraint
must be relaxed. Finally, ωt

1 in Equation (18) corresponds
with γ11 from the MLM-PN.

Adding Study Arms

A third arm may be added to the multiple-arm MSEM-PN
to represent, say, a second treatment condition. Doing so
requires decomposing variables in the third arm into their
latent within and between components (where applicable)
and specifying an arm-specific model for those components,
as follows:

Between:
Within:

Treatment 1 arm:
yij = ỹ

t1
j + ỹ

t1
ij

ỹ
t1
j = μt1 + ω

t1
1 wj + ζ

t1
j

ỹ
t1
ij = 0 + κt1xij + ε

t1
ij

∣∣∣∣∣∣∣∣

Treatment 2 arm:
yij = ỹ

t2
j + ỹ

t2
ij

ỹ
t2
j = μt2 + ω

t2
1 wj + ζ

t2
j

ỹ
t2
ij = 0 + κt2xij + ε

t2
ij

∣∣∣∣∣∣∣∣

Control arm:
yij = ỹc

j + ỹc
ij

ỹc
j = μc + 0

ỹc
ij = 0 + κcxij + εc

ij .

(19)

9As described in the MLM-PN section (Bauer et al., 2008) assigning
control cases an arbitrary value that is not the missing data code (e.g., 0)
for missing-by-design scores on wj prevents listwise deletion of these cases
when using FIML with exogenous predictors and a conditional likelihood.
Also, MSEM-PN requires wj to have nonzero variance in each arm; this
can be addressed in Mplus by specifying variances = nocheck or more
generally by assigning at least two different arbitrary values for missing-
by-design scores on wj . Similar to MLM-PN, the choice of what arbitrary
values to assign does not affect results (as the slope of wj is fixed to 0 for
controls; see also Bauer et al., 2008).

The conditional treatment effect in the third arm is μt2 -μc

(γ30 in MLM-PN). In the third arm the total effect of xij is
κt2 . Imposing the constraint κc = κt1 = κt2 yields a single κ

that matches γ20 in the MLM-PN. Relaxing this constraint
again allows a treatment by xij interaction. If the third study
arm is nonnested (e.g., if it is an individual therapy arm), wj

may be undefined, so we would impose ω
t2
1 = 0 in Equation

(19). Otherwise, the effect of wj in the third arm is ω
t2
1

(γ31 in MLM-PN). Cluster-specific deviations are assumed
independent across arm, due to the design, and are distributed
as

ζ
t2
j ∼ N

(
0, ψt2

)
and ζ

t1
j ∼ N

(
0, ψt1

)
. (20)

When the third arm is clustered, the variance, ψt2 , of
cluster-specific deviation ζ

t2
j corresponds with τ33 from the

MLM-PN. Otherwise, if the third arm is nonnested, ζ
t2
j =

0 and ψt2 = 0. Residuals, also independent across arm, are
distributed as follows for heteroscedastic residual variances
across arm:

εc
ij ∼ N (0, θc

ε )

and ε
t1
ij ∼ N (0, θ t1

ε )

and ε
t2
ij ∼ N (0, θ t2

ε ). (21)

θ t2
ε matches σ 2

t2
in MLM-PN. The equality constraint θc

ε =
θ t1
ε = θ t2

ε is imposed in MSEM-PN to obtain homoscedastic4

residual variances (matching σ 2 in MLM-PN).

SIMULATED EXAMPLES

We now use simulated examples to demonstrate that
our two SEM approaches for partial nesting (SSEM-
PN and MSEM-PN) equivalently implement each basic
model specification previously considered for MLM-PN.
A single sample was generated from each of four dif-
ferent MLM-PNs. Table 1 lists generating parameters for
two-arm homoscedastic versus two-arm heteroscedastic

residual variance MLM-PNs. Table 2 lists generating param-
eters for two-arm versus three-arm homoscedastic residual
variance MLM-PNs with a Level 1 covariate, xij , in all arms,
and Level 2 covariate, wj , in the treatment arm(s). The pattern
of generating parameter values is consistent with what might
be encountered in a treatment-outcome study on a problem
behavior (e.g., internalizing) in which (a) individuals are ran-
domly assigned to condition, (b) treatment on average led to a
decrease in the problem behavior (although the effect was not
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104 STERBA ET AL.

TABLE 1
Two-Arm Partial Nesting Model With Homoscedastic or Heteroscedastic Across-Arm Residual Variances:

Comparison of Alternative MLM-PN, SSEM-PN, and MSEM-PN Specifications for Simulated Single-Sample Data Sets

Notation Results of Model Fitting

SSEM-PN 2-Arm Homoscedastic Residual Variance 2-Arm Heteroscedastic Residual Variance
Eqn 7–9 &

Parameter MLM-PN MSEM-PN Pop-Gen MLM-PN SSEM-PN MSEM-PN Pop-Gen MLM-PN SSEM-PN MSEM-PN
Description Eqn 1– 3 Eqn 15–17 Val. Est (SE) Est (SE) Est (SE) Val. Est (SE) Est (SE) Est (SE)

Mean, cont arm γ00 μc 4 4.00(.10) 4.00 (.10) 4.00 (.10) 4 3.92 (.10) 3.92 (.10) 3.92 (.10)
Mean, tx arm† γ00 + γ10 μt 1 1.03 (.17) 1.03 (.17) 1.03 (.17) 1 .85 (.16) .85 (.17) .85 (.17)
Tx effect† γ10 μt − μc −3 −2.97 (.20) −2.97 (.20) −2.97 (.20) −3 −3.07 (.19) −3.07 (.19) −3.07 (.19)
Lev 2 var, tx arm τ11 ψt .75 .73 (.26) .73 (.26) .73 (.26) .75 .77 (.25) .77 (.25) .77 (.25)
Var, cont arm∗ σ 2

c θc
ε 2 2.02 (.15) 2.02 (.15) 2.02 (.15) 2 2.09 (.21) 2.09 (.21) 2.09 (.21)

Lev 1 var, tx arm∗ σ 2
t θ t

ε 2 2.02 (.15) 2.02 (.15) 2.02 (.15) 1.5 1.59 (.18) 1.59 (.18) 1.59 (.18)
Log-likelihood −728.65 −728.65 −728.65 −712.27 −712.27 −712.27

Note. †Compound coefficients (sums or differences of estimated parameters) had SEs computed via the delta method using the model constraint command
in Mplus or using the estimate statement in SAS Proc Mixed. ∗Homoscedastic residual variances require constraining these variances equal. Notation was
defined in the text. MLM-PN = multilevel model for partial nesting; SSEM-PN = multivariate single-level structural equation model (SEM) for partial nesting;
MSEM-PN = multiple-arm multilevel SEM for partial nesting; var = variance; Eqn = equation in the text; val. = value; lev = level; tx = treatment; cont =
control; est = estimate; gen = generating; Pop = population.

the same for both treatments), and (c) outcomes varied across
clusters in all arms and within cluster in treatment arm(s). In
the two-arm examples, the treatment arm had 40 clusters of 5
persons each; the control arm had 200 persons (i.e., 200 clus-
ters of size 1). Hence, N = 400, J = 240, and Nj = 1 or 5. In
the three-arm example, the second treatment arm contained
100 clusters of size 2 (i.e., 200 persons). Example data were

generated in SAS 9.2 such that, marginally, approximately
one third of the variability in yij was at the between level in
a treatment arm (ICCy = .27 and .33 for the two models in
Table 1; ICCy = .29 and .33 for the two models in Table 2).
There are a number of reasons a third of the outcome varia-
tion in the treatment arm(s) would be between clusters. These
reasons include differing fidelity/effectiveness of treatment

TABLE 2
Two-Arm or Three-Arm Partial Nesting Model With Covariates and Homoscedastic Residual Variances:

Comparison of Alternative MLM-PN, SSEM-PN, and MSEM-PN Specifications With Simulated Single-Sample Data Sets

Notation Results of Model Fitting

SSEM-PN 2-Arm With Covariates 3-Arm With Covariates
Eqn 10–14 &

Parameter MLM-PN MSEM-PN Pop-Gen MLM-PN SSEM-PN MSEM-PN Pop-Gen MLM-PN SSEM-PN MSEM-PN
Description Eqn 4– 6 Eqn 18–21 Val. Est (SE) Est (SE) Est (SE) Val. Est (SE) Est (SE) Est (SE)

Intercept cont arm γ00 μc 4 4.02 (.10) 4.02 (.10) 4.02 (.10) 4 3.95 (.10) 3.95 (.10) 3.95 (.10)
Intercept tx1 arm† γ00 + γ10 μt1 1 .98(.15) .98 (.16) .98 (.16) 1 1.04 (.17) 1.04 (.17) 1.04 (.17)
Condit. tx1 effect† γ10 μt1 − μc −3 −3.05 (.19) −3.05 (.19) −3.05 (.19) −3 −2.91 (.20) −2.91 (.20) −2.91 (.20)
Intercept tx2 arm† γ00 + γ30 μt2 2 1.92 (.12) 1.92 (.12) 1.92 (.12)
Condit. tx2 effect† γ30 μt2 − μc −2 −2.03 (.15) −2.03 (.15) −2.03 (.15)
L2 res. var, tx1 arm τ11 ψt1 .75 .57 (.22) .57 (.22) .57(.22) .75 .81 (.26) .81 (.26) .81 (.26)
L2 res. var, tx2 arm τ33 ψt2 .50 .46 (.20) .46 (.20) .46 (.20)
Res. var, cont arm∗ σ 2

c θc
ε 2 2.10 (.16) 2.10 (.16) 2.10 (.16) 2 1.85 (.12) 1.85 (.12) 1.85 (.12)

L1 res. var, tx1 arm∗ σ 2
t1

θ
t1
ε 2 2.10 (.16) 2.10 (.16) 2.10 (.16) 2 1.85 (.12) 1.85 (.12) 1.85 (.12)

L1 res. var, tx2 arm∗ σ 2
t2

θ
t2
ε 2 1.85 (.12) 1.85 (.12) 1.85 (.12)

Effect xij γ20 κc = κt1 = κt2 1 1.09 (.08) 1.09 (.08) 1.09 (.08) 1 1.06 (.06) 1.06 (.06) 1.06 (.06)
Effect wj, tx1 arm γ11 ω

t1
1 .50 .43 (.15) .43 (.15) .43(.15) .50 .30 (.17) .30 (.17) .30 (.17)

Effect wj, tx2 arm γ31 ω
t2
1 .50 .47 (.11) .47 (.11) .47 (.11)

Log-likelihood −733.42 −733.42 −733.42 −1079.44 −1079.44 −1079.44

Note. The 3-arm generating and fitted models in Table 2 had clustering in both treatment arms (abbreviated tx1 and tx2); results for a 3-arm study with an
unclustered treatment arm are not shown. ∗Generating and fitted models in Table 2 had homoscedastic residual variances across arms, which was accomplished
by constraining these variances equal. †Compound coefficients (sums or differences of estimated parameters) had SEs computed via the delta method using a
model constraint in Mplus or estimate statement in SAS Mixed. The effect of x controls for w (and vice versa) in treatment arm(s). Notation is defined in the
text. Condit = conditional. See Table 1 note for abbreviation definitions. Res. = Residual; L2 = Level 2; L1 = Level 1.
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SEMS FOR PARTIALLY NESTED DATA 105

implementation across therapy clusters. When present, wj

and xij were uncorrelated and standard normally distributed.
One third of the variability in xij was at the between level in
the treatment arm(s) (i.e., ICCx = .33). MLM-PNs were fit in
SAS 9.210 and SSEM-PN and MSEM-PN were fit in Mplus
7, all using FIML.

Table 1 summarizes corresponding MLM-PN, SSEM-PN,
and MSEM-PN notation for the two-arm homoscedastic
versus heteroscedastic residual variance models alongside
matching results from fitting these three models to the
simulated example data. Table 2 provides a summary of
corresponding notation for MLM-PN, SSEM-PN, and
MSEM-PN for two-arm versus three-arm homoscedastic
residual variance models with covariates and shows all three
specifications provide matching results.

Summary

Using equations and diagrams, we have described two SEM
approaches for partial nesting (SSEM-PN and MSEM-PN).
Using simulation, we showed that they equivalently im-
plement every basic MLM-PN specification. We next turn
to two extensions handled better by SEM approaches than
MLM-PN. The first extension concerns multivariate out-
comes, some of which exist at the cluster level. The sec-
ond extension involves decomposing effects of person-level
covariates.

CLUSTER-LEVEL OUTCOMES:
CONTRIBUTION OF SSEM-PN AND MSEM-PN

Treatment studies often involve multivariate outcomes, some
of which may be measured at the cluster level (say, therapy-
group cooperation or implementation fidelity). In MLM-PN
(and MLM generally) incorporating Level 1 (here, person-
level) multivariate outcomes usually requires some data man-
agement to trick11 univariate MLM software into fitting the

10MLM-PNs were rerun using alternative methods for computing degrees
of freedom for t tests of fixed effects (the Kenward-Rogers method from
Baldwin et al. [2011] and Bauer et al., [2008], which is available in only
some multilevel modeling packages, and a Containment method). Standard
errors were the same to three decimal places. In contrast, SEM packages
typically provide only z tests for fixed effects. Baldwin et al. showed that,
unless there were very few clusters in the treatment arm (<8), alternative df
computation methods provided equally good Type I error rates in MLM-PN.
Our empirical example and simulations had more clusters than this in the
treatment arm.

11In this MLM trick, multivariate outcomes are concatenated vertically
in the data set, and one toggle indicator variable is constructed per outcome
(e.g., the first toggle indicator is 1 if yij refers to the first outcome, 0 other-
wise). A univariate MLM is fit, but no overall intercept is estimated; rather,
main effects of the indicator variables refer to outcome-specific intercepts.
Product terms of the indicator variables with each predictor are entered to
allow the predictors to have outcome-specific effects.

model (Bauer, Preacher, & Gil, 2006; Compas et al., 2009;
Goldstein, 1995; Leyland & Goldstein, 2001). Furthermore,
MLM-PN (and MLM generally) cannot include cluster-level
outcomes among these multivariate outcomes (e.g., Croon &
van Veldhoven, 2007). In contrast, a cluster-level outcome is
straightforward to add in SSEM-PN and MSEM-PN, as de-
scribed later. We assume below that the cluster-level outcome
is measured only in the treatment arm and is missing-by-
design in the control arm; however, this need not be the case.
For instance, the outcome “problem-solving speed” could be
measured for teams in the treatment arm but for persons in
the control arm—recalling that each control arm person can
be considered a cluster (e.g., Figure 2, Panel B; Figure 3,
Panel B).

Equation (22) incorporates a cluster-level outcome zj into
the treatment arm of the two-arm SSEM-PN from Equation
(10b). In this formulation, parameters pertaining to the orig-
inal outcome are superscripted y and parameters pertaining
to the new outcome are superscripted z. In the treatment
arm, μzt is the conditional mean of zj and ωzt

1 is the slope
of zj on wj . Here zj can have a residual only at the clus-
ter level, ζ zt

j (so its person-level residual variance is fixed
to 0).
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

yc
1j

yt
1j

yt
2j

yt
3j

yt
4j

yt
5j

zt
j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ η

yc
j

η
yt
j

ηzt
j

⎤
⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

κyc 0 0 0 0
κyt 0 0 0 0
0 κyt 0 0 0
0 0 κyt 0 0
0 0 0 κyt 0
0 0 0 0 κyt

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x1j

x2j

x3j

x4j

x5j

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε
yc
1j

ε
yt
1j

ε
yt
2j

ε
yt
3j

ε
yt
4j

ε
yt
5j

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

⎡
⎣ η

yc
j

η
yt
j

ηzt
j

⎤
⎦ =

⎡
⎣ μyc

μyt

μzt

⎤
⎦ +

⎡
⎣ 0

ω
yt
1

ωzt
1

⎤
⎦[

wj

] +
⎡
⎣ 0

ζ
yt
j

ζ zt
j

⎤
⎦ .

In the treatment arm, ζ zt
j can covary with cluster-level resid-

uals for the original outcome, ζ
yt
j :

⎡
⎣ 0

ζ
yt
j

ζ zt
j

⎤
⎦ ∼ N

⎛
⎝

⎡
⎣ 0

0
0

⎤
⎦ ,

⎡
⎣ 0

0 ψyt

0 ψyzt ψzt

⎤
⎦

⎞
⎠ . (23)

Next, Equation (24) incorporates a cluster-level out-
come zj into the treatment arm of the two-arm MSEM-PN
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106 STERBA ET AL.

from Equation (18); parameters pertaining to each outcome
are superscripted y or z accordingly. zj has only a la-
tent between component, z̃t

j , because it lacks within-cluster
variability.

Between:

Within:

Treatment arm:

yij = ỹt
j + ỹt

ij

zj = z̃t
j

ỹt
j = μyt + ω

yt
1 wj + ζ

yt
j

z̃t
j = μzt + ωzt

1 wj + ζ zt
j

ỹt
ij = 0 + κyt xij + ε

yt
ij

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Control arm:

yij = ỹc
j + ỹc

ij

ỹj = μyc + 0

ỹc
ij = 0 + κycxij + ε

yc
ij .

(24)

μzt and ωzt
1 have the same interpretation as in the corre-

sponding SSEM-PN (Equation (22)). ζ zt
j and ζ

yt
j are dis-

tributed as in Equation (23), and ε
yt
ij and ε

yc
ij are distributed

as in Equation (17). The empirical example presented later
will include a cluster-level outcome in the treatment arm
to illustrate further this addition to the SSEM-PN and
MSEM-PN.

DECOMPOSING EFFECTS OF
PERSON-LEVEL COVARIATES IN THE

TREATMENT ARM: CONTRIBUTION OF
SSEM-PN AND MSEM-PN

Options for including a person-level covariate xij in partial
nesting designs have not been thoroughly discussed in the lit-
erature. To accomplish this, we must distinguish among three
possible effects of xij in the treatment arm: the total (con-
flated) effect of xij versus within effect of xij versus between
effect of xij . The within effect for persons in cluster j repre-
sents the change in yij per unit increase in xij controlling for
the cluster j average of xij . The between effect represents the
change in yij per unit increase in the cluster j average. Includ-
ing only an uncentered (or grand-mean centered) xij , as has
been done in prior published MLM-PN data analyses—and
earlier in this article—yields a total (conflated) effect in the
treatment arm, which is a weighted average of within and be-
tween effects. Researchers, however, have been increasingly
interested in decomposing a total effect of xij into within
and between effects (e.g., Curran & Bauer, 2011; Curran,
Lee, Howard, Lane, & MacCallum, 2012; Enders & Tofighi,
2007; Hedeker & Gibbons 2006; Hofmann & Gavin, 1998;
Kreft, de Leeuw, & Aiken, 1995; Neuhaus & Kalbfleisch,
1998).

First we discuss an exogenous observed cluster mean ap-
proach for decomposing the effect of a person-level covariate
xij in the treatment arm of a partially nested design—using
two strategies adapted from the MLM literature. These strate-
gies are termed Strategy A and Strategy B. Here we imple-
ment Strategy A with MLM-PN and MSEM-PN and Strat-
egy B with MLM-PN and SSEM-PN. We show that when

MSEM-PN12 (for Strategy A) or SSEM-PN13 (for Strategy
B) employ the exogenous observed cluster mean approach,
they replicate MLM-PN results, but arguably with a simpler
specification.

Next, we discuss an alternative endogenous latent cluster
mean approach for decomposing the effect of a person-level
covariate xij in the treatment arm of a partially nested design;
this approach is available only for MSEM-PN and SSEM-PN.
This approach has an advantage over the exogenous observed
cluster mean approach available for MLM-PN because the
latent cluster mean of x is more reliable. Hence, its effects
are less subject to attenuation (e.g., Asparouhov & Muthén,
2007; Curran et al., 2012; Lüdtke et al., 2008; Preacher et al.,
2010). Here we implement the endogenous latent cluster
mean approach for MSEM-PN and SSEM-PN. Following the
presentation of both approaches for decomposing the effect
of xij in the treatment arm, both are demonstrated using a
simulated partially nested example in which between and
within effects of xij are unequal in the treatment arm.

Exogenous Observed Cluster Mean Approach:
Strategy A

In MLM, Strategy A involves including the cluster-mean-
centered ẋij (where ẋij = xij − x̄.j ) as an exogenous person-
level predictor and the observed cluster mean x̄.j (where

x̄.j = ∑Nj

i=1 xij

/
Nj ) as an exogenous cluster-level predic-

tor (e.g., Bauer et al., 2008; Raudenbush & Bryk, 2002). In
MLM, the slope of ẋij yields a within effect and the slope
of x̄.j yields a between effect. This strategy can be adapted
to MLM-PN by including ẋij and x̄.j treatij as predictors, so
x̄.j explains only between-cluster variability in the treatment
arm. Yet, this strategy has a limitation in the partial nesting
context. It precludes ẋij from explaining variability in the
control arm because ẋij is 0 for controls after cluster-mean
centering. To overcome this limitation and estimate the pre-
dictor’s effect for controls, xij (1 − treatij ) is also included.
To summarize Strategy A for MLM-PN,

Level 1: yij = β0j + β1j treatij + β2j ẋij

+ β3j xij (1 − treatij ) + rij (25)

Level 2: β0j = γ00

β1j = γ10 + γ11wj + γ12x̄.j + u1j

β2j = γ20

β3j = γ30.

12Strategy B also applies to MSEM-PN; it is less commonly implemented,
so is omitted to save space.

13Strategy A is not estimable in the SSEM-PN due to the ipsativity de-
scribed in Curran et al. (2012).
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SEMS FOR PARTIALLY NESTED DATA 107

Reduced form:

yij = γ00 + (γ10 + γ11wj + γ12x̄.j + u1j )treatij

+ γ20ẋij + γ30xij (1 − treatij ) + rij .

Here, γ20 is the within effect of xij for treated persons,
γ12 is the between effect for treated persons, and γ30 is the
effect for control persons. To generalize to three study arms,
two of which are clustered, would require first replacing
xij (1 − treatij ) with xij (1 − treat1ij − treat2ij ) to obtain
the effect of xij in the control arm. Also, separate within and
between effects of xij in each treatment arm would need to be
represented by four product terms in the reduced form model
(i.e., using ẋij treat2ij and ẋij treat1ij as predictors instead
of ẋij , and using x̄.j treat1ij and x̄.j treat2ij as predictors
instead of x̄.j treatij ).

For MSEM-PN, the following changes are made to the
treatment arm of Equation (18) to implement Strategy A.
Exogenous xij is replaced by ẋij in the within model (its
coefficient, κt

W , now has a W subscript to denote it is the
within effect of xij ), and the observed x̄.j is added to the
between model (its coefficient, ωt

2B , has a B subscript to
emphasize that it is the between effect of xij ):

Between:

Within:

Treatment arm:

yij = ỹt
j + ỹt

ij

ỹt
j = μt + ωt

1wj + ωt
2B x̄.j + ζ t

j

ỹt
ij = 0 + κt

W ẋij + εt
ij

∣∣∣∣∣∣∣∣∣∣

Control arm:

yij = ỹc
j + ỹc

ij

ỹc
j = μc + 0

ỹc
ij = 0 + κcxij + εc

ij .

(26)

This specification is diagrammed in Figure 4, Panel A. The
extension to obtain separate between and within effects of xij

in two clustered treatment arms of a three-arm study requires
the same changes in each treatment arm of Equation (19),
yielding κ

t1
W , ω

t1
2B , κ

t2
W , and ω

t2
2B .

Exogenous Observed Cluster Mean Approach:
Strategy B

In MLM, Strategy B for decomposing effects across levels
involves including the exogenous raw xij as well as x̄.j as
predictors. The former yields a within effect; the latter yields
a contextual effect (Raudenbush & Bryk, 2002). A contex-
tual effect—defined as the between effect minus the within
effect—can then be used straightforwardly to solve for the
between effect. (The between effect is the sum of within
and contextual effects.) This strategy is adapted for a two-
arm MLM-PN by including xij treatij , xij (1 − treatij ), and
x̄.j treatij as predictors in the reduced form of Equation (27).

Level 1: yij = β0j + β1j treatij + β2j xij treatij

+β3j xij (1 − treatij ) + rij (27)

Level 2: β0j = γ00

β1j = γ10 + γ11wj + γ12x̄.j + u1j

β2j = γ20

β3j = γ30

Reduced form:

yij = γ00 + (γ10 + γ11wj + γ12x̄.j + u1j )treatij

+ γ20xij treatij + γ30xij (1 − treatij ) + rij .

In the control arm, γ30 is the effect of xij . In the treat-
ment arm, γ20 is the within effect of xij ; γ12 is the contextual
effect of xij . The between effect of xij is γ12 + γ20. Ob-
taining between and within effects of xij in two clustered
treatment arms of a three-arm study requires the following
replacements in the reduced form expression: We replace
xij treatij by xij treat1ij and xij treat2ij ; we also replace
xij (1 − treatij ) by xij (1 − treat1ij − treat2ij ) and replace
x̄.j treatij by x̄.j treat1ij and x̄.j treat2ij .

Strategy B is straightforward to implement in SSEM-
PN, as follows. Using the SSEM-PN data set organiza-
tion described previously, rank-deficiency problems do not
emerge.14 First, we add x̄.j as an exogenous predictor in
the treatment arm in the structural model of Equation (10b),
yielding

[
ηc

j

ηt
j

]
=

[
μc

μt

]
+

[
0 0
ωt

1 ωt
2

] [
wj

x̄.j

]
+

[
0
ζ t
j

]
. (28)

ωt
2 is the contextual effect in the treatment arm. Also, in

Equation (10b), κt can now be relabeled κt
W because it is now

the within effect of xij in the treatment arm. Adding ωt
2 + κt

W
yields the between effect. This specification is diagrammed
in Figure 5, Panel A. For a three-arm study with two clustered
treatment arms, x̄.j similarly can be included in Equation (12)
as an exogenous predictor in both treatment arms; ω

t1
2 and

ω
t2
2 would be contextual effects in each treatment arm. Then

κt1 and κt2 in Equation (12) could be relabeled κ
t1
W and κ

t2
W to

underscore that they are now within effects in each treatment
arm.

Endogenous Latent Cluster Mean Approach

Both MSEM-PN and SSEM-PN can employ an attractive al-
ternative approach to decompose effects of person-level pre-
dictors in the treatment arm, involving substituting x̄.j (which
is subject to error) for an endogenous latent cluster mean of
x (i.e., random intercept of x). We discuss implementing this
approach for MSEM-PN and then SSEM-PN.

14If a predictor (i.e., column in a wide-format data set) is an exact linear
function of other predictors (columns) the covariance matrix of predictors
has a zero determinant. However, in the partial nesting data structure, x̄.j

is not the same linear function of x1j − x5j for all rows of the data set. x̄.j

is calculated from the present data only and so will be a different function
depending on how many people are in a given cluster. In the control arm, only
x1j is used in computing x̄.j . As mentioned previously, in the control arm,
y2j − y5j and x2j − x5j are missing-by-design and the latter are assigned an
arbitrary numeric value (not the missing code) to retain the control persons
in the conditional likelihood computation (see Footnote 8 and see Bauer
et al., 2008).
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108 STERBA ET AL.

FIGURE 4 MSEM-PN that decomposes a person-level predictor’s (xij) effect in the treatment arm using an exogenous observed cluster mean (Panel A)
versus an endogenous latent cluster mean (Panel B). Note. All predictors are exogenous in Panel A and endogenous in Panel B. Panel A uses Strategy A from
the text. Notation for Panel A matches Equation (26) where θ t

ε = θc
ε and for Panel B matches Equations (29)–(31) where θ

yt
ε = ψyc . To simplify presentation,

residuals are not shown; only their variances are shown. MSEM-PN = multiple-arm multilevel structural equation model for partial nesting.
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SEMS FOR PARTIALLY NESTED DATA 109

FIGURE 5 SSEM-PN that decomposes a person-level predictor’s (xij) effect in the treatment arm using an exogenous observed cluster mean (Panel A) versus
an endogenous latent cluster mean (Panel B). Note. All predictors are exogenous in Panel A and endogenous in Panel B. Panel A uses Strategy B from the text.
Panel A notation corresponds with the SSEM-PN in Equation (28) and accompanying text, when θ t

ε = θc
ε . Panel B notation corresponds with the SSEM-PN in

Equations (32)–(34) when θ
yt
ε = ψyc . To simplify presentation, residuals are not shown; only their variances are shown. SSEM-PN = multivariate single-level

structural equation model for partial nesting.

For MSEM-PN, this approach requires replacing the ex-
ogenous observed components of xij (i.e., ẋij and x̄.j from
Equation (26)) with the endogenous latent within and be-
tween components of xij (denoted x̃t

ij and x̃t
j ) in the treatment

arm of Equation (29).

Between:

Within:

Treatment arm:
yij = ỹt

j + ỹt
ij

xij = x̃t
j + x̃t

ij

wt
j = w̃t

j

ỹt
j = μyt + b

yt
1Bw̃t

j + b
yt
2Bx̃t

j + ζ
yt
j

x̃t
j = μxt + ζ xt

j

w̃t
j = μwt + ζwt

j

ỹt
ij = 0 + b

yt
3W x̃t

ij + ε
yt
ij

x̃t
ij = 0 + εxt

ij

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Control arm:
yij = ỹc

j + ỹc
ij

xij = x̃c
j + x̃c

ij

ỹc
j = μyc + bycx̃c

j + ζ
yc
j

x̃c
j = μxc + ζ xc

j

ỹc
ij = 0

x̃c
ij = 0.

(29)

This specification is diagrammed in Figure 4, Panel B. x̃t
j

is called a latent cluster mean (or random intercept) and is
more reliable than x̄.j (Lüdtke et al., 2008). In Equation (29),
bs represent effects of latent components. In the treatment
arm, within and between effects of xij are b

yt
3W and b

yt
2B ,
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110 STERBA ET AL.

respectively. Because wj varies only at the cluster level in
the treatment arm, it has only a latent between component,
w̃t

j . In Equation (29), the between effect of wj is b
yt
1B . Of the

latent components for xij in the control arm (x̃c
ij and x̃c

j ), only
one component is allowed to have variation, given the lack
of nesting in that arm. Here we chose x̃c

j , corresponding to
the cluster level. To streamline presentation, we also allowed
outcome variation only for the cluster-level component in the
control arm, ỹc

j , as previously illustrated in Figure 3, Panel
B. Hence, residual variances are here estimated only at the
cluster level in the control arm (Equation (30)). But in the
treatment arm, residual variances are estimated at cluster and
person levels (Equations (30)–(31)).

⎡
⎣ ζ

yt
j

ζ xt
j

ζwt
j

⎤
⎦ ∼ N

⎛
⎝

⎡
⎣ 0

0
0

⎤
⎦ ,

⎡
⎣ψyt

0 ψxt

0 ψxwt ψwt

⎤
⎦

⎞
⎠

and [
ζ

yc
j

ζ xc
j

]
∼ N

([
0
0

]
,

[
ψyc

0 ψxc

])
(30)

[
ε

yt
ij

εxt
ij

]
∼ N

([
0
0

]
,

[
θ

yt
ε

0 θxt
ε

])
. (31)

In the control arm, the endogenous predictor’s variance
(ψxc in Equation (30)) needs to be estimated at (or above)
the level where the predictor’s effect is estimated; hence, byc

appears at the cluster level in Equation (29). Importantly,
because all predictors are endogenous in this specification,
there is now no need to recode design-induced missingness
on w in the manner described in Footnote 9.

For SSEM-PN, implementing the endogenous latent clus-
ter mean approach for effect decomposition involves first
obtaining latent within and between components of xij . To
get the latent between component of xij , we treat the xs as en-
dogenous indicators of their own latent variable (i.e., latent
cluster mean of x, or random intercept of x, in the treat-
ment arm). Specifically, elements of xt

j (a nt1×1 vector here
consisting of xt

1j − xt
5j ) serve as indicators of a latent clus-

ter mean in the treatment arm, denoted ηxt
j , and are coded

missing-by-design in the control arm. xc
1j serves as a sin-

gle indicator of a corresponding latent variable, ηxc
j , in the

control arm and is coded missing-by-design in the treatment
arm. Then ηxt

j can be used as a predictor, in lieu of x̄.j ,
to obtain the between effect of xij . To get the within com-
ponent of xij , we employ a set of nt1 latent variables, ηxt

j ,
wherein each latent variable has a single indicator, xij . Ele-
ments of ηxt

j are used as predictors to get a within effect of
xij .

The full matrix expression for the SSEM-PN with en-
dogenous latent cluster mean is given in Equation (32). This
specification is diagrammed in Figure 5, Panel B. In Equation
(32), all residuals are compactly represented in ζ j . The matri-
ces in Equation (32) have their elements defined in Equations

(33a) and (33b). We continue to suppose nt1 = 5.

yj = �ηj

ηj = μ + Bηj + ζ j (32)

⎡
⎢⎢⎢⎢⎣

yc
1j

yt
j

xc
1j

xt
j

wj

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 01×5 01×5

05×1 15×1 05×1 05×1 05×1 I5×5 05×5

0 0 1 0 0 01×5 01×5

05×1 05×1 05×1 15×1 05×1 05×5 I5×5

0 0 0 0 1 01×5 01×5

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η
yc
j

η
yt
j

ηxc
j

ηxt
j

ηwt
j

η
yt
j

ηxt
j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(33a)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η
yc
j

η
yt
j

ηxc
j

ηxt
j

ηwt
j

η
yt
j

ηxt
j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

μyc

μyt

μxc

μxt

μwt

05×1

05×1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 byc 0 0 01×5 01×5

0 0 0 b
yt
2B b

yt
1B 01×5 01×5

0 0 0 0 0 01×5 01×5

0 0 0 0 0 01×5 01×5

0 0 0 0 0 01×5 01×5

05×1 05×1 05×1 05×1 05×1 05×5 b
yt
3W I5×5

05×1 05×1 05×1 05×1 05×1 05×5 05×5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η
yc
j

η
yt
j

ηxc
j

ηxt
j

ηwt
j

η
yt
j

ηxt
j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ
yc
j

ζ
yt
j

ζ xc
j

ζ xt
j

ζwt
j

ε
yt
j5×1

εxt
j5×1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (33b)

yt
j and xt

j are nt1×1 vectors containing yt
1j − yt

5j and
xt

1j − xt
5j , respectively. η

yc
j and ηxc

j are latent components

(factors) for yc
1j and xc

1j . ηxt
j , ηwt

j , and η
yt
j are endoge-

nous latent between components (factors) for xt
j , wj , and

yt
j , whereas ηxt

j and η
yt
j are endogenous latent within com-

ponents (factors) for xt
j and yt

j . In previous models, we
did not explicitly define latent within components for the
outcome in the treatment arm (i.e., η

yt
j ), but we do so

here for consistency with how we are treating the pre-
dictors. B is a square matrix representing effects of en-
dogenous latent variables on each other. In the treatment
arm, the within effect of xij is b

yt
3W and its between ef-

fect is b
yt
2B . We can now directly estimate this between

effect because we are including as a predictor the purely
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SEMS FOR PARTIALLY NESTED DATA 111

within ηxt
j instead of the unsplit xij (see Curran et al., 2012).

The between effect of wj is b
yt
1B . In the control arm, the ef-

fect of xij is byc. Deviations and residuals are distributed
as ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ
yc
j

ζ
yt
j

ζ xc
j

ζ xt
j

ζwt
j

ε
yt
j5×1

εxt
j5×1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∼ N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0

05×1

05×1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψyc

0 ψyt

0 0 ψxc

0 0 0 ψxt

0 0 0 ψxwt ψwt

05×1 05×1 05×1 05×1 05×1 θ
yt
ε I5×5

05×1 05×1 05×1 05×1 05×1 05×5 θxt
ε I5×5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(34)

In the control arm, we opted to estimate the predictor
variance, ψxc, and outcome variance, ψyc, at the cluster level
(as previously illustrated Figure 2, Panel B) for compactness
of representation. Finally, using this SSEM-PN with now
endogenous predictors, design-induced missingness on x and
w in the control arm is handled by FIML and does not require
the recoding described in Footnote 8.

SIMULATED EXAMPLE

In the previous section it was stated that, when using ex-
ogenous observed x̄.j , SEM approaches for handling partial
nesting yield a specification of effect decomposition Strate-
gies A and B in the treatment arm that is equivalent to, but
arguably more straightforward than, MLM-PN. Here we il-
lustrate this equivalency using a two-arm example data set
with population parameters given in Table 3. These param-
eters are the same as in the two-arm Table 2 example with
the exception that xij now has different within and between
effects in the treatment arm. This sample had 90 treatment
clusters of size 5, 350 control persons, a .30 ICCy in the
treatment arm, and homoscedastic residual variances across
arms. xij and wj were distributed as in the two-arm gener-
ating model from Table 2. Table 3 results show that, when
decomposing the effect of xij in the treatment arm using x̄.j ,
we obtain equivalent results (parameter estimates, standard
errors, and log-likelihood) between MLM-PN and MSEM-
PN (for Strategy A) and between MLM-PN and SSEM-PN
(for Strategy B).

The previous section also described how the SEM ap-
proaches both provide the option of substituting an endoge-
nous latent cluster mean of x (i.e., random intercept) for x̄.j

in the treatment arm. Table 4 presents results of MSEM-PN
and SSEM-PN with an endogenous latent cluster mean of x,
fit to the same data set from Table 3. Comparing the Table 3

and Table 4 results illustrates that SEM approaches with a
latent cluster mean of x can yield a more accurate estimate of
the between effect of xij (and potentially other cluster-level
parameters) because they are not subject to attenuation from
use of the observed x̄.j .

Summary

We have now described two useful capabilities of SSEM-PN
and MSEM-PN that are not accommodated by MLM-PN:
cluster-level outcomes and decomposition of between versus
within effects of person-level predictors in the treatment arm
using endogenous latent cluster means (random intercepts).
Both extensions had been discussed for SEM and MSEM in
varying levels of detail in prior literature (e.g., Bauer, 2003;
Curran, 2003; Curran et al., 2012; Lüdtke et al., 2008; Mc-
Donald, 1994; Preacher et al., 2010) but had not been adapted
for the partially nested setting. We used two-paneled figures
to juxtapose the SSEM-PN specification with observed x̄.j

versus latent cluster mean of x (top vs. bottom panels of Fig-
ure 5) and to juxtapose the MSEM-PN specification using
observed x̄.j versus latent cluster mean of x (top vs. bottom
panels of Figure 4) when decomposing effects of person-
level predictors in the treatment arm. Given the potential for
different between versus within effects of xij in the treatment
arm, researchers interested in testing the equality of the effect
of xij across arm can consider a few options. For instance,
researchers could test the equality of the simple effect in the
control arm versus the total effect in the treatment arm, as
done in the empirical example. In other substantive contexts
researchers may be interested in testing the equality of the
simple effect in the control arm versus the within effect (or
between effect) in the treatment arm.

EMPIRICAL EXAMPLE

In this section, we illustrate the combination of our two ex-
tension topics (cluster-level outcomes and decomposition of
person-level predictor effects) in SSEM-PN and MSEM-PN
in the context of a model relevant to treatment-outcome stud-
ies. The empirical example data set is from an intervention
study aimed at lowering the risk of depression and other in-
ternalizing and externalizing psychopathology among pread-
olescent and adolescent children (9–15 years) whose parent
had a history of depression (see Compas et al., 2010; Compas
et al., 2009; Compas et al., 2011, for details). Children and
their parents were randomly assigned to either a treatment
arm, where a cognitive-behavioral intervention was admin-
istered in therapy groups, or a control arm, where written
information packets were sent by mail. The group therapy
intervention involved eight weekly sessions followed by four
monthly sessions; a variety of measures were recorded for
both arms at baseline and after 2, 3, 6, and 12 months. The
analysis data set contains a subsample of 54 children in the
control arm and 14 therapy groups in the treatment arm,
with 4 children per therapy group. One child per family was
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112 STERBA ET AL.

TABLE 3
Partial Nesting Model Decomposing the Effect of an Exogenous Covariate Using Observed x Mean:

Illustration of Strategy A and B With MLM-PN, SSEM-PN, and MSEM-PN for a Simulated Single-Sample Data Set

Strategy B
Strategy A

Notation
Notation Results Results

MLM-PN or SSEM-PN MLM-PN or
Parameters Pop-Gen MLM-PN MSEM-PN MSEM-PN MLM-PN Eqn 10b, SSEM-PN
Description Val. Eqn 25 Eqn 26 Est (SE) Eqn 27 28, & Text Est (SE)

Intercept, cont arm 4 γ00 μc 4.04 (.09) γ00 μc 4.04 (.09)
Intercept, tx arm† 1 γ00 + γ10 μt 1.06 (.12) γ00 + γ10 μt 1.06 (.12)
Condit. tx effect† −3 γ10 μt − μc −2.98 (.15) γ10 μt − μc −2.98 (.15)
L2 res. var, tx arm .75 τ11 ψt .77 (.18) τ11 ψt .77 (.18)
Res. var, cont arm∗ 2 σ 2

c θc
ε 2.06 (.12) σ 2

c θc
ε 2.06 (.12)

L1 res. var, tx arm∗ 2 σ 2
t θ t

ε 2.06 (.12) σ 2
t θ t

ε 2.06 (.12)
Effect xij, cont arm 1 γ30 κc .95 (.09) γ30 κc .95 (.09)
Within-effect xij, tx arm .75 γ20 κt

W .71 (.09) γ20 κt
W .71 (.09)

Betwn-effect xij, tx arm† .25 γ12 ωt
2B .45 (.18) γ12 + γ20 ωt

2 + κt
W .45 (.18)

Contextual-effect xij, tx arm† −.5 γ12 − γ20 κt
B − κt

W −.27 (.20) γ12 ωt
2 −.27 (.20)

Effect wj, tx arm .50 γ11 ωt
1 .59 (.10) γ11 ωt

1 .59(.10)
Log-likelihood −1294.23 −1294.23

Note. ∗Indicates held equal to obtain homoscedastic residual variances. Strategy A and B were defined in the text. Between and contextual effects of x
control for w; the effect of w controls for the x mean. †Compound coefficients (sums or differences of estimated parameters) have SEs computed via the delta
method using a model constraint command in Mplus or an estimate statement in SAS. See Table 1 note for abbreviation definitions.

included. Participant-initiated (not design-induced) missing
data were handled via multiple imputation.

Analysis variables were parent perceptions of familial
stress at 6 months postbaseline (Responses to Stress Ques-
tionnaire; Connor-Smith, Compas, Wadsworth, Thomsen, &
Saltzman, 2000), child internalizing symptoms at 12 months
postbaseline (Youth Self Report; Achenbach & Rescorla,
2001), and average amount of cognitive-behavioral home-
work15 completed by a therapy group’s members. Due to
6 months of therapy-group interaction, perceived familial
stress reports were correlated within therapy group in the
treatment arm (ICCx = .27). That is, some therapy groups on
average report higher stress than others.

Our research questions pertain to three topics: testing
moderation by treatment, decomposing effects in the treat-
ment arm, and testing mediation at the cluster level in the
treatment arm. Question (1): Is the total effect of parent per-
ceptions of familial stress at 6 months (xij ) on child internal-
izing symptoms at 12 months (yij ) moderated by treatment?
If treatment serves to decrease the impact of familial stress
on symptoms, there may be a stronger effect of xij on yij in
the control than treatment arm. Question (2): In the control
arm, does a child’s internalizing score change as a function
of stress? Question (3a): In the treatment arm, does a child’s
internalizing score change as a function of stress, relative to
his or her therapy-group mean (i.e., does the within effect =
0)? Question (3b): In the treatment arm, does the therapy-
group average internalizing score change as a function of

15This predictor was divided by 10 to render its scale more comparable
to scales of the other variables.

group-average stress (i.e., does the between effect = 0)?
Question (4): Is the between effect of stress on child internal-
izing symptoms in the treatment arm mediated by a cluster-
level variable: the average amount of cognitive-behavioral
homework completed by a therapy group’s members (mj )?
We hypothesized that, first, therapy groups in which mem-
bers were more stressed may complete fewer homework as-
signments. Second, we hypothesized that completing more
homework assignments may reduce the risk of child inter-
nalizing symptoms at 12 months. Hence, homework comple-
tion was examined as a mediator of the link between family
stress and child internalizing problems only in the treatment
arm.

The empirical example model used to investigate these
questions is depicted in path diagrams in Figures 6 and 7 in
SSEM-PN and MSEM-PN versions. These versions are like-
lihood equivalent. Figure 6 depicts the SSEM-PN for one
generic cluster per arm, and Figure 7 depicts the MSEM-PN
for one generic person per arm. Symbol labels in Figures 6
and 7 correspond to the empirical example SSEM-PN and
MSEM-PN equations in the online Appendix. To address re-
search questions (3a) and (3b), the empirical example SSEM-
PN and MSEM-PN decompose the person-level effect of xij

into within and between effects using an endogenous latent
cluster mean of x (i.e., random intercept of x). Taken together,
this empirical example model involves a latent cluster mean
of x and involves structural relations among multivariate out-
comes (including a cluster-level outcome, mj , measured only
in the treatment arm) and so cannot be fit with MLM-PN. Our
empirical example model happens to be saturated; otherwise
we could evaluate absolute model fit.

D
ow

nl
oa

de
d 

by
 [

V
U

L
 V

an
de

rb
ilt

 U
ni

ve
rs

ity
] 

at
 0

8:
47

 0
7 

A
pr

il 
20

14
 



SEMS FOR PARTIALLY NESTED DATA 113

TABLE 4
Partial Nesting Model Decomposing the Effect of an Endogenous Covariate Using a Latent Cluster Mean:

Illustration of SSEM-PN and MSEM-PN for the Single-Sample Data Set From Table 3

Notation MSEM-PN w/Latent SSEM-PN w/Latent
Eqn 29–31 & Cluster Mean Results Cluster Mean Results

Description Pop-Gen. Values Eqn 32–34 Est (SE) Est (SE)

Intercept, cont arm 4 μyc 4.04 (.09) 4.04 (.09)

Intercept, tx arm† 1 μyt 1.05 (.12) 1.05 (.12)

Condit. tx effect† −3 μyt − μyc −2.99 (.15) −2.99 (.15)

L2 res. var, tx arm .75 ψt .75 (.18) .75 (.18)

Res. var, cont arm∗ 2 ψc 2.06 (.12) 2.06 (.12)

L1 res. var, tx arm∗ 2 θ t
ε 2.06 (.12) 2.06 (.12)

Effect xij, cont arm 1 byc .95 (.09) .95 (.09)

Within-effect xij, tx arm .75 b
yt
3W .71 (.10) .71 (.10)

Betwn-effect xij, tx arm .25 b
yt
2B .32 (.26) .32 (.27)

Effect wj, tx arm .50 b
yt
1B .59 (.11) .59 (.10)

Log-likelihood −2371.39 −2371.39

Note. ∗Indicates held equal to obtain homoscedastic residual variances. In these fitted SEMs, both x and w are endogenous. The between effect of x is
conditional on w (and vice versa). †Compound coefficients (sums or differences of estimated parameters) have SEs computed via the delta method using model
constraint in Mplus or an estimate statement in SAS Proc Mixed. See Table 1 note for abbreviation definitions. Strategies A and B were defined in the text.

Results pertaining to our research questions are discussed
in turn. (1) We rejected the null hypothesis that the un-
conditional total (conflated) effect of family stress on child
internalizing symptoms in the treatment arm (obtained by
constraining (byt

2B + b
yt
1Bbmt

1B ) = b
yt
3W) was equal to the simple

effect of family stress on child internalizing symptoms in the
control arm (i.e., byc), p < .01. Hence, we have evidence that
this effect is moderated by treatment. (2) Estimates from the
fitted model in Table 5 show that, in the control arm, family
stress at 6 months significantly predicted child internalizing
symptoms at 12 months (byc = .83, p < .05). (3a)–(3b) In

the treatment arm, neither the unconditional within effect
(byt

3W = –.12, p > .05) nor between effect (byt
2B+b

yt
1Bbmt

1B =
.06, p>.05) of family stress on child internalizing symptoms
significantly departed from 0. Although there are many pos-
sible explanations for this finding, one is that treatment may
have suppressed the effects of family stress on child inter-
nalizing symptoms. (4) Finally, we investigated whether the
amount of homework completed mediated the between ef-
fect of family stress on child internalizing symptoms in the
treatment arm. As hypothesized, completing more homework
was associated with a lower average child internalizing score

FIGURE 6 Depression intervention empirical example SSEM-PN: Incorporates a cluster-level outcome (mj) and decomposes a person-level predictor’s (xij)
effect in the treatment arm using an endogenous latent cluster mean. Note. xij is parent perception of familial stress (at 6 months); yij is child internalizing (at
12 months); mj is a therapy-group’s average amount of completed homework. Diagram depicts the jth cluster in the treatment arm (left side) or control arm
(right side). All predictors are endogenous. Notation in the figure corresponds to the empirical example SSEM-PN whose equations are given in the online
Appendix. To simplify presentation, residuals (εyt

ij , εxt
ij , ζ

yt
j , ζ

yc
j , ζmt

j , ζ xt
j , ζ xc

j ) are not shown; only their variances are shown. SSEM-PN = multivariate
single-level structural equation model for partial nesting.
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114 STERBA ET AL.

FIGURE 7 Depression intervention empirical example MSEM-PN: Incorporates a cluster-level outcome (mj) and decomposes a person-level predictor’s (xij)
effect in the treatment arm using an endogenous latent cluster mean. Note. xij is parent perception of familial stress (at 6 months); yij is child internalizing
(at 12 months); mj is a therapy-group’s average amount of completed homework. Diagram depicts the ith person in the jth cluster in the treatment arm (left
side) or control arm (right side). Notation in the figure corresponds to the empirical example MSEM-PN whose equations are given in the online Appendix.
To simplify presentation, residuals (εyt

ij , εxt
ij , ζ

yt
j , ζ

yc
j , ζmt

j , ζ xt
j , ζ xc

j ) are not shown; only their variances are shown. MSEM-PN = multiple-arm multilevel
structural equation model for partial nesting.

(byt
1B = –1.01, p < .05). Contrary to our hypothesis, greater fa-

milial stress did not significantly affect the amount of home-
work completed by a therapy group (bmt

1B = –.07, p > .05).
Hence, amount of homework completed was not a significant
mediator at the therapy-group level (a Monte Carlo16 95%
confidence interval for the indirect effect, b

yt
1Bbmt

1B , included
0: {–.92, 1.17}). This finding may highlight the importance
of enhancing homework completion at the therapy-group
level; doing so could potentially improve child internaliz-
ing scores. Finally, as shown in Table 5, in the treatment
arm, significant unexplained variability in child internalizing
symptoms remains at the person level, and significant unex-
plained variability in average homework completed remains
at the therapy-group level. In the control arm, unexplained
variability in child internalizing symptoms also exists. Fu-

16In multilevel (or partially nested) settings, confidence intervals for in-
direct effects can be obtained using the Monte Carlo method described
in Preacher and Selig (2012) and MacKinnon, Lockwood, and Williams
(2004).

ture research can seek to explain these remaining sources of
variance with additional predictors.

Summary

In this example, SSEM-PN and MSEM-PN allowed testing
whether treatment moderates the effect of family stress on
child internalizing symptoms and allowed examining cluster-
level-specific mechanisms of change in the treatment arm.
Empirical findings indicated that, in the control arm but not
treatment arm, familial stress may increase child internal-
izing symptoms. Also, the more homework a therapy group
completed, the better their average child internalizing scores.

DISCUSSION

Partial nesting designs are widely used in treatment out-
come studies, particularly in clinical and educational settings
(Sanders, 2011). Recent methodological advances for analyz-
ing data from partially nested designs have used a multilevel
modeling framework (MLM-PN; Bauer et al., 2008; Lee
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TABLE 5
MSEM-PN and SSEM-PN Results for Depression

Intervention Empirical Example Analysis

Notation†

Description
MSEM-PN or

SSEM-PN Est (SE)

Treatment arm
Intercept yij , tx arm μyt 13.21 (7.52)

Within effect of xij on yij , tx arm b
yt
3W −.12 (.22)

Between direct effect of xij on yij ,
tx arm‡

b
yt
2B −.03 (.64)

Between effect of mj on yij , tx arm‡ b
yt
1B −1.01 (.47)∗

Intercept mj , tx arm μmt 6.98 (3.91)

Between effect of xij on mj , tx arm bmt
1B −.07 (.38)

Level 1 res. var yij , tx arm θ
yt
ε 17.98 (6.36)∗

Level 2 res. var yij , tx arm ψyt 3.19 (4.63)

Level 2 res. var mj , tx arm ψmt 3.28 (1.31)∗
Control arm

Intercept yij , control arm μyc .04 (3.31)

Effect of xij on yij , control arm byc .83 (.28)∗

Res. var yij , control arm ψyc 67.99 (15.59)∗

Log-likelihood −712.25

Note. †Notation corresponds with Figures 6 and 7 and with online Ap-
pendix equations for the empirical example. ∗ = p < .05. Empirical example
SEMs used endogenous predictors and a latent cluster mean of x. ‡The be-
tween effect of xij on yij controls for mj , and vice versa. Means and
variances of xij are not usually of substantive interest and so are not tabled
[mean and variance of xij in the control arm: 12.03(.80); 28.15(7.90); mean,
Level 1 variance, and Level 2 variance of xij in the tx arm: 10.27(.89); 16.27
(4.37); 5.92 (5.55)]. See Table 1 note for abbreviation definitions for tx;
res.; MSEM-PN; SSEM-PN. Condit. = conditional.

& Thompson, 2005; Moerbeek & Wong, 2008; Roberts &
Roberts, 2005). Researchers analyzing data from treatment-
outcome studies may nevertheless desire the flexibility of
an SEM framework for including complex structural mod-
els, traditional factor predictors or outcomes, or cluster-
level outcomes (e.g., Coatsworth, Duncan, Greenberg & Nix,
2010). In this article, a multivariate single-level SEM (SSEM-
PN) and a multiple-arm multilevel SEM (MSEM-PN) for
handling partially nested data were introduced. They were
shown to reproduce results from existing MLM-PNs when
MLM-PNs are applicable (with, e.g., homoscedastic vs. het-
eroscedastic residual variances across-arm, person-level and
cluster-level covariates, and multiple treatment arms). Equiv-
alencies of parameters across models were summarized in
tables (see Tables 1 and 2) and were demonstrated with sim-
ulated data. We then described how absolute model fit, using
a modified saturated model, is available for some SSEM-PNs
and MSEM-PNs (which require only random intercepts) but
are unavailable for all MLM-PNs (which require a random
slope). This article provided the first thorough explanation
of options for decomposing person-level predictor effects
in the treatment arm of a partially nested design. Whereas

MLM-PN provides one option for doing so, MSEM-PN and
SSEM-PN provide two options—using observed or latent
cluster means. We illustrated both options with simulated
data in Tables 3 and 4. Several SSEM-PN and MSEM-PN
extensions were combined in the context of an empirical ex-
ample analysis of a partially nested depression intervention
data set. Software syntax for all fitted models was provided
in the online Appendix.

Table 6 serves as a convenient summarization tool to com-
pare and contrast how each of the three specifications, MLM-
PN, SSEM-PN, and MSEM-PN, handles the unique features
and modeling requirements of partially nested data. Table 6
also summarizes where data management is employed, par-
ticularly involving handling of control arm missingness-by-
design, as a prelude to model fitting.

When choosing among MLM-PN, SSEM-PN, and
MSEM-PN in practice, one strategy is to use the modeling
framework with which one is more familiar, unless particu-
lar modeling features are desired that are better accommo-
dated by another framework. Other considerations are as fol-
lows. Given the multivariate (wide-format) data structure of
SSEM-PN and the long-format data structure of MSEM-PN
and MLM-PN, the latter models are easier to specify when
there are many persons per cluster in the treatment arm. In
common partial nesting design settings, such as when treat-
ment clusters are therapy groups, there are relatively few
persons within cluster in the treatment arm (Baldwin et al.,
2011), so this would not be a deciding factor. Also, it would
be more straightforward to include random slopes in MSEM-
PN or MLM-PN than in SSEM-PN (which would require use
of definition variables; see Mehta & Neale, 2005). In current
software, including more than two levels of (full or partial)
nesting is easier in MSEM-PN than SSEM-PN, and more
than three are easiest in MLM-PN. A relative advantage of
SSEM-PN or MLM-PN is that they can be fit in a wider va-
riety of software, whereas MSEM-PN requires a specialized
software package that permits multilevel SEM.

Finally, we did not discuss at least one other alternative
SEM specification for partial nesting (other than SSEM-PN,
MSEM-PN) because it has a less straightforward implemen-
tation and less estimation stability. This alternative involves
fitting a multivariate (wide-format) SEM with a fixed inter-
cept and a random slope for treatment. The first loading on
the random slope factor could be a definition variable (al-
lowed to be 1 for treated persons, 0 for control persons),
and remaining indicators (as many as the maximum number
of persons per cluster) could be 1 for treated persons and
missing otherwise. Among other limitations, this approach
requires an inconvenient amount of programming to allow
heteroscedastic residual variances across arms (i.e., it re-
quires implementation of developments in B. O. Muthén &
Asparouhov [2002] with the identification constraint modi-
fied as in Snijders & Bosker [1999, sect. 8.1] or Goldstein,
[2003, sect. 3.1.2] to enable the outcome residual variance to
be either larger or smaller in the treatment vs. control arms).
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Other potential extensions of SSEM-PN or MSEM-PN for
partial nesting designs that were not discussed here present
interesting avenues for future work. For instance, in the em-
pirical example, mj , the average amount of homework com-
pleted by a therapy group’s members, could instead have
been replaced by a traditional factor with multiple indica-
tors at the cluster level. For instance, it could be replaced by
a latent motivation factor with indicators of: therapy group
average homework completed, perceived investment or be-
lief in treatment, and amount of therapist encouragement or
rewards for completing homework. For such a model, ab-
solute model fit would be useful to calculate (as described
earlier) and interpret. Second, measured variable outcomes
that are categorical rather than continuous could be consid-
ered (e.g., depression diagnosis rather than symptom sub-
scale score). Third, categorical (e.g., binary) xij or wj could
be employed, although estimation would be less computa-
tionally intensive if they are considered exogenous rather
than endogenous. Fourth, SSEM-PN or MSEM-PN could be
used in sample size planning for optimal power, as has been
done with MLM-PN (Candel & van Breukelen, 2009, 2010;
Moerbeek & Wong, 2008).

In conclusion, the SSEM-PN and MSEM-PN specifica-
tions, interpretation, and simulated and empirical demon-
strations provided here allow researchers greater flexibility
for analyzing data from partial nesting designs in an SEM
framework. We encourage future work extending SSEM-PN
and MSEM-PN to include more complex SEM specifications
relevant to treatment-outcome research.
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