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Computational sustainability aims to develop computational methods to
help solve environmental, economic, and societal problems and thereby
facilitate a path towards a sustainable future. Sustainability problems are
unique in scale, impact, complexity, and richness, offering challenges but
also opportunities for the advancement of the state of the art of computing
and information science.
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Fig. 1. On September 25th 2015, under the auspices of the United Nations
and as part of a wider 2030 Agenda for Sustainable Development, 193 coun-
tries agreed on a set of 17 ambitious goals, referred to as the Sustainable
Development Goals (SDGs), to end poverty, protect the planet, and ensure
prosperity for all [23, 36].
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INTRODUCTION
These are exciting times for computional sciences with the digital
revolution permeating a variety of areas and radically transforming
businesses, science, and the daily activities of the general public. The
Internet and the World-Wide-Web, GPS, satellite communications,
remote sensing, and smart-phones, are accelerating dramatically
the pace of discovery engendering globally connected networks
of people and devices. The rise of practically relevant Artificial
Intelligence (AI) is also playing an increasing part in this revolution,
fostering e.g., e-commerce, social networks, personalized medicine,
IBM Watson and AlphaGO, and self-driving cars.
Unfortunately, humanity is also facing tremendous challenges.

Millions of people live in poverty and humans’ activities and climate
change are threating our planet and the livelihood of current and
future generations. Moreover, the impact of computing and infor-
mation technology has been uneven, mainly benefiting profitable
sectors, with fewer societal and environmental benefits, further
exacerbating inequalities and the destruction of our planet.
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Fig. 2. Sustainability areas and computational themes of our research.

Our vision is that computational scientists can and should
play a key role in helping address societal and envi-
ronmental challenges in pursuit of a sustainable future,
which will also advance computational sciences.

For over a decade, we have been deeply engaged in computational
research to address societal and environmental challenges while nur-
turing the new field of Computational Sustainability. Computational
Sustainability aims to identify, formalize, and provide solutions to
computational problems concerning the balancing of environmen-
tal, economic, and societal needs for a sustainable future [16]. Sus-
tainability problems offer challenges but also opportunities for the
advancement of the state of the art of computing and information
science. While in recent years an increasing number of computing
and information scientists has engaged in research efforts focused
on social good and sustainability (see e.g., [10, 12, 14, 22, 28, 30, 34]),
such computational expertise is far from the critical mass required
to address the formidable societal and sustainability challenges that
we face today. We hope our work in computational sustainability
will inspire more computational scientists to pursue initiatives of
broad societal impact.

TOWARDS A SUSTAINABLE FUTURE
In 1987, Our Common Future, a United Nations report by the World
Commission on Environment and Development, raised serious con-
cerns about the state of our planet, the livelihood of current and
future generations, and introduced the groundbreaking notion of
Sustainable Development[40].

Sustainable Development is development that meets
the needs of the present without compromising the
ability of future generations to meet their needs.

The Sustainable Development Goals (SDGs) identify areas of
critical importance for human well-being and the protection of the
planet and seek to integrate and balance the economic, social, and
environment dimensions for sustainable development (Fig. 1)[36].

COMPUTATIONAL RESEARCH IN SUSTAINABILITY
In this section we illustrate some of our computational sustainability
research, which has focused on three main general sustainability

themes: (1) Balancing Environmental and Socioeconomic Needs, (2)
Biodiversity and Conservation, and (3) Renewable and Sustainable
Energy and Materials, centered around three main broad computa-
tional topics: (1) Decision Making, Constraint Reasoning and Op-
timization, Dynamical Models, and Simulation, (2) Small and Big
Data and Machine Learning, and (3) Multi-Agent Systems, Crowd-
sourcing, and Citizen Science (Fig. 2). The section is organized in
terms of our three sustainability themes, highlighting cross-cutting
computational themes, as depicted in the subway lines of Fig. 3.

Balancing Environmental and Socio-economic Needs
The elimination of poverty is one of themost challenging sustainable
development goals. Globally, over 750 million people live below the
international poverty line. Rapid population growth, ecosystem
conversion, and new threats due to conflicts and climate change are
further pushing several regions into chronic poverty [37].

The lack of reliable data is a major obstacle to the implementation
of policies concerning poverty, food security, and disaster relief. In
particular, policies to eradicate poverty require the ability to identify
who the poor are and where they live. Poverty mapping can be very
challenging, especially in the case of the developing countries, which
typically suffer from large deficiencies in terms of data quantity,
quality, and analysis capabilities. For example, some countries have
not collected census data in decades [35]. An exciting computational
research direction to mitigate this challenge uses a novel transfer
learning approach that takes advantage of the advances machine
learning to obtain large-scale spatial and temporal socioeconomic
indicators from publicly available high-resolution satellite imagery
(Fig. 4). The approach, is quite effective for estimating a variety
of socio-economic indicators of poverty, even comparable to the
predictive performance of expensive survey data collected in the
field, and it is currently being used by the World Bank [19].
In the arid regions of Sub-Saharan Africa, one of the world’s

poorest regions, migratory pastoralists manage and herd livestock
as their primary occupation. During semi-annual dry seasons they
must migrate from their home villages to remote pastures and water-
points. Understanding the spatio-temporal resource preferences of
herders is paramount in the design of policies for sustainable de-
velopment. Unfortunately, such preferences are often unknown to
policy-makers andmust be inferred from data. Ermon et al. [9] devel-
oped generative models, based on (inverse) reinforcement learning
and dynamic discrete choice models, to infer the spatio-temporal
preferences of migratory pastoralists, which provide key informa-
tion to policy makers concerning, e.g., locations for adding new
watering points for the herders.

Access to insurance is critical for development since uninsured
losses can lead to a vicious cycle of poverty. Unfortunately, agri-
cultural and disaster insurance are either unavailable or prohib-
itively expensive in many developing countries, due to the lack
of weather data and other services. To mitigate this problem, the
Trans-Africa Hydro-Meteorological Observatory (TAHMO) project
is designing and deploying a network of 20,000 low-cost weather
stations throughout sub-Saharan Africa [38]. This project gives rise
to challenging stochastic optimization and learning problems for
selecting optimal sites for the weather stations and for quantifying
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Fig. 3. Subway line highlighting cross-cutting computational themes of some of our research projects.

uncertainty in the sensors andweather predictions. For example, pre-
cipitation, the most important variable for agriculture, is challenging
to predict due to its heavy-tailed nature and the malfunctions of
rain gauges. Dietterich and his collaborators are developing models
for detecting instrument malfunctions and also conditional mixture
models to capture the high variance of the phenomena.

There are also many challenges and opportunities for computing
and information science researchers in connection with social inter-
ventions in the United States, where more than 40million people live
below the US poverty threshold. The US also has the highest infant
mortality rate and the highest youth poverty rate in the Organiza-
tion for Economic Cooperation and Development, which comprises
37 high-income economies regarded as the developed countries [37].
For example, Los Angeles County has over 5,000 youth between
the ages of 13 and 24 sleeping on the streets or living in emergency
shelters on any given day. In the context of homeless youth drop-in
centers in Los Angeles, [43] proposes novel influence maximization
algorithms for peer-led HIV prevention, illustrating how AI algo-
rithms can significantly improve dissemination of HIV prevention
information among homeless youth and have real impact on the
lives of homeless youth. Tambe and Rice [34] provide a compilation
of other examples of AI for social work, concerning e.g., HIV pre-
vention, substance abuse prevention, suicide prevention and other
social work topics.

As a final example on balancing environmental and socio-economic
issues, consider the urban landscape, which is far more congested
than it was 10, 20, or 50 years ago. There is a critical need to provide
individualized transportation options that have smaller carbon foot-
prints than the automobile. One emerging alternative is bike-sharing
which, even in contrast to owning a bike, allows for multi-modal
commute round-trips, with a much greater degree of individual

flexibility, as well as economic, environmental, and health benefits.
These systems have given rise to a host of challenging logistical
problems, whose computationally efficient solution is required to
make this new alternative sustainable. The algorithmic requirements
for these problems bring together issues from discrete optimization,
stochastic modeling, and behavioral economics, as well as mecha-
nism design to appropriately incentivize desired collective behavior.
One striking recent success is the crowd-sourcing approach to re-
balancing the shared bike fleet in NYC that contributes more to the
effectiveness of Citi Bike than all motorized efforts; this and other
computational challenges in this emerging domain are surveyed by
Freund et al. [15].

Biodiversity and Conservation
Accelerated biodiversity loss is another great challenge threating our
planet and humanity, especially considering the growing evidence
of the importance of biodiversity for sustaining ecosystem services.
The current rate of species extinction is estimated to be 100 to 1,000
times the background rates that were typical over Earth’s history.
Agriculture, urbanization, and deforestation are main causes of
biodiversity reduction, leading to habitat loss and fragmentation.
Climate change and introductions of species by humans to non-
native ecosystems are further accelerating biodiversity loss [27].

A fundamental question in biodiversity research and conservation
concerns understanding how different species are distributed across
landscapes over time, which gives rise to challenging large scale
spatial and temporal modeling and prediction problems [13, 24].
Species distribution modeling is highly complex as we are interested
in simultaneously predicting the distribution of hundreds of species,
rather than a single species, as traditionally done. Motivated by

, Vol. 1, No. 1, Article . Publication date: August 2018.



:4 • Gomes, C. et al

Fig. 4. Transfer learning is an effective approach to model and predict socio-
economic indicators in data scarce regions that takes advantage of satellite
images that are globally available, updated frequently, and becoming increas-
ingly more accurate. The approach first trains a deep convolutional neural
network to predict nighttime light intensity (a good proxy for economic
activity) based on daytime satellite imagery. The model then estimates
average household expenditures based on expenditure data from the World
Bank’s Living Standards Measurement Study surveys. This is done via semi-
supervised learning, while enforcing spatial consistency using a Gaussian
process on top of the neural network. The resulting model is surprisingly
accurate, explains close to 70% of the variation in the data in some countries,
outperforms all previous methods including methods based on proprietary
phone meta-data (not publicly available). This general approach has been
adapted for large scale spatial and temporal modeling and prediction of a
variety of socio-economic indicators [19].

this problem, we developed the Deep Multivariate Probit Model
(DMVP) [6], an end-to-end learning approach for the multivariate
probit model (MVP), which captures interactions of any multi entity
process, assuming a multi-variate Gaussian model [6] (Fig. 5).
Citizen science programs play a key role in conservation efforts

and in particular in providing observational data. eBird, a citizen
science program of the Cornell Lab of Ornithology, has over 400,000
members, who have gathered more than 500 million bird observa-
tions, corresponding to over 30,000,000 hours of field work [33].
Furthermore, to complement eBird observational data, other infor-
mation sources are exploited. For example, the Dark Ecology project
[32] extracts biological information from weather data. eBird data,
combined with large volumes of environmental data and our spatio-
temporal statistical and machine learning models of bird species
occurrence and abundance, provide habitat preferences of the birds
at a fine resolution, leading to novel approaches for bird conserva-
tion [26]. The results from the eBird species distribution models
formed the basis for the 2011-2017 U.S. Department of Interior’s
State of the Birds (SOTB) reports. The richness and success of these
reports is generating tremendous interest from governmental and
non-governmental conservation organizations in using species dis-
tribution results to improve bird conservation.
For example, the Nature Conservancy’s Bird Returns program

[26] uses reverse combinatorial auctions, in which farmers are com-
pensated for creating habitat conditions for birds, e.g., by keeping
water in their rice fields for the periods that coincide with bird mi-
grations. This novel market-based approach is only possible given

Fig. 5. Multi-entity interactions: a) The visualization of the joint distribu-
tion of two species modeled by the deep multivariate probit model (DMVP),
which is a flexible generalization of the classic multivariate Gaussian probit
model for studying correlated binary responses of multiple entities. DMVP
is an end-to-end learning scheme that uses an efficient parallel sampling
process of the multivariate probit model to exploit GPU-boosted deep neural
networks. We have provided theoretical and empirical guarantees of the
convergence behavior of DMVP’s sampling process. DMVP trains faster
than classical MVP, by at least an order of magnitude, captures rich correla-
tions among entities, and further improves the joint likelihood of entities
compared with several competitive models. b) The embedding of the multi-
species interactions learned by DMVP. DMVP can model interactions of
any multi entity process, assuming a multi-variate Gaussian model, as we
showed also for e.g., multi-object detection in computer vision [6].

the fine-grained bird habitat preference provided by the eBird-based
models. Bird Returns has been tremendously successful and has
created thousand of additional acres of habit for migratory birds.

In our work we are also addressing other challenges concerning
quantification and visualization of uncertainty in species prediction,
multi-scale data fusion and interpretation from multiple sensors,
incorporation of biological and ecological constraints, and models
of migration (see e.g., [29, 31–33]). Fig. 6 depicts collective graphical
models, which can model a variety of aggregate phenomena, even
though they were originally motivated for modeling bird migrations.
[5, 31]. Concerning citizen science, while it is a valuable source of
information for species distribution modeling, it also poses several
computational challenges with respect to imperfect detection, vari-
able expertise in citizen scientists [20], and spatial and temporal
sampling bias [33, 42]. Avicaching is a game that was developed to
combat sample bias in eBird submissions (Fig. 7).
To mitigate the various habitat threats encountered by species,

several conservation actions are adopted. For example, wildlife cor-
ridors have been shown effective as a way to combat habitat frag-
mentation. The design of wildlife corridors, typically under tight
conservation budgets, gives rise to challenging stochastic optimiza-
tion problems. Current approaches to connecting core conservation
areas through corridors typically consider simplistic strategies and
often the movement of a single species across a network of protected
areas. Dilkina et al. [7] propose new computational approaches for
optimizing corridors considering benefit-cost and trade-off analy-
sis for landscape connectivity conservation for multi-species. The
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Fig. 6. Collective graphical models (CGMs) are a general-purpose formalism
for conducting probabilistic inference about a large population of individuals
that are only observed in aggregate. The generality of CGMs makes them
suitable to model a range of aggregate phenomena, from bird migrations
(the initial motivating application), to differential privacy [5, 31]. Formally,
CGMs are a probabilistic model for the sufficient statistics of a graphical
model, for which incomplete and noisy observations are available. We have
contributed a number of inference and learning algorithms and theoretical
results about CGMs with surprising and beautiful connections to the theory
of belief propagation, and fast message-passing algorithms based on the
Bethe entropy have been developed. The figure depicts a high-level a repre-
sentation of a collective graphical model. Noisy and incomplete observations
y (not shown) are made of the sufficient statistics through a noise model
p(y | n), and the goals are to perform inference by computing the posterior
distribution p(n | y) and to learn the parameters θ of the individual model.

results demonstrate economies of scale and complementarities con-
servation planners can achieve by optimizing corridor designs for
financial costs and for multiple species connectivity jointly. Another
effort, integrates spatial capture-recapture models into reserve de-
sign optimization [18]. In a related effort, Fuller and collaborators
are developing a program focused on Ecuador’s Choco-Andean Bio-
logical Corridor that integrates landscape connectivity for Andean
bears and other species with economic, social and ecological infor-
mation. Ecuador’s Choco-Andean Biological Corridor comprises
two of the world’s most significant biodiversity hot-spots.

Prevention of wildlife crime is also important in conservation. In
recent years there has been considerable AI research on devising
wildlife monitoring strategies and simultaneously provide rangers
with decision aids. The approaches use AI to better understand pat-
terns in wildlife poaching and enhance security to combat poaching
(see e.g., [12]). This work is leading to research advances at the
intersection of computational and behavioral game theory and data-
driven optimization. A notable example of this research developed
so-called green security games (Fig. 7) and has led to an application
tool named Protection Assistant for Wildlife Security (PAWS) [11],
which has been tested and deployed in several countries, including
in Malaysia, Uganda, and Botswana.

Finally we mention non-native invasive species (IS), which invade
both land and water systems and dramatically threaten ecosystems’
ability to house biodiversity and provide ecosystem services. For
example, the invasion of tamarisk trees in the Rio Grande valley in
New Mexico has greatly reduced the amount of water available for
native species and for irrigation of agricultural crops. Bio-economic
models provide a basis for policy optimization and sensitivity anal-
ysis, by capturing the complex dynamics of the ecosystem, i.e., the
processes by which the invasive species is introduced to the land-
scape and it spreads, as well the costs and effects of the available
management actions. Unfortunately, often not much is known about

Fig. 7. Games for mechanism design: a) The Avicaching game incentivizes
citizen scientists to submit bird observations from under-sampled areas
[42]; Bike Angels incentivizes NYC bikers to re-balance Citi bikes [15]. b)
Green security games strategically protect natural resources (forests, fish
areas, etc) against poaching and illegal activities [11]. These games lead
to challenging bi-level stochastic optimization and learning problems in
which the game organizer needs to take into account the preferences of teh
agents (citizen scientists, bikers, or poachers) with respect to the organizer’s
actions, in order to identify the best incentive or protection strategy.

these processes, which makes it challenging to develop realistic IS
bio-economic models. [2] demonstrates the power of a stylized
simulator-defined MDP approach for tamarisk, using a complex
dynamical bio-economic model. A key challenge is to scale up the
approach and increase the realism of the bio-economic models.

Renewable and Sustainable Energy and Materials
Renewables are being integrated into the smart grid in ever in-
creasing amounts. Because renewables like wind and solar are non-
dispatchable resources, they cannot be scheduled in advance, and
alternative generation methods have to be scheduled to make up the
difference. The variability and uncertainty of renewables have also
raised the importance of energy storage (Fig. 8). However, storage is
expensive, and different storage technologies are required to meet
needs such as frequency regulation, energy shifting, peak shifting
and backup power. Storage can also be used in a variety of settings,
including grid-level storage (using central control), dedicated pairs
with utility-scale wind or solar farms, and behind-the-meter appli-
cations for companies and residences. In general, controlling energy
systems (generation, transmission, storage, investment) involves a
number of new challenging learning and optimization problems that
need to be solved in the presence of different types of uncertainty.
For example, SMART-Invest [21] is a stochastic dynamic plan-

ning model which is capable of optimizing investment decisions in
different electricity generation technologies. SMART-Invest consists
of two layers. The first is an outer optimization layer that applies
stochastic search to optimize investments in wind, solar, and stor-
age. The objective function is non-convex, non-smooth, and only
available via an expensive-to-evaluate black box function. The ap-
proach exploits approximate convexity to solve this optimization
quickly and reliably. The second layer captures hourly variations of
wind and solar over an entire year, with detailed modeling of day-
ahead commitments, forecast uncertainties and ramping constraints.
SMART-Invest produces a more realistic picture of an optimal mix
of wind, solar, and storage than previous approaches, and therefore
can provide more accurate guidance for policy makers.
Task-based model learning [8] is a general approach that com-

bines data learning and decision making (e.g, a stochastic optimiza-
tion problem) in an end-to-end learning framework, specifying a
loss function in terms of the decision-making objective. In this ap-
proach all elements of the pipeline are differentiable, and therefore
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Fig. 8. Robust planning of an efficient energy system to serve a load (build-
ing) from a wind farm (with variable wind speeds), the grid (with variable
prices), and a battery storage device is challenging. Energy storage provides
a smooth, dispatchable flow of energy, matching energy when it is generated
to loads when they arise.

it is possible to learn the model parameters to improve the closed-
loop performance of the overall system, which is a novel way to
train machine learning models, based upon the performance of
decision-making systems. Task-based model learning was inspired
by scheduling electricity generation.
Finally we highlight new sustainable materials and processes.

They provide a fundamental basis for solutions to some of the most
pressing issues in energy, as well as more general issues in sustain-
ability. In many cases, long-term solutions will depend on break-
through innovations in materials, such as the development of new
materials and processes for more efficient batteries, fuel cells, so-
lar fuels, microbial fuel cells, or for CO2 reduction. The high cost
of conventional single-sample synthesis and analysis are driving
the scientific communities to explore so-called high-throughput
experimentation to accelerate the discovery process. This set up
leads to computational challenges for designing and planning the
experiments. Furthermore, the data analysis, integration, and inter-
pretation process are key bottlenecks that are expert-labor intensive.
Current state-of-the-art machine learning techniques are not able
to produce physically meaningful solutions. Efficient computational
methods are therefore urgently needed for analyzing the flood of
high-throughput data to obtain scientific insights. We are develop-
ing techniques e.g., based on generative models, for unsupervised
learning and for providing supervision using domain knowledge
through theory-based models and simulators.
As an example, in high-throughput materials discovery, a chal-

lenging problem is the so-called phase-map identification problem,
an inverse problem in which one would like to infer the crystal
structures of the materials deposited onto a thin film, based on
the X-ray diffraction patterns of sample points. This problem can
be viewed as topic modeling or source separation, with intricate
physics constraints, since the observed diffraction pattern of a sam-
ple point may consist of a mixture of several pure crystal patterns,
some of them may not be sampled. The task is further complicated
by the inherent noise in the measurements. Human experts ana-
lyze the diffraction patterns by taking into account knowledge of
the underlying physics and chemistry of materials, but it is a very
labor-intensive task, and often it is very challenging even for hu-
man experts. This is a good example that completely defies the
current state of the art of machine learning. Phase-Mapper [4], is

Fig. 9. Multiobjective learning and optimization: In many sustainability
problems, it is critical to jointly consider multiple, often conflicting, objec-
tives. This is the case for hydropower dam planning in the Amazon basin,
with over 300 new hydropower dams proposed, which will dramatically af-
fect a variety of Amazon ecosystem services, such as biodiversity, sediment
transport, freshwater fisheries, navigation, besides energy production. The
Pareto frontier captures the trade-offs between the mutiple objectives with
respect to the different non-dominated solutions. The non-dominated solu-
tions also provide valuable information concerning the dams’ ranking. We
have developed exact dynamic-programming algorithms, fully polynomial-
time approximation schemes (FPTAS), and other approaches for computing
the Pareto frontier for tree-structured networks, with application to the
Amazon hydropower dam placement problem. For example, we can now
approximate the Pareto frontier for the entire Amazon basin (∼ 5M river
segments), with respect to four criteria (energy, river connectivity, a good
proxy for fish migrations and transportation, sediment production, and seis-
mic risk) within 10% fron the true optimal Pareto frontier containing about
500K non-dominated solutions in about 6 hours; or within 5% containing
about 2M non-dominated solutions in about 5 days. The results, combined
with visualization tools, help policy makers make more informed decisions
concerning multiple criteria and different planning geographic scales [41].

an AI platform that tightly integrates X-Ray diffraction (XRD) ex-
perimentation, AI problem solving, machine learning, and human
computation, to infer crystal structures from XRD data. In particu-
lar, Phase-Mapper integrates an efficient relaxed projection method
for constrained non-negative matrix factorization that incorporates
physics constraints, prior knowledge based on known patterns from
inorganic crystal structure databases, as well as human computa-
tion strategies. In addition we are also developing crystallography
theory-based generative models for incorporating prior knowledge.
Since the deployment of Phase-Mapper at the Joint Center for Ar-
tificial Photosynthesis, at Caltech, thousands of XRD diffraction
patterns have been processed, resulting in the discovery of new
energy materials, such as a new family of metal oxide solar light
absorbers in the previously unsolved Nb-Mn-V oxide system.We are
also developing SARA (Scientific Autonomous Robotic Agent) for
automating and encapsulating the scientific method for discovery
of new materials for clean energy. Finally, we point out a related
source separation problem, hyperspectral plant phenotyping, which
is tackled in [39] with probabilistic topic models to uncover the
hyperspectral language of plants.

Another area that can benefit dramatically from advanced AI and
machine learning methods is the planning and design of scientific
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Fig. 10. Sequential Decision Making: Motivated by his work in energy and
other applications, Powell [25] proposes a unified modeling framework,
covering several distinct fields that deal with (sequential) decisions and
uncertainty (dynamic programming, stochastic programming, stochastic
control, simulation optimization, bandit problems, etc) under a common
umbrella. The modeling framework is centered on an optimization problem
that involves searching over policies (functions for making decisions that
depend on state variables), as opposed to the more traditional problem in
deterministic optimization of searching for the best deterministic decision.
In this unified framework, there are four fundamental classes of policies
consisting of policy function approximations (PFAs), cost function approx-
imations (CFAs), policies based on value function approximations (VFAs),
and look-ahead policies. When applied to an energy storage problem, each
of the four classes of policies might work best depending on the data.

experiments. For example, Azimi et al. [3] are developing novel ma-
chine learning and constraint budgeted optimization techniques to
help scientists desgin more efficient experiments for microbial fuels
by allowing them to efficiently explore different nano-structures.
They employ Bayesian optimization with resource constraints and
production actions and have developed a new general Monte Carlo
Tree Search algorithm, with theoretical guarantees. This work also
led to a large scale empirical evaluation of Bayesian optimization
algorithms, which was motivated by the confusing landscape of
results in Bayesian optimization. The study involved implement-
ing a number of top algorithms within a common framework and
using cloud resources to run comparisons on a large number and
variety of test functions. The code for the study is publicly avail-
able (https://github.com/Eiii/opt_cmp). The main result of the study
was to show that the well-known Bayesian optimization heuristic,
Expected Improvement, performed as well as any other approach in
general and often won by significant margins. This includes beat-
ing methods such as the arguably more popular UCB algorithm.
The study found that algorithms such as UCB, which require set-
ting a parameter for controlling exploration, are very sensitive to
the parameters, making them difficult to apply widely. Expected
Improvement is parameter-free and appears to be quite robust. Ab-
delrahman et al. [1] also apply Bayesian optimization for maximum
power point tracking in photovoltaic power plants.
As a final example, Grover et al. [17] model the search for the

best charging policy for the Li-ion battery chemistry as a stochastic
multi-armed bandit with delayed feedback. They found policies that
considerably outperform current policies.

COMPUTATIONAL SYNERGIES
The previous sections highlight how computational sustainability
problems encompass a combination of distinguishing aspects that

make them unique in scale, impact, complexity, and richness, posing
new challenges and opportunities to computing and information sci-
ence, leading to transformative research directions. One of our key
goals has been to identify classes of computational problems that cut
across a variety of sustainability (and other) domains. Given the uni-
versality of computational thinking, findings in one domain can be
transferred to other domains. Examples of high-level cross-cutting
computational themes, some of them depicted in Fig. 3, include
spatio-temporal modeling, and prediction for, e.g., bird conservation,
poverty mapping, and weather mapping; sequential decision making
for managing (renewable) resources, designing scientific experi-
ments, managing invasive species, and pastoralism interventions;
pattern decomposition with complex constraints for, e.g., phase map
identification in materials discovery, identification of elephant and
bird calls from audio recordings, inferring plant phenotypes from
hyperspectral data and scientific topic modeling; active learning
and optimal learning, e.g., for scientific experimentation and sensor
placement, including citizen science, and crowdsourcing, and game
theory and mechanism design for providing incentives for citizen
scientists, placing patrols and drones to combat poaching and illegal
fishing, or incentivizing bikers to balance bike stations.

We believe that pursuing research in core or paradigmatic cross-
cutting computational problems is a sine qua non condition to ensure
the cohesiveness and growth of Computational Sustainability as a
field, so that researchers develop general models and algorithms
with application in different sustainability and other domains. Our
experience shows that these core problems naturally emerge out of
real-world sustainability-driven projects, approached with the per-
spective of lifting solution approaches to produce general method-
ologies, as opposed to only solving specific problems.
Planning for a sustainable future encompasses complex inter-

disciplinary decisions for balancing environmental, economic, and
societal needs, which involve significant computational challenges,
requiring expertise and research efforts in computing and informa-
tion science and related disciplines. Computational Sustainability
aims to develop new computational methodologies to help address
such environmental, economic, and societal challenges. Computa-
tional Sustainability is a two-way street: it injects computational
ideas, thinking, and methodologies into addressing sustainability
questions but it also leads to foundational contributions to comput-
ing and information sciences by exposing computer scientists to
new challenging problems, formalisms, and concepts from other
disciplines. Just as sustainability issues intersect an ever increasing
cross-section of emerging scientific application domains, computa-
tional sustainability broadens the scope and diversity of computing
and information science while having profound societal impact.
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