Algorithm for the Infusion Rate of Glucose During an Insulin Clamp

Jason Blohm, Nicholas Diehl, Joe Jeffrey, Sheng-Yau Lim *GlucoReg*

Refresher: Problem Statement

- In hyperinsulinemic clamp studies, Dr. Luther adjusts GIR on the fly based on his clinical judgment
- This can lead to inaccurate adjustments which can affect subject safety and data validity
- Some people claim that an algorithmic approach works, but no one Dr. Luther has talked to has been successful
- We will develop an algorithm that allows researchers to perform these studies in a more controlled manner

Refresher: Needs Assessment \rightarrow Provider

Interface

- 1. Should be simple to understand
- 2. Should include inputs for all possible variables the physician may want to change: target glucose level, insulin clamp level, demographic data, time of experiment
- 3. Given patient demographics and history, should simulate the glucose level over time, prior to clinical testing

Refresher: Needs Assessment \rightarrow Provider

Algorithm

- 1. Should calculate the amount of glucose uptake based on the constant insulin infusion rate the physician specifies
- 2. Depends on accurate glucose infusion rate
- 3. Should output a recommended glucose infusion rate that accounts for the time delay in measuring glucose level from blood sample (t-1)

Refresher: Needs Assessment \rightarrow Provider

Timing

- Runtime -- should provide physician with proper glucose infusion rate (GIR) within 10 seconds of inputting the current glucose level
- 2. Should include an easy to navigate UI for immediate data entry

Refresher: Needs Assessment → Patient

Safety

- 1. Ensure that glucose levels do not exceed or drop below safe levels, as determined by the physician
- 2. Measurements need to be taken every 5 minutes to ensure glucose levels are where they should be. If not, the program should alert the physician (future iteration)
- 3. Must run smoothly so that no bugs interrupt the program

Refresher: Needs Assessment \rightarrow System

Applicability and cost

- 1. Should be applicable to different physicians and different hospitals performing the same studies
- 2. Should be open source
- 3. Results from these studies should lower healthcare costs in the future

Gantt Chart

Glucose Regulation Algorit...

Preliminary Brainstorming Familiarization and meeting Dr. Luther Brainstorming **Preliminary Data Analysis** Data storage and sorting Database and demographic analysis Multiple regression analysis Algorithm - first round Development of algorithm - first draft Clinical testing (1) Algorithm iterations (1) Algorithm - second round Implementation of machine learning Clinical testing (2) Algorithm iterations (2) **Algorithm - Finalization** Creation of user interface

Finalization of algorithm and UI

Design day preparation

Progress: Multiple Regression Analysis

Linear regression model:

GIR ~ 1 + Height + Weight + BSA + Age + Gender + Race

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	3.2236	2.011	1.603	0.11325
Height	15.35	5.7597	2.6651	0.0094679
Weight	0.19485	0.083456	2.3348	0.022309
BSA	-20.895	8.0997	-2.5797	0.0119
Age	-0.014226	0.0054871	-2.5927	0.011498
Gender	0.14254	0.16286	0.87521	0.38433
Race	-0.32696	0.22619	-1.4455	0.15261

Progress: First Iteration

- Relying on current algorithm for first iteration of algorithm
 - GIR = ((Gd-Gi)(10)((0.19)(body weight))/((Ginf)(15)) + (((SMi-2)(Gd)(FMi-1))/Gi)
 - Gd = desired plasma glucose concentration (mg/dL), 95
 - Gi = actual plasma glucose concentration (mg/dL)
 - Body weight in kg
 - Ginf = glucose concentration in infusate (mg/mL)
 - SMi = metabolic component: SMi = (SMi-2)(FMi)(FMi-1)
 - FMi = Gd/Gi
 - Will use our linear regression model to set the initial GIR

Progress: GUI

- Will take inputs and \bullet generate a predicted GIR
- Once closed, file will save to MATLAB workspace and an excel file

Time (min)	GL (mg/dL)	GIR (mg/kg/	Insulin State
10	93	0.1700	Low Dose
15	91	0.3400	Low Dose
20	94	0.3400	Low Dose
25	91	0.5100	Low Dose

4

Example of first iteration along with GUI

MATLAB

Next Steps

- Familiarization with machine learning
 - Resources online such as the Stanford Machine Learning Course
 - Set up a meeting with professor Maithilee Kunda
- Finalize development of first iteration of algorithm
- Obtain new sources of data
- Obtain Dr. Luther's patient schedule to test algorithm

Questions?

