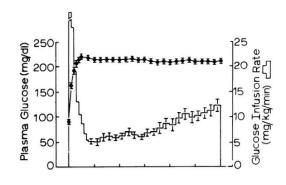
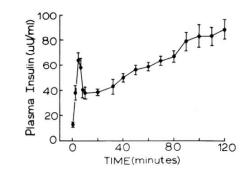
# Algorithm for the Infusion Rate of Glucose During an Insulin Clamp

Jason Blohm, Nicholas Diehl, Joe Jeffrey, Sheng-Yau Lim

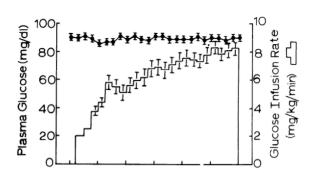

# Background: Our advisor

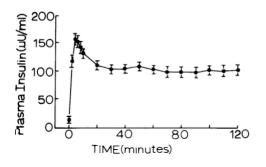

- Matt Luther, M.D.
  - Nephrologist and endocrinologist at VUMC
  - Interested in pharmacological effects on insulin secretion and insulin sensitivity in vivo
  - Hyperglycemic and hyperinsulinemic clamp studies



# Background: Hyperglycemic clamp

- Plasma glucose is raised and kept constant at 200 mg/dL
- Adjust glucose infusion rate (GIR) in order to maintain glucose levels
- Measures <u>insulin secretion</u>
- Duration: ~2 hours




Defronzo et al., 1979

# Background: Hyperinsulinemic clamp

- Plasma insulin rate is raised and held at 120 µU/mL via constant insulin infusion
- Glucose is infused and blood glucose levels are measured; GIR adjusted
- Measures <u>insulin sensitivity</u> in patient
- Duration: ~2 hours





Defronzo et al., 1979



## **Problem Statement**

- In hyperinsulinemic clamp studies, Dr. Luther adjusts GIR on the fly based on his clinical judgment
- This can lead to inaccurate adjustments which can affect subject safety and data validity
- Some people claim that an algorithmic approach works, but no one Dr. Luther has talked to has been successful
- We will develop an algorithm that allows researchers to perform these studies in a more controlled manner

## Needs Assessment: Provider

#### Interface

- 1. Should be simple to understand
- Should include inputs for all possible variables the physician may want to change: target glucose level, insulin clamp level, demographic data, time of experiment
- 3. Given patient demographics and history, should simulate the glucose level over time, prior to clinical testing

## Needs Assessment: Provider

#### Algorithm

- 1. Should calculate the amount of glucose uptake based on the constant insulin infusion rate the physician specifies
- 2. Depends on accurate glucose infusion rate
- 3. Should output a recommended glucose infusion rate that accounts for the time delay in measuring glucose level from blood sample (t-1)

## Needs Assessment: Provider

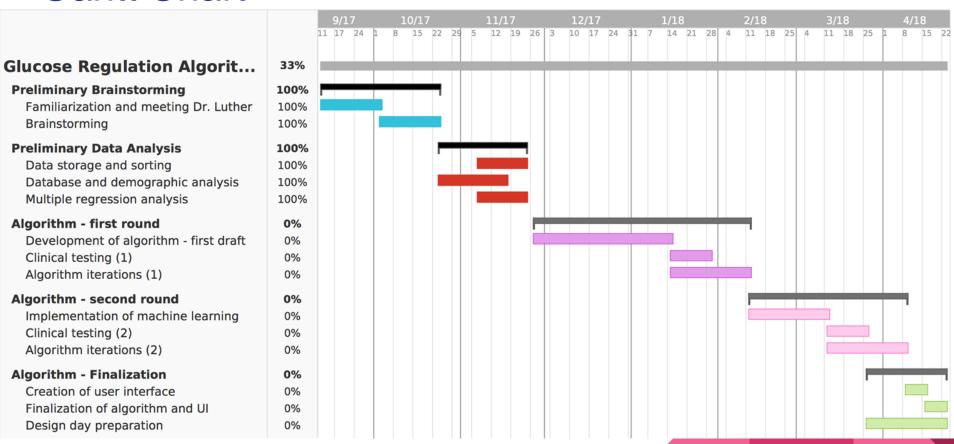
#### **Timing**

- 1. Runtime -- should provide physician with proper glucose infusion rate (GIR) within 10 seconds of inputting the current glucose level
- 2. Should include an easy to navigate UI for immediate data entry



## Needs Assessment: Patient

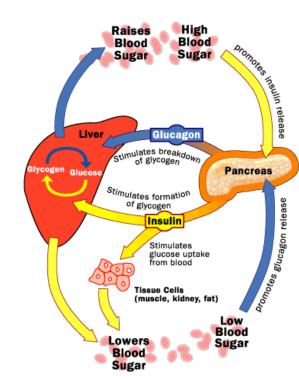
#### Safety


- 1. Ensure that glucose levels do not exceed or drop below safe levels, as determined by the physician
- 2. Measurements need to be taken every 5 minutes to ensure glucose levels are where they should be. If not, the program should alert the physician (future iteration)
- 3. Must run smoothly so that no bugs interrupt the program

## Needs Assessment: System

#### Applicability and cost

- Should be applicable to different physicians and different hospitals performing the same studies
- 2. Should be open source
- 3. Results from these studies should lower healthcare costs in future


## **Gantt Chart**



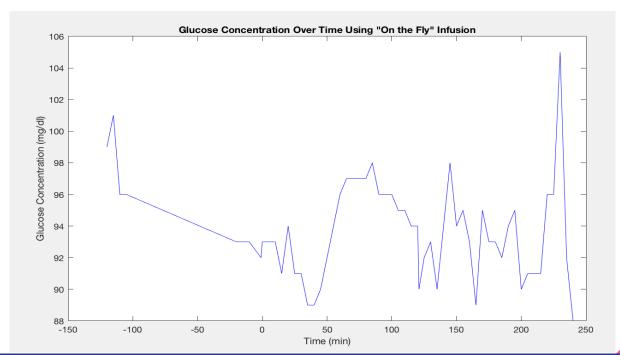
Familiarization of study aims and insulin/glucose physiology

Glucose clamp technique: a method for quantifying insulin secretion and resistance

RALPH A. DEFRONZO, JORDAN D. TOBIN, AND REUBIN ANDRES Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06510; and Clinical Physiology Branch, Gerontology Research Center, National Institute of Aging, Baltimore City Hospitals, Baltimore, Maryland 20014



Defronzo et al., 1979


### Clamp data

|    | Α  | В        | С        |       | D    | Е    | F       | G             | Н             | 1             | J              | K              | L        |
|----|----|----------|----------|-------|------|------|---------|---------------|---------------|---------------|----------------|----------------|----------|
| 1  |    | study_id | redcap_  | even  | time | gir  | glucose | insulin (***c | an mostly ign | ore because t | his data is re | corded after t | he fact) |
| 2  | 1  | 7832001  | period_: | 1_arı | -120 | 0    | 99      | NA            |               |               |                |                |          |
| 3  | 2  | 7832001  | period_: | 1_arı | -115 | 0    | 101     | NA            |               |               |                |                |          |
| 4  | 3  | 7832001  | period_: | 1_arı | -110 | 0    | 96      | NA            |               |               |                |                |          |
| 5  | 4  | 7832001  | period_: | 1_arı | -105 | 0    | 96      | NA            |               |               |                |                |          |
| 6  | 5  | 7832001  | period_: | 1_arı | -20  | 0    | 93      | NA            |               |               |                |                |          |
| 7  | 6  | 7832001  | period_: | 1_arı | -10  | 0    | 93      | 24.43804      |               |               |                |                |          |
| 8  | 7  | 7832001  | period_: | 1_arı | -1   | 0    | 92      | 30.07894      |               |               |                |                |          |
| 9  | 8  | 7832001  | period_: | 1_arı | 0    | 0    | 93      | NA            |               |               |                |                |          |
| 10 | 9  | 7832001  | period_: | 1_arı | 5    | 0.17 | 93      | 43.4504       |               |               |                |                |          |
| 11 | 10 | 7832001  | period_: | 1_arı | 10   | 0.17 | 93      | 41.34766      |               |               |                |                |          |

## Demographic data

|    | Α  | В        | С    | D           | E           | F           | G           | Н          | 1              | J             | K    | L      | M            | N    | 0           |
|----|----|----------|------|-------------|-------------|-------------|-------------|------------|----------------|---------------|------|--------|--------------|------|-------------|
| 1  | L  | study_id | aim  | redcap_ever | redcap_even | height_m_hi | weight_kg_h | bsa_m2_hie | insulin_inf_ra | insulin_inf_r | age  | gender | gender.facto | race | race.factor |
| 2  | 1  | 7832001  | Aim1 | period_1_ar | Period 1    | 1.63        | 89.7        | 2.01529568 | 20             | 80            | 62.7 | 2      | female       | 5    | White       |
| 3  | 2  | 7832001  | Aim1 | period_2_ar | Period 2    | 1.63        | 90.8        | 2.02761491 | 20             | 80            | 62.7 | 2      | female       | 5    | White       |
| 4  | 3  | 7832001  | Aim2 | period_3_ar | Period 3    | 1.62        | 95          | 2.06760731 | 20             | 120           | 65.9 | 2      | female       | 5    | White       |
| 5  | 4  | 7832001  | Aim2 | period_4_ar | Period 4    | 1.62        | 94.4        | 2.06106768 | 20             | 120           | 65.9 | 2      | female       | 5    | White       |
| 6  | 5  | 7832002  | Aim1 | period_1_ar | Period 1    | 1.7         | 111.8       | 2.29770417 | 20             | 120           | 60.6 | 2      | female       | 5    | White       |
| 7  | 6  | 7832002  | Aim1 | period_2_ar | Period 2    | 1.7         | 112.2       | 2.30181088 | 20             | 120           | 60.6 | 2      | female       | 5    | White       |
| 8  | 7  | 7832002  | Aim2 | period_3_ar | Period 3    | 1.7         | 113.8       | 2.31816498 | 20             | 120           | 60.8 | 2      | female       | 5    | White       |
| 9  | 8  | 7832002  | Aim2 | period_4_ar | Period 4    | 1.68        | 113.5       | 2.30144882 | 20             | 120           | 60.8 | 2      | female       | 5    | White       |
| 10 | 9  | 7832004  | Aim1 | period_1_ar | Period 1    | NA          | 89          | NA         | 20             | 120           | 40.8 | 2      | female       | 5    | White       |
| 11 | 10 | 7832005  | Aim1 | period_1_ar | Period 1    | 1.62        | 81.2        | 1.91154388 | 20             | 120           | 59.2 | 2      | female       | 5    | White       |

Sorted and visualized data from Dr. Luther's previous studies



# Progress: Multiple Regression Analysis

```
Linear regression model:

GIR ~ 1 + Height + Weight + BSA + Age + Gender + Race
```

Estimated Coefficients:

|             | Estimate  | SE        | tStat   | pValue    |  |  |
|-------------|-----------|-----------|---------|-----------|--|--|
|             |           |           |         |           |  |  |
| (Intercept) | 3.2236    | 2.011     | 1.603   | 0.11325   |  |  |
| Height      | 15.35     | 5.7597    | 2.6651  | 0.0094679 |  |  |
| Weight      | 0.19485   | 0.083456  | 2.3348  | 0.022309  |  |  |
| BSA         | -20.895   | 8.0997    | -2.5797 | 0.0119    |  |  |
| Age         | -0.014226 | 0.0054871 | -2.5927 | 0.011498  |  |  |
| Gender      | 0.14254   | 0.16286   | 0.87521 | 0.38433   |  |  |
| Race        | -0.32696  | 0.22619   | -1.4455 | 0.15261   |  |  |

# Next Steps

- Multiple Regression analysis on Insulin Sensitivity
- Familiarization with machine learning
  - Resources online such as the Stanford Machine Learning Course
- Develop first iteration of algorithm
- Continuous glucose monitor for more time samples and more accurate infusion rate adjustment

## Potential barriers

- Dr. Luther only runs a study once every 1-2 weeks
- Existing data set is limited
- Programming language differences

## Market Potential

- Market potential may be large
  - 5-10 researchers at VUMC alone perform similar studies and have expressed interest in an algorithm
- Open access
- Pharmacological impact
  - Dr. Luther has demonstrated that aldosterone impairs insulin secretion
  - May be interested in drugs to mediate this response
- Could ultimately benefit a patient field consisting of diabetics, obese persons, and those with endocrine imbalances

# Questions?

