# Algorithm for the Infusion Rate of Glucose During an Insulin Clamp

Jason Blohm, Nicholas Diehl, Joe Jeffrey, Sheng-Yau Lim *GlucoReg* 

### Background: Hyperinsulinemic clamp

- Plasma insulin rate is raised and held at 120  $\mu U/mL$  via constant insulin infusion
- Glucose is infused and blood glucose levels are measured; GIR adjusted
- Measures insulin sensitivity in patient
- Patients: Pre-diabetics, diabetics, those with endocrine & metabolic disorders



### **Refresher: Problem Statement**

- In hyperinsulinemic clamp studies, Dr. Luther adjusts GIR on the fly based on his clinical judgment
- This can lead to inaccurate adjustments which can affect subject safety and data validity
- Some people claim that an algorithmic approach works, but no one Dr. Luther has talked to has been successful
- We will develop an algorithm that allows researchers to perform these studies in a more controlled manner



### Refresher: Needs Assessment $\rightarrow$ Provider

Interface

- 1. Should be simple to understand
- 2. Should include inputs for all possible variables the physician may want to change: target glucose level, insulin clamp level, demographic data, time of experiment
- 3. Given patient demographics and history, should simulate the glucose level over time, prior to clinical testing



### Refresher: Needs Assessment $\rightarrow$ Provider

Algorithm

- 1. Should calculate the amount of glucose uptake based on the constant insulin infusion rate the physician specifies
- 2. Depends on actual glucose infusion rate (not suggested)
- 3. Should output a recommended glucose infusion rate that accounts for the time delay in measuring glucose level from blood sample (t-1)



### Refresher: Needs Assessment $\rightarrow$ Provider

Timing

- Runtime -- should provide physician with proper glucose infusion rate (GIR) within 10 seconds of inputting the current glucose level
- 2. Should include an easy to navigate UI for immediate data entry



### Refresher: Needs Assessment → Patient

Safety

- 1. Ensure that glucose levels do not exceed or drop below safe levels, as determined by the physician
- 2. Measurements need to be taken every 5 minutes to ensure glucose levels are where they should be. If not, the program should alert the physician (future iteration)
- 3. Must run smoothly so that no bugs interrupt the program



### Refresher: Needs Assessment $\rightarrow$ System

Applicability and cost

- 1. Should be applicable to different physicians and different hospitals performing the same studies
- 2. Should be open source
- 3. Results from these studies should lower healthcare costs in the future



### **Progress: Multiple Regression Analysis**

Linear regression model:

GIR ~ 1 + Height + Weight + BSA + Age + Gender + Race

#### Estimated Coefficients:

|             | Estimate  | SE        | tStat   | pValue    |  |
|-------------|-----------|-----------|---------|-----------|--|
| (Intercept) | 3.2236    | 2.011     | 1.603   | 0.11325   |  |
| Height      | 15.35     | 5.7597    | 2.6651  | 0.0094679 |  |
| Weight      | 0.19485   | 0.083456  | 2.3348  | 0.022309  |  |
| BSA         | -20.895   | 8.0997    | -2.5797 | 0.0119    |  |
| Age         | -0.014226 | 0.0054871 | -2.5927 | 0.011498  |  |
| Gender      | 0.14254   | 0.16286   | 0.87521 | 0.38433   |  |
| Race        | -0.32696  | 0.22619   | -1.4455 | 0.15261   |  |



### Progress: GUI

- Will take inputs and generate a predicted GIR
- Once closed, file will save to MATLAB workspace and an excel

file



### Code: GUI

#### % Plot the GIR and GL

```
plot(app.glucoseinfus, time, gir,'-o');
plot(app.glucoseconc, time, gl,'-o');
```

```
app.glucoseinfus.YLim = [0 10];
app.glucoseconc.YLim = [75 105];
```

#### % Update the time

app.CurrentTime.Value = curtime + 5;

#### % Update the Infusion Rate

app.InfusionRate.Value = prevgir;

% Button pushed function: Button function ButtonButtonPushed(app, event)

#### % Update number of button pushes

app.buttonpush.Value = app.buttonpush.Value +1; butpush = app.buttonpush.Value;

#### % initialize variables

```
studyid = app.StudyID.Value;
height = app.Height.Value;
bsa = app.BSA.Value;
weight = app.Weight.Value;
age = app.Age.Value;
prevgir = app.PrevGIR.Value;
gl one = app.GlucoseLevel1.Value;
gl two = app.GlucoseLevel2.Value;
avg_gl = mean([app.GlucoseLevel1.Value, app.GlucoseLevel2.Value]);
app.AverageGL.Value = avg_gl;
curtime = app.CurrentTime.Value;
LD = app.LowDose.Value;
```

#### % Calculate the future GIR

```
if prevgir==0 && curgl==0
    app.PredictGIR.Value = 1+ 15.35*height + .19485*weight - 20.895*bsa - age*.014226;
else
    % This is where we will put in the algorithm
    app.PredictGIR.Value = 0;
end
% Update table
app.UITable.Data{butpush,1} = curtime;
app.UITable.Data{butpush,2} = avg_gl;
app.UITable.Data{butpush,3} = prevgir;
if LD == 1
    app.UITable.Data{butpush,4} = 'Low Dose';
else
    app.UITable.Data{butpush,4} = 'High Dose';
end
```

# **Progress: Machine Learning**



### Support Vector Regression Kernels to build algorithm using scikit in Python

- Open Source
- One of the best coding languages for Machine Learning
- y0 as a function of demographics (initial infusion rate from multiple regression)
- $\circ$   $\Delta y$  as a function ONLY of  $\Delta x$  linearity, one independent variable
- cross validation



# Our pump

CareFusion BD Alaris Pump Module with Guardrails MX software suite

\*Because of proprietary and safety concerns, we do not plan on trying to interface with this pump



### Pump POC

- Syringe Pump POC
  - Kent Scientific Genie Syringe Pump
  - Glucose solution in syringe
  - Communicate from MATLAB to pump via serial communication
  - Monitor physiological signals
  - Monitor pump controls





### Pump - Serial Communication

- Communicates via text-based dialogue
  - $\circ \quad \mathsf{DIA} \to \mathsf{set} \ \mathsf{diameter} \ \mathsf{in} \ \mathsf{mm}$
  - $\circ$  RAT  $\rightarrow$  set rate
  - $\circ \quad \text{RUN} \rightarrow \text{start infuse}$
  - $\circ$  STP  $\rightarrow$  stop motor
- Wrote a C++ code with Dr. Diedrich

#### 

GenieControlDlg.cpp ~

```
CGenieControlDlg::CGenieControlDlg(CWnd* pParent /*=NULL*/)
        : CDialog(CGenieControlDlg::IDD, pParent)
{
        //{{AFX DATA INIT(CGenieControlDlg)
        m_dia = _T("");
        m_rate = _T("");
        m_volume = T("");
        m_dose = _T("");
        //}}AFX_DATA_INIT
        // Note that LoadIcon does not require a subsequent DestroyIcon in Win32
        m hIcon = AfxGetApp()->LoadIcon(IDR MAINFRAME);
}
void CGenieControlDlg::DoDataExchange(CDataExchange* pDX)
        CDialog::DoDataExchange(pDX);
        //{{AFX DATA MAP(CGenieControlDlg)
        DDX_Text(pDX, IDC_EDIT_DIA, m_dia);
        DDX_Text(pDX, IDC_EDIT_RAT, m_rate);
        DDX Text(pDX, IDC EDIT VOL, m volume);
        DDX Text(pDX, IDC EDIT DOSE, m dose);
        //}}AFX_DATA_MAP
}
BEGIN_MESSAGE_MAP(CGenieControlDlg, CDialog)
        //{{AFX MSG MAP(CGenieControlDlg)
        ON WM SYSCOMMAND()
        ON WM PAINT()
        ON WM QUERYDRAGICON()
        ON BN CLICKED(IDC BTN SEND, OnBtnSend)
        ON_BN_CLICKED(IDC_BTN_START, OnBtnStart)
        ON_BN_CLICKED(IDC_BTN_STOP, OnBtnStop)
        //}}AFX MSG MAP
END MESSAGE MAP()
```

### Pump - Serial Communication

- Can check communication in Arduino before going to MATLAB
  - Useful to verify commands before running full code
- Next step is to implement C++ code into MATLAB
  - MATLAB Instrument Control Toolbox
  - Or, compile C code into MEX



### **Gantt Chart**

Glucose Regulation Algorit...

61% **Preliminary Brainstorming** 100% Familiarization and meeting Dr. Luther 100% Brainstorming 100% **Preliminary Data Analysis** 100% Data storage and sorting 100% Database and demographic analysis 100% Multiple regression analysis 100% Algorithm - first round 84% Development of algorithm - first draft 100% Clinical testing (1) Algorithm iterations (1) 100% Algorithm - second round 16% Implementation of machine learning 40% Clinical testing (2) Algorithm iterations (2) **Pump interface** 40% Familiarization with pump/Brainstorm... 100% Prototype 90% First round of testing Prototype modification Finalization Algorithm + Pump Finalization 52% Creation of user interface 100% Finalization of algorithm, UI, and pum... 50% Design day preparation 25%

0%

0%

0%

0%

0%

0%

| 9/17 10/17              | 11/17      | 12/17         | 1/18       | 2/18       | 3/18       | 4/18    |
|-------------------------|------------|---------------|------------|------------|------------|---------|
| 11 17 24 1 8 15 22 29 5 | 12 19 26 3 | 10 17 24 31 7 | 14 21 28 4 | 11 18 25 4 | 11 18 25 1 | 8 15 22 |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            | -       |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |
|                         |            |               |            |            |            |         |

### **BMES Grant Application**

- Finalized aside from video of prototype and proof of design
- Will need a letter of support

Algorithm for the regulation of glucose infusion

Jason Blohm (B.E., 2018) Nicholas Diehl (B.E., 2018) Joseph Jeffrey (B.E., 2018) Sheng-Yau Lim (B.E., 2018)

### Vanderbilt University

Faculty Advisor: Dr. Matthew Walker Department Chair: Dr. Philippe Fauchet

### **Next Steps**

- Finalize first iteration of algorithm and use in clinical trial (not directly on patient, but side by side)
- Obtain new sources of data
- Continue working on machine learning
- Finish pump interface by implementing C++ code into MATLAB
- Continue to work on BMES grant application



### Questions?

