The Thrombectomers: Update 4

•••

By: Adithya Sivakumar, Clint Holt, Josh Bender, and Sparsh Gupta

Problem Statement

- Vacuum Thrombectomy: Procedure to remove cerebral thrombi using vacuum pressure
- There remains room for the procedure to be optimized.
 - Current success rate: 78%
- Need a physical model of the cranial cavity that accurately represents ICP, and allows pressure to be altered to determine the suction force at the tip of the catheter.

Our Theory

- Increase ICP by blocking jugular flow
 - Monro-Kellie doctrine: the cranial compartment is incompressible and the volume inside the cranium is fixed
- 2 mechanisms:
 - 1. Increase arterial pressure proximal to the clot
 - a. Allows the surgeon to pull morevacuum pressure = more suction force
 - 2. Increase blood volume distal to the clot/reduce pressure gradient across the clot
 - a. Similar to Chinese finger trap

Needs Assessment

- Model Efficacy
 - o Must accurately model and measure intracranial pressure (ICP)
 - o Must accurately model blood vessel shape and size in which the vacuum catheter will be inserted
 - o Must respond to an increase in ICP in a manner that accurately replicates physiology and anatomy
 - o Must accurately model blood flow through vessels in the brain during normal conditions as well as during elevated ICP conditions.
- Cost Efficacy
 - o Model should be reusable and affordable
- Medical Provider Compatibility
 - o Ability for physicians and students to practice thrombectomy on the model

Gantt Chart

Task	Start Date	End Date	Timeline	Hours
Overall time period	9/26	4/23		
Time Period of work for this presentation	2/7	2/21		
Meet with Dr. Froehler weekly	9/26	4/23		160
Brainstorm ideas for initial prototypes	9/26	11/30		60
Settle on initial model design	10/18	11/8		30
Order Parts	11/1	3/5		60
Build first prototype	11/14	12/8		32
Evaluate efficacy of first model	12/8	1/10		20
Improve upon first model	12/19	1/17		20
Create second prototype and iteratively improve	1/10	3/5		120
Collect and analyze data	2/7	4/7		40
Run experiments with direct aspiration catheter	2/19	3/31		30
Create System for evaluation of suction force tests	2/19	3/1		12
Finalize model	3/5	3/22		10
Put together poster for Design Day	4/1	4/23		40
If applicable begin marketing and trials	4/7	4/22		40
Present at Design Day	4/22	4/23		15

Review of Last Prototype

• Accomplishments:

- Addition of pressure gauge across occlusion
- Preliminary experiments involving relationships between intracranial pressure and arterial pressure of tubular structure.
- Use of electric pump to mimic semi-pulsatile flow in arteries.

Drawbacks:

- Lack of sealant to take care of leaks.
- Need for thinner walled tubing that is a more accurate model of the cranial arteries

Atmospheric Suction Force Tests

Current issues with pump tests

Low Sampling Rate

Imprecise Flow Rate

Endeavors in the Making

- Pursuit of thinner walled tubing
 - Communication with CELA
 - No bueno
 - Search for viable dealers
 - Construction of cloth-based tubing reservoir
 - Potential for mechanical testing to compare tubing with actual arteries.
- Methods to investigate effect of ICP on vacuum pressure
 - Inserting catheter tip into area of ICP control, then measuring negative pressure through rotating hemostatic valve.
- Looking for small strain gauge to measure catheter suction force

Hey Josh,

We do not have anything that depicts/simulates the cranial arteries. The best we have is an IV/arterial arm trainer. The tubing that is used is regular rubber tubing.

Mujtaba