Comparison of tumor microstructure derived NODDI and DTI metrics to histopathology in different grades of brain tumor

Prasanna Parvathaneni¹, Qiuting Wen^{1,2}, Joanna J. Phillips ^{4,5}, Tracy Luks¹, Soonmee Cha^{1,5}, Susan M. Chang⁵, Sarah J. Nelson^{1,3}, Janine M. Lupo¹

¹Department of Radiology and Biomedical Imaging, Univ. of California, San Francisco (UCSF), San Francisco, CA, United States, ²UCSF/UCBerkeley Joint Graduate Group in Bioengineering, Univ. of California, Berkeley, Berkeley, CA, United States, ³Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, United States, ⁴Department of Pathology, UCSF, San Francisco, CA, United States, ⁵Department of Neurological Surgery, UCSF, San Francisco, CA, United States

ISMRM 24th Scientific Meeting May 11, 2016 Singapore

Introduction

- ♦ Diffusion of water inside a voxel of brain tissue is
 - ♦ Hindered primarily by cell membrane boundaries
 - ♦ Represents the combined water diffusion in a number of compartments
- ♦ Diffusion tensor imaging (DTI):
 - ♦ Assumes single tensor with Gaussian model in each voxel
 - ♦ Allows data profiling based on white matter tract orientation

A Neurite orientation dispersion and density index (NODDI)

- Assumes a non-Gaussian biophysical model that distinguishes three types of microstructural environment: intra-neurite, extra-neurite, and CSF compartments
- ♦ Disentangles the key factors contributing to fractional anisotropy (FA)
- ♦ Provides output maps
 - $\diamond V_{ic}$ Intraneurite volume fraction
 - $\diamond V_{ec}$ Extraneurite volume fraction
 - $\diamond V_{iso}$ Isotropic volume fraction
 - ♦ ODI Orientation Dispersion Index

Alexander et al., Nov 2007

T2W (b~0)

Zhang et al., Jul 2012

NODDI Model Details

Matrices	Model	Description	Tissue
V _{iso}	Gaussian Isotropic	"Free water" compartment	CSF, fluid in cavity, edema, et al
V _{ic}	Stick Model	"Spaghetti" Compartment	Axon, dendrites, et al
V _{ec}	Gaussian Anisotropic	Everything else	Glial cells, Soma, et al
ODI	Stick Model	High: highly dispersed Low: highly parallel	

Motivation

- In gliomas, tissue structure is very heterogeneous:
 - Including axons, normal cells, tumor cells, vasculature, edema, water-bonded ulletmacromolecules etc.
 - DTI is very sensitive to the underlying tissue structure but not specific (Pierpaoli et al., 1996) ightarrow
- NODDI allows quantification of specific tissue microstructure features and may have the potential to provide meaningful biophysical indices
 - However, NODDI is a model-based approach built on normal brain, that may be limited when igodolused to characterize abnormal tissue structure
 - Recent work has shown the application of NODDI to brain tumors (Wen et al., Neuroimage Clinical ightarrow2015) to overcome the low specificity of DTI
- In this exploratory study we applied NODDI and DTI to histopathologic features in different tumor grades
 - In order to validate the diagnostic potential of these techniques \bullet

Objectives

- To evaluate NODDI and DTI imaging metrics within the T2 lesion and image-guided tissue samples of different grade gliomas by:
 - comparing derived metrics that characterize the T2 lesion with nonenhancing lesion (NEL) and contrast-enhancing lesion (CEL) among different tumor grades
 - investigating the differences in parameters between non-enhancing (NE) and contrast-enhancing (CE) tissue samples in GBMs
 - relating diffusion parameters from acquired tissue samples to histopathological features

Methods: Patient Population

Lesion Data

- 55 patients \bullet
- Median Age: 40 (20 79) \bullet
- Gender: 35 Male/20 Female \bullet

* Oligoastro with 1p19q not deleted status are considered astro-like and are grouped into Astro group for analysis

Tissue Data

- 29 patients ightarrow
- 75 tissue samples ightarrow
 - 4 necrotic spots, 44 NE, 21 CE, 6 on the border (based on T1 post-gad normalized intensity value)
- Median Age: 48 (24 79) ullet
- Gender: 17 Male/ 12 Female ullet
- Mean samples/patient: 2.81 (range 1-4) igodol

Methods: Data Processing

Methods: MR Imaging Protocol

<u>3T Scan Protocol</u>

(w/8-channel head coil)

- ♦ Calibration/Localization images
- ♦ Anatomical Imaging:
 - ♦ 3D T2 FLAIR (CUBE)
 - ♦ Ax T1 SPGR Pre- & Post-Gad
 - ♦ T1 Spin Echo (clinical)

♦ Diffusion-weighted Imaging:

- ♦ 55 DIR, b=2000
- ♦ standard SE-EPI sequence
- nominal voxel size of
 2×2×2 mm
- $\Rightarrow TE/TR/T_{acq} = 99ms/10s/91s$

Methods: Histopathology Parameters

- <u>Cellularity</u>: Mean cell number per 200x-field of view
- Tumor Score:
 - 0 = neuropil without tumor
 - \Rightarrow 1 = infiltrating margin
 - 2 = infiltrating tumor cells \diamond
 - 3 = high percentage of tumor cells \diamond
- % Tumor Nuclei

Microvascular (MV) Hyperplasia

(Marker for Angiogenesis)

0 - Delicate

1 - Simple

KI-67 (% of all cells positive for MIB-1/Proliferation)

35.5% MIB1+

Program Number: 4182

2 - Complex

7.89% MIB1+

Methods: Statistical Analysis

	Histopathology		
Outcome type	parameters	Statistical test	C
	Tumor score, Tumor grade,	Ordinal logistic	Wil
Categorical	NIV Hyperplasia	regression	
	Cellularity, % tumor nuclei,	Spearman	
Continuous	Proliferation	correlation	

P-values ≤ 0.05 were considered statistically significant in this exploratory analysis

Group differences coxon rank-sum test

N/A

Results: Example DTI/NODDI Maps by Grade

Results: DTI/NODDI Lesion Metrics by Grade

NE Lesion Median Values 1000 002 001 0

Values

Median '

Lesion

屵

DTI

0.5

- In all tumor grades, V_{ic} was reduced and V_{ec} elevated compared to NAWM, indicating lower neurite density
- ADC, FA, V_{ic}, & V_{ec} were associated with tumor grade and differentiated GBMs from lower grade tumors
- ODI & V_{iso} were associated with grade, but were not significantly different between grades

Ordinal logistic regression results:

Parameters	χ2	P-value
ADC	22.5	<0.0001
FA	6.6	<0.001
V _{ic}	28.6	<0.0001
ODI	10	<0.005
Vi _{so}	6.9	< 0.01
V _{ec}	26.3	< 0.0001

NAWM = normal appearing white matter

Median NE lesion differences by grade for Astrocytomas

NODDI

Program Number: 4182

*p<0.05 and ** p<0.005

Program Number: 4182 **Results: Relationship Between DTI & NODDI**

- \Rightarrow ADC and V_{ic} are inversely correlated
 - ♦ In NAWM relationship is linear
 - \diamond In tumor region, relationship is non-linear
- \diamond Lower grades have low V_{ic} and high ADC
- \diamond GBMs are more heterogeneous, with a wider range of both V_{ic} and ADC values depending on the location sampled

ADC and V_{ic} in Tissue Samples

Program Number: 4182 Results: Relationship Between DTI & NODDI

♦ FA and ODI are inversely correlated as expected, with lower FA indicating higher dispersion

 \diamond V_{ic} and ODI are positively correlated in all grades

Grade II Grade III Grade IV

Results: NE vs CE Tissue Samples in GBM

Median NE and CE values in DTI and NODDI parameters

- Difference between NE and CE tissue sample means is only statistically significant for FA when considering tumor score 0-3
- A trend towards lower ADC and elevated FA in CE compared to NE tissue samples could suggest \bullet more anisotropy
- Trends toward elevated V_{ic} and ODI in CE compared to NE tissue samples is consistent with lesion ightarrowanalysis in Wen et al., Neuroimage Clinical 2015 and may suggest more dispersion

Results: DTI/NODDI & MV Cellularity

- ADC and V_{ec} are negatively correlated with Cellularity while V_{ic} is positively correlated
- No association with cellularity was found in NE tissue samples or in lower grades of glioma

orrelated Ides of glioma

Results: DTI/NODDI & Tumor Score

- Within **GBM**, tumor score and % tumor nuclei are \bullet associated
 - Positively with V_{ic}
 - Negatively with V_{ec}

Tumor score			
Parameters	χ2	P-value	
V _{ic}	7.7	<0.01	
V _{ec}	-8.5	<0.05	

%tumor nuclei			
Parameters	χ2	P-value	
V _{ic}	.42	< 0.01	
V _{ec}	.41	< 0.01	

- ADC did not show any association
- This suggests that NODDI parameters may be more sensitive to malignant tumor cells than ADC
- However, across all grades of astrocytoma, ADC, ightarrow V_{ic} and V_{ec} are associated with tumor score

arameters	χ2	P-value
ADC	4.6	~0.03
V _{ic}	14.2	~0.002
V _{ec}	16	< 0.001

Results: DTI/NODDI & MV Hyperplasia

- In Astrocytoma across all \bullet grades:
 - ADC, V_{ic} and V_{ec} are \bullet associated with MV Hyperplasia
 - Significant differences were \bullet found in ADC, V_{ic} and V_{ec} between normal (0) and abnormal (1&2) vessels

******Double check Vic and Vec graphs with data

In GBM only, none of the parameters showed significant association with MV Hyperplasia ightarrow

Results: DTI/NODDI & KI-67/Proliferation

- Considering all astrocytic tumor grades:
 - V_{ic} and ODI are positively correlated
 - ADC and V_{ec} are negatively correlated
- Within **GBM**: ightarrow
 - ightarrow

Program Number: 4182

All Grades

ameters	R	P-value
ADC	-0.38	<0.005
V _{ic}	0.5	< 0.00001
V _{ec}	-0.54	< 0.00001
ODI	0.28	<0.05

GBM

ameters	R	P-value
ADC	-0.33	<0.05
V _{ic}	0.5	<0.005
V _{ec}	-0.5	<0.005

no correlation with ODI ADC, V_{ic} and V_{ec} correlated

Conclusions

- NODDI parameters are sensitive to tumor cellularity and complement the conventional DTI \bullet model metrics, although the NODDI model was not directly derived for tumor.
- V_{ic} and ADC have distinct variations within CE and NE regions that when combined can offer additional insight into the heterogeneity of tissue microstructure among brain tumors.
- ADC and NODDI parameters V_{ic} and V_{ec} were significantly correlated with brain tumor ullethistopathology.
- Although FA and ODI were very highly correlated, their association with histopathology ightarrowfeatures varied, indicating that each of these provide distinct information about the underlying tissue structure.
- Although ADC and V_{ic} were highly correlated, only V_{ic} was associated with tumor score in ulletGBM suggesting that it may be more specific to heterogeneous tumor microstructure.

Acknowledgements

Surbeck Laboratory of Advanced Imaging

Angela Jakary	Beck Olso
Marisa Lafontaine	Wendy M
Shauna O'Donnell	Adam Elkl
Evan Neil	Jason Cra
Xiaowei Zou	Yan Li

haled ne li woo Park

Funding:

NIH grants P50-CA97257 and P01CA118816

