CS 4260 and CS 5260
Vanderbilt University

Lecture on Propositional Planning

This lecture assumes that you have
* Read section 4.1, section 5.1, section 2.4, and Chapter 6 through 6.3 of Artlnt

Artlnt: Poole and Mackworth, Artificial Intelligence 2E
at http://artint.info/2e/html/ArtInt2e.html

Example 6.1 Consider a delivery robot world with mail and coffee to deliver. Assume a simplified
domain with four locations as shown in Figure 6.1

Coffee
S
kP
Features to describe states .
Sam's

RLoc Office

- Rob's location (off)
RHC

- Rob has coffee
SWC

- Sam wants coffee From Artint
MW .

- Mail is waiting Mail Lab
RHM Room (lab)

- Rob has mail (mr)
Actions o .

Explicit State-Space Representation

mc . .

— move clockwise State Action Resulting State
e . (lab, =rhc,swc, -mw,rhm) mc (mr, =rhc,swc, =mw,rhm)

- move counterclockwise
puc (lab, —rhc,swc, -mw,rhm) mcc (off, =rhc,swc, -mw,rhm)

- pickup coffee
dc (off, =rhc,swc, -mw,rhm) dm (off, =rhc,swc, -mw, =rhm)
pu';,deliver coffee (off, -rhc,swc, ~-mw,rhm) mcc (cs, —rhc,swc, -mw,rhm)

- pickup mail (off, =rhc,swc, -mw,rhm) mc (lab, —rhc,swc, ~mw,rhm)
dm

- deliver mail

An important aside

An Al uses search (e.g., DFD, BFS, HDFES, GBES, IDDEFS, A*, IDA*)

* to solve (constraint) problems (chapter 4),
* to prove theorems (chapter 5), and
* to plan actions (chapter 6) — today’s focus

Much of chapters 4 and 5 are about reasoning in “static worlds”, in which a knowledge that models
the world does not change (at least while reasoning is proceeding). We will talk more about chapter 5’s
concepts of knowledge bases, interpretations, and models week after next, but you will receive some

quiz feedback on it this week.

—

Initial State

P9, ---

N

p,gporg,pandqg,p <->gq,...

all inferences are “additive” (theorem proving)

{ What is true under these conditions?

) P&, porgq, S 1
Planning = pandq -
> P, ~q, -

S_2

~D, 4, ... ‘[P, Q, P Of q, pandq, p<>-¢, ...

s 5

S_1

"’p, ~q, ---

‘[?,q,pﬂfq,wﬂdﬁ,?@qw-peq

An explicit state-space representation can be cumbersome

* Too many states
* Fragile
* No pattern explicit

Features to describe states

RLoc

- Rob's location (4-valued)

RHC
- Rob has coffee (binary)
SWC

- Sam wants coffee (hinary)

Mw

- Mail is waiting (binary)
RHM

- Rob has mail (binary)

Actions

mc

- move clockwise
mcc

- move counterclockwise
puc

- pickup coffee
dc

- deliver coffee
pum

- pickup mail
dm

- deliver mail

State

< lab, rhc, swc, mw, rhm>

< lab, rhc, swc, mw, ~rhm>

< lab, rhc, swc, “mw, rhm>

< lab, rhc, swc, “mw, ~rhm>
< lab, rhc, ~swc, mw, rhm>

< lab, rhc, ~“swc, mw, ~rhm>
< lab, rhc, ~swc, “mw, rhm>
< lab, rhc, ~swc, “mw, ~rhm>
< lab, ~rhc, swc, mw, rhm>

Action

mc
mc
mc
mc
mc
mc
mc
mc
mc

< lab, ~rhc, ~“swc, “mw, “rhm> mc

State

(lab, —rhc,swc, ~mw,rhm)
(lab, —rhc,swc, ~mw,rhm)
(off, =rhc,swc, —-mw,rhm)
(off, =rhc,swc, =-mw,rhm)

(off, =rhc,swc, ~mw,rhm)

Action
mc
mcc
dm
mcc

mc

Adapted from Artint

Resulting State

< mr, rhc, swc, mw, rhm>

< mr, rhc, swc, mw, ~rhm>

< mr, rhc, swc, “mw, rhm>

< mr, rhc, swc, “\mw, ~rhm>
< mr, rhc, ~swc, mw, rhm>

< mr, rhc, ~“swc, mw, ~“rhm>
< mr, rhc, ~swc, “mw, rhm>
< mr, rhc, ~swc, “mw, ~“rhm>
< mr, ~rhc, swc, mw, rhm>

< mr, ~rhc, ~“swc, “mw, ~rhm>

Resulting State

(mr, =rhc,swc, ~mw,rhm)

(off, -rhc,swc, ~mw,rhm)

(off, =rhc,swc, -mw, =rhm)
(cs, —rhc,swc, =mw,rhm)

(lab, =rhc,swc, ~mw,rhm)

An aside: unstructured representations can be structured through learning

Features to describe states

RLoc

- Rob's location (4-valued)

RHC
- Rob has coffee (binary)
SWC

- Sam wants coffee (hinary)

Mw

- Mail is waiting (binary)
RHM

- Rob has mail (binary)

Actions

mc

- move clockwise
mcc

- move counterclockwise
puc

- pickup coffee
dc

- deliver coffee
pum

- pickup mail
dm

- deliver mail

State

< lab, rhc, swc, mw, rhm>

< lab, rhc, swc, mw, ~rhm>

< lab, rhc, swc, “mw, rhm>

< lab, rhc, swc, “mw, ~rhm>
< lab, rhc, ~swc, mw, rhm>

< lab, rhc, ~“swc, mw, ~rhm>
< lab, rhc, ~swc, “mw, rhm>
< lab, rhc, ~swc, “mw, ~rhm>
< lab, ~rhc, swc, mw, rhm>

Action

mc
mc
mc
mc
mc
mc
mc
mc
mc

< lab, ~rhc, ~“swc, “mw, “rhm> mc

<lab, ?V1, ?V2, ?V3, ?V4>

State

(lab, —rhc,swc, ~mw,rhm)
(lab, —rhc,swc, ~mw,rhm)
(off, =rhc,swc, —-mw,rhm)
(off, =rhc,swc, =-mw,rhm)

(off, =rhc,swc, ~mw,rhm)

mc

Action
mc
mcc
dm
mcc

mc

Adapted from Artint

Resulting State

< mr, rhc, swc, mw, rhm>

< mr, rhc, swc, mw, ~rhm>

< mr, rhc, swc, “mw, rhm>

< mr, rhc, swc, “\mw, ~rhm>
< mr, rhc, ~swc, mw, rhm>

< mr, rhc, ~“swc, mw, ~“rhm>
< mr, rhc, ~swc, “mw, rhm>
< mr, rhc, ~swc, “mw, ~“rhm>
< mr, ~rhc, swc, mw, rhm>

< mr, ~rhc, ~“swc, “mw, ~rhm>

<mr, ?V1, ?V2, ?V3, ?V4>

Resulting State

(mr, =rhc,swc, ~mw,rhm)

(off, -rhc,swc, ~mw,rhm)

(off, =rhc,swc, -mw, =rhm)
(cs, —rhc,swc, =mw,rhm)

(lab, =rhc,swc, ~mw,rhm)

Concisely represent the PUC operator and the DC operator
Adapted from Artint

State Action Resulting State

Feat tod ibe stat
catures To cescribe states <RLoc, RHC, SWC, MW, RHM> puc <RLoc, RHC, SWC, MW, RHM>

RLoc

gy 0D’ location (4-valued) <RLoc, RHC, SWC, MW, RHM> dc <RLoc, RHC, SWC, MW, RHM>

- Rob has coffee (binary)
SwcC

- Sam wants coffee (hinary)
MW

- Mail is waiting (binary)
RHM

- Rob has mail (binary)

Actions

mc

- move clockwise State Action Resulting State
e _ (lab, =rhc,swc, -mw,rhm) mc (mr, =rhc,swc, =mw,rhm)

- move counterclockwise
puc (lab, —rhc,swc, -mw,rhm) mcc (off, =rhc,swc, -mw,rhm)

- pickup coffee
dc (off, =rhc,swc, -mw,rhm) dm (off, =rhc,swc, -mw, =rhm)
pur;,dellver coffee (off, =rhc,swc, -mw,rhm) mcc (cs, —rhc,swc, =mw,rhm)

- pickup mail (off, =rhc,swc, =mw,rhm) mc (lab, —rhc,swc, ~mw,rhm)
dm

- deliver mail

Concisely represent the PUC and DC operators

Features to describe states

RLoc

- Rob's location (4-valued)
RHC

- Rob has coffee (binary)
Swc

- Sam wants coffee (hinary)
Mw

- Mail is waiting (binary)
RHM

- Rob has mail (binary)

Actions

mc

- move clockwise
mcc

- move counterclockwise
puc

- pickup coffee
dc

- deliver coffee
pum

- pickup mail
dm

- deliver mail

(lab, —rhc,swc, -mw,rhm) mc

(off, =rhc,swc, -mw,rhm) dm

(off, =rhc,swc, -mw,rhm) mc

Adapted from Artint

State Action Resulting State

<cs, ~rhc, ?V5, ?V6, ?V7> puc <cs, rhe, ?V5, ?V6, ?V7>

<off, rhc, ?V8, ?V9, ?V10> dc <off, ~rhc, ~swc, ?V9, ?V10>

Exercise: specify a simple learning algorithm to

generalize am operator description from the
explicit state space representation

Why is generalization over mc instances different? Harder?

State Action Resulting State

(mr, =rhc,swc, -mw,rhm)

(lab, =rhc,swc, -mw,rhm) mcc (off, =-rhc,swc, =-mw,rhm)

(off, =rhc,swc, -mw, =rhm)

(off, =rhc,swc, -mw,rhm) mcc (cs, —rhc,swc, =mw,rhm)

(lab, =rhc,swc, ~mw,rhm)

STRIPS representation

Features to describe states

RLoc

- Rob's location (4-valued)
RHC

- Rob has coffee (binary)
Swc

- Sam wants coffee (hinary)
Mw

- Mail is waiting (binary)
RHM

- Rob has mail (binary)

Actions

mc

- move clockwise
mcc

- move counterclockwise
puc

- pickup coffee
dc

- deliver coffee
pum

- pickup mail
dm

- deliver mail

State

<cs, ~rhc, ?V5, ?V6, ?V7>
<off, rhc, ?V8, ?V9, ?V10>

Adapted from Artint

Action Resulting State
puc <cs, rhe, ?V5, ?V6, ?V7>
dc <off, ~rhc, ~swc, ?V9, ?V10>

puc: Precondition {cs, ~rhc}; Effect {rhc}

dc: Precondition {off, rhc}; Effect {~rhc, ~swc}

mc-cs: Precondition {cs}; Effect {off}

mc-off: Precondition {off}; Effect {lab}

Mc-lab ..., mc-mr ...; mcc-cs ...; mcc-mr ...; mcc-lab ...; mcc-off ...;

pum ...; dm ...;

State

(lab, —rhc,swc, ~mw,rhm)
(lab, —rhc,swc, ~mw,rhm)
(off, =rhc,swc, —-mw,rhm)
(off, =rhc,swc, =-mw,rhm)

(off, =rhc,swc, =-mw,rhm)

Action
mc
mcc
dm
mcc

mc

Resulting State

(mr, =rhc,swc, ~mw,rhm)

(off, -rhc,swc, ~mw,rhm)

(off, =rhc,swc, -mw, =rhm)
(cs, —rhc,swc, =mw,rhm)

(lab, =rhc,swc, ~mw,rhm)

Initial State: {cs, ~rhc, swc, mw, ~rthm}

Goal State: {~swc} <CS,I' 75c,swc,mw,rhm>
puc mc OF MC-CS mecec Or mMmCC-CS
~rhm
{cs,rhc,swe,mw,rhm) {off rhc,swe,mw,rhm) {mr,rhc,swc,mw,rhm
mc
mc J mcc \ mcc
{off,rhc,swe,mw,rhm) {lab,rhc,swe,mw,rhm)

{cs,rhc,swe,mw,rhm)

dc {mr,rhc,swc,mw,rhm)

{off.rhc,swe,mw,rhm)

From Artint

(lab,rhc,swe,mw,rhm)

{cs,rhe,swe,mw,rhm

Figure 6.2 Part of the search space for a state-space planner

puc: Precondition {cs, ~thc};

Effect {rhc}

mc-cs: Precondition {cs}; <CS, rﬁc,swc,mw,WTD
Effect {off}

dc: Precondition {off, rhc};

Effect {~thc, ~swc} e mc GG
~rhm
{cs,rhc,swe,mw,rhm) {off rhc,swe,mw,rhm) {mr,rhc,swc,mw,rhm
mc
mc J mcc \ mcc
{off,rhc,swc,mw,rhm) {lab,rhc,swe,mw,rhm) — —
{cs,rhc,swe,mw,rhm)
dc {mr,rhc,swc,mw,rhm)
{off.rhc,swe,mw,rhm)
From Artint

(lab,rhc,swe,mw,rhm)

{cs,rhe,swe,mw,rhm

Figure 6.2 Part of the search space for a state-space planner

puc: Precondition {cs, ~thc}; N A depth-first forward search
Effect {rhc} Initial state

T e o)
Effect {off] {cs, rhc, swe,mw,rhm)

dc: Precondition {off, rhc};
Effect {~thc, ~swc} puc mc mcc

{cs,rhc,swe,mw,rhm) {off,rhc,swc,mw,rhm) {mr,rhc,swc,mw,rhm>

{off,rhc,swc,mw,rhm) {lab,rhc,swe,mw,rhm)

<« {cs,rhc, sp&mw,rhm)

repeated

dc {mr,rhc,swc,mw,rhm)
state
— — mc
{off,rhc,swc,mw,rhm) mec
{lab,rhc,swe,mw,rhm?
{cs,rhe,swe,mw,rhm)

Figure 6.2 Part of the search space for a state-space planner

STRIPS Operators , which I will typically write pre(op) = eff(op)
puc: {RHC = ~rhc, RLOC =cs} = {RHC = rhc}
dc: {RHC = rhc, RLOC = off} =» {RHC = ~rhc, SWC = ~swc}

mc_cs: {RLOC = cs} = {RLOC = off}

mcc_lab = {RLOC = lab} = {RLOC = off} Regression or backward planning
Goal = {~swc }
J, dc
Initial State: {cs, ~rhc, swc, mw, ~rhm}
{ off, rhc}
Goal State: {~swc}
mc_cs mcc_lab
{cs, rhc} {lab, rhc}
puc i
{cs, ~rhc}

{cs, ~rhc, swc, mw, ~“rhm}

STRIPS Operators , which I will typically write pre(op) = eff(op)

puc: {RHC = ~rhc, RLOC =cs} = {RHC = rhc}
dc: {RHC = rhc, RLOC = off} =» {RHC = ~rhc, SWC = ~swc}
mc_cs: {RLOC = cs} = {RLOC = off}

mcc_off = {RLOC = off} = {RLOC = cs}

Exercise 6.6 from text

(c) puc;mc_cs

pre(puc; mc_cs)=? eff(puc; mc_cs) =7

(d) puc; mc; dc

pre(puc;mc_cs; dc) =? eff(puc;mc_cs;dc) =7?
(e) mcc;puc;mc;dc

pre(mcc;puc;mc;dc) =? eff(mcc;puc;mc;dc) =?

Why are composite (aka macro) operators useful?

Operators that frequently occur “back-to-back™ may be useful to remember as a package

Suppose that op,, op;, and op,
occur frequently in plans that

are found through search. Then
remember op;; op;; op, identify this

composite operators preconditions
and effects, and treat like any other

\ operator during search

This can reduce the effective depth
of search, but it also increases the
effective breadth of search

Why are composite (aka macro) operators useful?

More interesting reason: macros can bridge places in the search where the heuristic is misleading

Consider this situation

]]
A C
A-on-B C-on-A]
B-on-C A-on-B A
C-on-Table B-on-Table

Use forward search, with
Initial State heuristic that counts the number
of unachieved subgoals
so, h(Initial State) = 2

Goal State

but it is necessary to use the unstack operator to remove A from B
to eventually achieve the final goal. This resulting intermediate state has an h value of 3

Actual
distance to

goal

Heuristic
(perceived)
distance to
goal

macro oper ator

“bridge”

macro operator

“bridge”

Actual
distance to
goal

Heuristic
(perceived)
distance to

goal

