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Lecture on Propositional Planning 

This lecture assumes that you have 
•  Read section 4.1, section 5.1, section 2.4, and Chapter 6 through 6.3 of  ArtInt 
 
ArtInt: Poole and Mackworth, Artificial Intelligence 2E  
            at http://artint.info/2e/html/ArtInt2e.html 



6.1       
6.1       

(cs)	

(mr)	 (lab)	

(off)	

Explicit	State-Space	Representa7on	

From	ArtInt	



An important aside 

An AI uses search (e.g., DFD, BFS, HDFS, GBFS, IDDFS, A*, IDA*)  
•  to solve (constraint) problems (chapter 4), 
•  to prove theorems (chapter 5), and 
•  to plan actions (chapter 6) – today’s focus 

Much of  chapters 4 and 5 are about reasoning in “static worlds”, in which a knowledge that models 
the world does not change (at least while reasoning is proceeding). We will talk more about chapter 5’s 
concepts of  knowledge bases, interpretations, and models week after next, but you will receive some 
quiz feedback on it this week. 

Initial State 

S_1 

p, q, … 

p, ~q, … 
S_2 

~p, q, … 

What is true under these conditions? 
p, q, p or q, p and q, p <-> q, … 
all inferences are “additive” (theorem proving) 

p, q, p or q,  
p and q,  
p <-> q, … 

p, q, p or q, p and q, p <-> q, … 

S_i 
~p, ~q, … p, q, p or q, p and q, p <-> q, … pàq 

Planning 
 



							State																					Ac7on																	Resul7ng	State		

<	lab,	rhc,	swc,	mw,	rhm>						 	mc																				<	mr,	rhc,	swc,	mw,	rhm>	
<	lab,	rhc,	swc,	mw,	~rhm>									mc																				<	mr,	rhc,	swc,	mw,	~rhm>	
<	lab,	rhc,	swc,	~mw,	rhm>									mc																				<	mr,	rhc,	swc,	~mw,	rhm>	
<	lab,	rhc,	swc,	~mw,	~rhm>					 	mc																				<	mr,	rhc,	swc,	~mw,	~rhm>	
<	lab,	rhc,	~swc,	mw,	rhm>									mc																				<	mr,	rhc,	~swc,	mw,	rhm>	
<	lab,	rhc,	~swc,	mw,	~rhm>					 	mc																				<	mr,	rhc,	~swc,	mw,	~rhm>	
<	lab,	rhc,	~swc,	~mw,	rhm>					 	mc																				<	mr,	rhc,	~swc,	~mw,	rhm>	
<	lab,	rhc,	~swc,	~mw,	~rhm>			 	mc																				<	mr,	rhc,	~swc,	~mw,	~rhm>	
<	lab,	~rhc,	swc,	mw,	rhm>									mc																				<	mr,	~rhc,	swc,	mw,	rhm>	
…	
<	lab,	~rhc,	~swc,	~mw,	~rhm>		mc																				<	mr,	~rhc,	~swc,	~mw,	~rhm>	
											
									

An	explicit	state-space	representa7on	can	be	cumbersome	
•  Too	many	states	
•  Fragile	
•  No	paGern	explicit	

(binary)	

(binary)	

(binary)	

(binary)	

(4-valued)	

Adapted	from	ArtInt	



							State																					Ac7on																	Resul7ng	State		

<	lab,	rhc,	swc,	mw,	rhm>						 	mc																				<	mr,	rhc,	swc,	mw,	rhm>	
<	lab,	rhc,	swc,	mw,	~rhm>									mc																				<	mr,	rhc,	swc,	mw,	~rhm>	
<	lab,	rhc,	swc,	~mw,	rhm>									mc																				<	mr,	rhc,	swc,	~mw,	rhm>	
<	lab,	rhc,	swc,	~mw,	~rhm>					 	mc																				<	mr,	rhc,	swc,	~mw,	~rhm>	
<	lab,	rhc,	~swc,	mw,	rhm>									mc																				<	mr,	rhc,	~swc,	mw,	rhm>	
<	lab,	rhc,	~swc,	mw,	~rhm>					 	mc																				<	mr,	rhc,	~swc,	mw,	~rhm>	
<	lab,	rhc,	~swc,	~mw,	rhm>					 	mc																				<	mr,	rhc,	~swc,	~mw,	rhm>	
<	lab,	rhc,	~swc,	~mw,	~rhm>			 	mc																				<	mr,	rhc,	~swc,	~mw,	~rhm>	
<	lab,	~rhc,	swc,	mw,	rhm>									mc																				<	mr,	~rhc,	swc,	mw,	rhm>	
…	
<	lab,	~rhc,	~swc,	~mw,	~rhm>		mc																				<	mr,	~rhc,	~swc,	~mw,	~rhm>	
											
<lab,	?V1,	?V2,	?V3,	?V4>																	 	mc									<mr,	?V1,	?V2,	?V3,	?V4>	

An	aside:	unstructured	representa7ons	can	be	structured	through	learning	

(binary)	

(binary)	

(binary)	

(binary)	

(4-valued)	

Adapted	from	ArtInt	



							State																					Ac7on																	Resul7ng	State		

Concisely	represent	the	PUC	operator	and	the	DC	operator	

(binary)	

(binary)	

(binary)	

(binary)	

(4-valued)	

Adapted	from	ArtInt	

puc	<RLoc,	RHC,	SWC,	MW,	RHM>	 <RLoc,	RHC,	SWC,	MW,	RHM>	

dc	<RLoc,	RHC,	SWC,	MW,	RHM>	 <RLoc,	RHC,	SWC,	MW,	RHM>	



							State																					Ac7on																	Resul7ng	State		

Concisely	represent	the	PUC	and	DC	operators	

(binary)	

(binary)	

(binary)	

(binary)	

(4-valued)	

Adapted	from	ArtInt	

puc	<cs,	~rhc,	?V5,	?V6,	?V7>	 <cs,	rhc,	?V5,	?V6,	?V7>	

dc	<off,	rhc,	?V8,	?V9,	?V10>	 <off,	~rhc,	~swc,	?V9,	?V10>	

Exercise:	specify	a	simple	learning	algorithm	to	
generalize	am	operator	descrip7on	from	the		
explicit	state	space	representa7on	

Why	is	generaliza7on	over	mc	instances	different?	Harder?	



							State																					Ac7on																	Resul7ng	State		

STRIPS	representa7on	

(binary)	

(binary)	

(binary)	

(binary)	

(4-valued)	

Adapted	from	ArtInt	

puc	<cs,	~rhc,	?V5,	?V6,	?V7>	 <cs,	rhc,	?V5,	?V6,	?V7>	

dc	<off,	rhc,	?V8,	?V9,	?V10>	 <off,	~rhc,	~swc,	?V9,	?V10>	

puc:	Precondi7on	{cs,	~rhc};	Effect	{rhc}	
dc:	Precondi7on	{off,	rhc};	Effect	{~rhc,	~swc}	
mc-cs:	Precondi7on	{cs};	Effect	{off}	
mc-off:	Precondi7on	{off};	Effect	{lab}	
Mc-lab	…;	mc-mr	…;	mcc-cs	…;	mcc-mr	…;	mcc-lab	…;	mcc-off	…;	
pum	…;	dm	…;	



From	ArtInt	

6.2       

~rhm	
or	mcc-cs	or	mc-cs	

Initial State: {cs, ~rhc, swc, mw, ~rhm} 
 
Goal State: {~swc} 
 



From	ArtInt	

6.2       

~rhm	

puc: Precondition {cs, ~rhc};  
         Effect {rhc} 
mc-cs: Precondition {cs};  
            Effect {off} 
dc: Precondition {off, rhc};  
       Effect {~rhc, ~swc} 



Ini7al	state	

Goal	=	[	…	~swc	…	]	

repeated	
state	

A	depth-first	forward	search	

Adapted	from	ArtInt	

6.2       

puc: Precondition {cs, ~rhc};  
         Effect {rhc} 
mc-cs: Precondition {cs};  
            Effect {off} 
dc: Precondition {off, rhc};  
       Effect {~rhc, ~swc} 



STRIPS Operators , which I will typically write  pre(op) è eff(op) 

puc:	{RHC	=	~rhc,	RLOC	=	cs}			è		{RHC	=	rhc}	
	
dc:	{RHC	=	rhc,	RLOC	=	off}		è		{RHC	=	~rhc,	SWC	=	~swc}		
	
mc_cs:	{RLOC	=	cs}		è			{RLOC	=	off}	
	
mcc_lab	=	{RLOC	=	lab}		è		{RLOC	=	off}	
	
.	.	.	

Goal	=	{	~swc	}	

{	off,		rhc	}	

dc	

{	cs,		rhc	}	

mc_cs	

{cs,	~rhc	}	

puc	

{cs,	~rhc,	swc,	mw,	~rhm}	

{	lab,		rhc	}	

mcc_lab	

Regression	or	backward	planning	

Ini7al	State:	{cs,	~rhc,	swc,	mw,	~rhm}	
	
Goal	State:	{~swc}	



STRIPS Operators , which I will typically write  pre(op) è eff(op) 

puc:	{RHC	=	~rhc,	RLOC	=	cs}			è		{RHC	=	rhc}	
	
dc:	{RHC	=	rhc,	RLOC	=	off}		è		{RHC	=	~rhc,	SWC	=	~swc}		
	
mc_cs:	{RLOC	=	cs}		è			{RLOC	=	off}	
	
mcc_off	=	{RLOC	=	off}		è		{RLOC	=	cs}	
	
.	.	.	

Exercise	6.6	from	text	
	
(c)	puc;mc_cs	
	
pre(puc;	mc_cs)	=	?					eff(puc;	mc_cs)	=	?	
	
(d)	puc;	mc;	dc	
	
pre(puc;mc_cs;	dc)	=	?				eff(puc;mc_cs;dc)	=	?	
	
(e)	mcc;puc;mc;dc	
	
pre(mcc;puc;mc;dc)	=	?			eff(mcc;puc;mc;dc)	=	?	



Why are composite (aka macro) operators useful? 

Operators that frequently occur “back-to-back” may be useful to remember as a package  

opi	

opj	

opk	

Goal	

opj	

opk	

Goal	

opi	

Suppose that opi, opj, and opk 
occur frequently in plans that 
are found through search. Then 
remember  opi; opj; opk, identify this 
composite operators preconditions 
and effects, and treat like any other  
operator during search 
 
This can reduce the effective depth 
of  search, but it also increases the  
effective breadth of  search  



Why are composite (aka macro) operators useful? 

More interesting reason: macros can bridge places in the search where the heuristic is misleading 

Consider this situation 

A	

B	

C	

C	

A	

B	

Initial State Goal State 

A-on-B 
B-on-C 
C-on-Table 

C-on-A 
A-on-B 
B-on-Table 

Use forward search, with 
heuristic that counts the number  

of  unachieved subgoals 
so, h(Initial State) = 2 

 
but it is necessary to use the unstack operator to remove A from B 

to eventually achieve the final goal. This resulting intermediate state has an h value of  3 



Heuris7c	
(perceived)	
distance	to	
goal	

Actual	
distance	to	
goal	

0	

0	



Heuristic 
(perceived) 
distance to 

goal 

Actual 
distance to 

goal 

0	

0	

macro operator 
“bridge” 

macro operator 
“bridge” 


