
CS 4260 and CS 5260
Vanderbilt University

Lecture on Propositional Planning

This lecture assumes that you have
•  Read section 4.1, section 5.1, section 2.4, and Chapter 6 through 6.3 of ArtInt

ArtInt: Poole and Mackworth, Artificial Intelligence 2E
 at http://artint.info/2e/html/ArtInt2e.html

6.1
6.1

(cs)	

(mr)	 (lab)	

(off)	

Explicit	State-Space	Representa7on	

From	ArtInt	

An important aside

An AI uses search (e.g., DFD, BFS, HDFS, GBFS, IDDFS, A*, IDA*)
•  to solve (constraint) problems (chapter 4),
•  to prove theorems (chapter 5), and
•  to plan actions (chapter 6) – today’s focus

Much of chapters 4 and 5 are about reasoning in “static worlds”, in which a knowledge that models
the world does not change (at least while reasoning is proceeding). We will talk more about chapter 5’s
concepts of knowledge bases, interpretations, and models week after next, but you will receive some
quiz feedback on it this week.

Initial State

S_1

p, q, …

p, ~q, …
S_2

~p, q, …

What is true under these conditions?
p, q, p or q, p and q, p <-> q, …
all inferences are “additive” (theorem proving)

p, q, p or q,
p and q,
p <-> q, …

p, q, p or q, p and q, p <-> q, …

S_i
~p, ~q, … p, q, p or q, p and q, p <-> q, … pàq

Planning

							State																					Ac7on																	Resul7ng	State		

<	lab,	rhc,	swc,	mw,	rhm>						 	mc																				<	mr,	rhc,	swc,	mw,	rhm>	
<	lab,	rhc,	swc,	mw,	~rhm>									mc																				<	mr,	rhc,	swc,	mw,	~rhm>	
<	lab,	rhc,	swc,	~mw,	rhm>									mc																				<	mr,	rhc,	swc,	~mw,	rhm>	
<	lab,	rhc,	swc,	~mw,	~rhm>					 	mc																				<	mr,	rhc,	swc,	~mw,	~rhm>	
<	lab,	rhc,	~swc,	mw,	rhm>									mc																				<	mr,	rhc,	~swc,	mw,	rhm>	
<	lab,	rhc,	~swc,	mw,	~rhm>					 	mc																				<	mr,	rhc,	~swc,	mw,	~rhm>	
<	lab,	rhc,	~swc,	~mw,	rhm>					 	mc																				<	mr,	rhc,	~swc,	~mw,	rhm>	
<	lab,	rhc,	~swc,	~mw,	~rhm>			 	mc																				<	mr,	rhc,	~swc,	~mw,	~rhm>	
<	lab,	~rhc,	swc,	mw,	rhm>									mc																				<	mr,	~rhc,	swc,	mw,	rhm>	
…	
<	lab,	~rhc,	~swc,	~mw,	~rhm>		mc																				<	mr,	~rhc,	~swc,	~mw,	~rhm>	
											
									

An	explicit	state-space	representa7on	can	be	cumbersome	
•  Too	many	states	
•  Fragile	
•  No	paGern	explicit	

(binary)	

(binary)	

(binary)	

(binary)	

(4-valued)	

Adapted	from	ArtInt	

							State																					Ac7on																	Resul7ng	State		

<	lab,	rhc,	swc,	mw,	rhm>						 	mc																				<	mr,	rhc,	swc,	mw,	rhm>	
<	lab,	rhc,	swc,	mw,	~rhm>									mc																				<	mr,	rhc,	swc,	mw,	~rhm>	
<	lab,	rhc,	swc,	~mw,	rhm>									mc																				<	mr,	rhc,	swc,	~mw,	rhm>	
<	lab,	rhc,	swc,	~mw,	~rhm>					 	mc																				<	mr,	rhc,	swc,	~mw,	~rhm>	
<	lab,	rhc,	~swc,	mw,	rhm>									mc																				<	mr,	rhc,	~swc,	mw,	rhm>	
<	lab,	rhc,	~swc,	mw,	~rhm>					 	mc																				<	mr,	rhc,	~swc,	mw,	~rhm>	
<	lab,	rhc,	~swc,	~mw,	rhm>					 	mc																				<	mr,	rhc,	~swc,	~mw,	rhm>	
<	lab,	rhc,	~swc,	~mw,	~rhm>			 	mc																				<	mr,	rhc,	~swc,	~mw,	~rhm>	
<	lab,	~rhc,	swc,	mw,	rhm>									mc																				<	mr,	~rhc,	swc,	mw,	rhm>	
…	
<	lab,	~rhc,	~swc,	~mw,	~rhm>		mc																				<	mr,	~rhc,	~swc,	~mw,	~rhm>	
											
<lab,	?V1,	?V2,	?V3,	?V4>																	 	mc									<mr,	?V1,	?V2,	?V3,	?V4>	

An	aside:	unstructured	representa7ons	can	be	structured	through	learning	

(binary)	

(binary)	

(binary)	

(binary)	

(4-valued)	

Adapted	from	ArtInt	

							State																					Ac7on																	Resul7ng	State		

Concisely	represent	the	PUC	operator	and	the	DC	operator	

(binary)	

(binary)	

(binary)	

(binary)	

(4-valued)	

Adapted	from	ArtInt	

puc	<RLoc,	RHC,	SWC,	MW,	RHM>	 <RLoc,	RHC,	SWC,	MW,	RHM>	

dc	<RLoc,	RHC,	SWC,	MW,	RHM>	 <RLoc,	RHC,	SWC,	MW,	RHM>	

							State																					Ac7on																	Resul7ng	State		

Concisely	represent	the	PUC	and	DC	operators	

(binary)	

(binary)	

(binary)	

(binary)	

(4-valued)	

Adapted	from	ArtInt	

puc	<cs,	~rhc,	?V5,	?V6,	?V7>	 <cs,	rhc,	?V5,	?V6,	?V7>	

dc	<off,	rhc,	?V8,	?V9,	?V10>	 <off,	~rhc,	~swc,	?V9,	?V10>	

Exercise:	specify	a	simple	learning	algorithm	to	
generalize	am	operator	descrip7on	from	the		
explicit	state	space	representa7on	

Why	is	generaliza7on	over	mc	instances	different?	Harder?	

							State																					Ac7on																	Resul7ng	State		

STRIPS	representa7on	

(binary)	

(binary)	

(binary)	

(binary)	

(4-valued)	

Adapted	from	ArtInt	

puc	<cs,	~rhc,	?V5,	?V6,	?V7>	 <cs,	rhc,	?V5,	?V6,	?V7>	

dc	<off,	rhc,	?V8,	?V9,	?V10>	 <off,	~rhc,	~swc,	?V9,	?V10>	

puc:	Precondi7on	{cs,	~rhc};	Effect	{rhc}	
dc:	Precondi7on	{off,	rhc};	Effect	{~rhc,	~swc}	
mc-cs:	Precondi7on	{cs};	Effect	{off}	
mc-off:	Precondi7on	{off};	Effect	{lab}	
Mc-lab	…;	mc-mr	…;	mcc-cs	…;	mcc-mr	…;	mcc-lab	…;	mcc-off	…;	
pum	…;	dm	…;	

From	ArtInt	

6.2

~rhm	
or	mcc-cs	or	mc-cs	

Initial State: {cs, ~rhc, swc, mw, ~rhm}

Goal State: {~swc}

From	ArtInt	

6.2

~rhm	

puc: Precondition {cs, ~rhc};
 Effect {rhc}
mc-cs: Precondition {cs};
 Effect {off}
dc: Precondition {off, rhc};
 Effect {~rhc, ~swc}

Ini7al	state	

Goal	=	[…	~swc	…]	

repeated	
state	

A	depth-first	forward	search	

Adapted	from	ArtInt	

6.2

puc: Precondition {cs, ~rhc};
 Effect {rhc}
mc-cs: Precondition {cs};
 Effect {off}
dc: Precondition {off, rhc};
 Effect {~rhc, ~swc}

STRIPS Operators , which I will typically write pre(op) è eff(op)

puc:	{RHC	=	~rhc,	RLOC	=	cs}			è		{RHC	=	rhc}	
	
dc:	{RHC	=	rhc,	RLOC	=	off}		è		{RHC	=	~rhc,	SWC	=	~swc}		
	
mc_cs:	{RLOC	=	cs}		è			{RLOC	=	off}	
	
mcc_lab	=	{RLOC	=	lab}		è		{RLOC	=	off}	
	
.	.	.	

Goal	=	{	~swc	}	

{	off,		rhc	}	

dc	

{	cs,		rhc	}	

mc_cs	

{cs,	~rhc	}	

puc	

{cs,	~rhc,	swc,	mw,	~rhm}	

{	lab,		rhc	}	

mcc_lab	

Regression	or	backward	planning	

Ini7al	State:	{cs,	~rhc,	swc,	mw,	~rhm}	
	
Goal	State:	{~swc}	

STRIPS Operators , which I will typically write pre(op) è eff(op)

puc:	{RHC	=	~rhc,	RLOC	=	cs}			è		{RHC	=	rhc}	
	
dc:	{RHC	=	rhc,	RLOC	=	off}		è		{RHC	=	~rhc,	SWC	=	~swc}		
	
mc_cs:	{RLOC	=	cs}		è			{RLOC	=	off}	
	
mcc_off	=	{RLOC	=	off}		è		{RLOC	=	cs}	
	
.	.	.	

Exercise	6.6	from	text	
	
(c)	puc;mc_cs	
	
pre(puc;	mc_cs)	=	?					eff(puc;	mc_cs)	=	?	
	
(d)	puc;	mc;	dc	
	
pre(puc;mc_cs;	dc)	=	?				eff(puc;mc_cs;dc)	=	?	
	
(e)	mcc;puc;mc;dc	
	
pre(mcc;puc;mc;dc)	=	?			eff(mcc;puc;mc;dc)	=	?	

Why are composite (aka macro) operators useful?

Operators that frequently occur “back-to-back” may be useful to remember as a package

opi	

opj	

opk	

Goal	

opj	

opk	

Goal	

opi	

Suppose that opi, opj, and opk
occur frequently in plans that
are found through search. Then
remember opi; opj; opk, identify this
composite operators preconditions
and effects, and treat like any other
operator during search

This can reduce the effective depth
of search, but it also increases the
effective breadth of search

Why are composite (aka macro) operators useful?

More interesting reason: macros can bridge places in the search where the heuristic is misleading

Consider this situation

A	

B	

C	

C	

A	

B	

Initial State Goal State

A-on-B
B-on-C
C-on-Table

C-on-A
A-on-B
B-on-Table

Use forward search, with
heuristic that counts the number

of unachieved subgoals
so, h(Initial State) = 2

but it is necessary to use the unstack operator to remove A from B

to eventually achieve the final goal. This resulting intermediate state has an h value of 3

Heuris7c	
(perceived)	
distance	to	
goal	

Actual	
distance	to	
goal	

0	

0	

Heuristic
(perceived)
distance to

goal

Actual
distance to

goal

0	

0	

macro operator
“bridge”

macro operator
“bridge”

