
Exam 1 CS x260 Name: _________________KEY________________________________

I will not use a source other than my brain on this exam (not neighbors, not notes, not books, etc):

 __ (please sign)

1. Consider the search graph below. The h value of a node is given adjacent to that node. The actual cost of traversing an arc is
given adjacent to that arc. Node S is the start/initial state. Nodes G1 and G2 are goals. Leaf states/nodes have no successors.
These same conditions apply to all parts of question 1.

a) (1 pt) Is h consistent? Yes or No. Explain.

b) (2 pts) Is h admissible? Yes or No. Explain.

S	

A	 B	 C	

I	 G2	F	 H	D	 E	 G1	

7	

2	

0	

5	 1	

1	4	 5	2	 1	 0	

3	 2	

1	 4	7	 5	

5	

4	 1	
4	

3	minutes	

No,. To be consistent, the f() value should never decrease along any path, but (for example) the f() value of
S is 7, and the f() value of A is 5 (and/or of C is 6).	

Yes. There is NO node at which the h() value overestimates the cost to the nearest goal node. (Technically, to
be consistent, h() must be admissible too, but observation probably won’t be referenced in the explanation of 1a). 	

Grade each component all or nothing

More on Consistency of heurstic

 To be consistent, the f() value should never decrease along any path.	

A

B

f(A) = cost(A) + h(A)

f(B) = cost(B) + h(B)

cost(B) – cost(A)

If f(A) > f(B) (i.e., consistency rule is violated), then
 cost(A) + h(A) > cost(B) + h(B)
 è cost(A) + h(A) - h(B) > cost(B)
 è h(A) - h(B) > cost(B) - cost(A) intuitively, the heuristically-estimated cost between A and B is
 greater than the actual cost between A and B; the heuristic can
 is misleading in such places, and can be viewed as
 “overestimating” the cost between two arbitrary states

1 continued

d) (3 pts) Give the order in which nodes are visited (i.e., checked for goalness) by lowest cost-first search.

e) (3 pts) Give the order in which nodes are visited (i.e., checked for goalness) by greedy best-first search.

c) (3 pts) Give the order in which nodes are visited (i.e., checked for goalness) by heuristic depth first search. In the case
of two or more nodes with the same evaluation score on the frontier, break the tie by visiting the nodes in alphabetical order
as labeled above – this same convention applies to the remaining parts of this question.

S	

A	 B	 C	

I	 G2	F	 H	D	 E	 G1	

7	

2	

0	

5	 1	

1	4	 5	2	 1	 0	

3	 2	

1	 4	7	 5	

5	

4	 1	
4	

4	minutes	

The frontier is a stack, which each local set of neighbors pushed so that the least h() value local neighbor is popped next. The
H() values of each node are shown in parentheses.
 S(7), C(1), G2(0)

The frontier is a priority queue, organized by cost() values. The cost() values of each node are shown in parentheses.

 S(0), B(2), A(3), E(4), C(5), I(6), D(7), G1(7)

The frontier is a priority queue, organized by h() values. The h() values of each node are shown in parentheses.

 S(7), C(1), G2(0)

For each of these you can
stop at first goal found,
but we should not take
points off if you keep
searching

In this case, greedy best-first search and heuristic depth first search give the same answer.
In the future you would likely see an exam in which they were distinguished	

-1 for each node missing or out of
order; -1 for each extra node (except
for extra nodes after first goal)

1 continued

f) (3 pts) Give the order in which nodes are visited (i.e., checked for goalness) by A*.

S	

A	 B	 C	

I	 G2	F	 H	D	 E	 G1	

7	

2	

0	

5	 1	

1	4	 5	2	 1	 0	

3	 2	

1	 4	7	 5	

5	

4	 1	
4	

3	minutes	

The frontier is a priority queue, organized by cost() + h() = f() values. The f() values of each node are shown in parentheses.

 S(7), A(5), E(5), C(6), B(7), G1(7)

-1 for each node missing or out of
order; -1 for each extra node (except
for extra nodes after first goal)

State s h(s)
 S 5
 A 4
 B 4
 C 7
 D 1
 E 4
 G 0

2. (1 pt) Use this search graph (together with actual costs that label arcs, and the heuristic estimates in the table to the
bottom left), as necessary, to answer this question. S is the start state and G is the only goal. This problem is worth
1 point – save it for last.

In question 1 you indicated the order in which states were visited, but the generic search
algorithm in the book associates a path with each state removed from the frontier. In this
question your answer will be a path. For example, a depth first search would return path
SàAàBàDàEàG (assuming we break ties on the frontier alphabetically as labeled).

What path would iterative deepening A* return?

To answer this question, you didn’t have to understand the details of how IDA* operated. You just had to understand that when
the heuristic is admissible, IDA*, like A*, will return the least cost path. In the future you might have to truly simulate IDA*

 SàAàBàDàG (cost of 11, which doesn’t need to be stated)

No time estimate was given on this problem, because it might have varied between 15 seconds and several minutes

all or nothing

3. Consider the propositional knowledge base, KB:

p ß q ∧ r ∧ s

q ß y ∧ u

m ß y ∧ z

y ß m

z ß m

z ß r ∧ x

s ß w

r

w

y

u

a) (3 pts) Give a bottom-up proof of p, or explain why no such proof exists

b) (3 pts) Give a top-down proof of m, or explain why no such proof exists

d) (3 pts) Give a proof of s by contradiction using resolution (aka a resolution refutation
proof). Convert any elements of the KB into clause form, as needed for this demonstration,
and give the converted clauses.

5	minutes	

consequence set
 r
 w (could list y and u here too, instead of below)
 s follows from, w, sßw
 y
 u
 q follows from y, u, qßy ∧ u
 p follows from q, r, s, pß q ∧ r ∧ s

No proof, top down or otherwise

M isn’t an axiom, and there is
•  only one rule to conclude m,
•  which in turn requires z, and
•  z requires x (because z ß m would lead to infinite looping)
•  but x is not an axiom and there is no rule for concluding x

~s (negate the hypothesis)
s ∨ ~w (convert sßw to clause normal form)
~w (follows from resolving ~s with s ∨ ~w)
w (axiom)
{} empty set, contradiction (follows from
 resolving ~w with w)

~s s∨~w w

 ~w

 {}

Need not list axioms
explicitly in consequence set,
but -1 for each inference step
missing. Extra inference
steps ok, if valid inferences

Explanation can be briefer than this and
can be correct (e.g., “no way to prove z”, which I
would accept”)

Either form

4. Consider the following (feature-based) STRIPS-style operators:

Op1: precondition [p, q];
 effects [~p, r]

Op2: precondition [q, r]
 effects [~q, ~r, s]

Consider the goal to achieve is [r, q, w] and the initial state of the world is [p, s, w].

(a) (3 pts) Expand the start state of a regression planner, when run on this problem, giving the IMMEDIATE CHILDREN
of the start state in the regression planner search:

 [r, q, w]
 Op1 (will add r, Op2 (effects not consistent with goal)
 and ~p]

 [p, q, w] only answer

(b) (2 pts) Of the two planning strategies, progression (forward) and regression (backward), which would you rely on to give
you the quickest idea of what the “world” circumstances must be like if the planner is to achieve its goals:

____regression (backward)_____________ ?

Which would give you the quickest idea of the way that the “world” circumstances can be in the near term:

____progression (forward)_______________________ ?

4	minutes	

1 pt each

-1 for an extra answer

This doesn’t play a role in this particular example,
 since search only extends one level

5. Consider the following macro/composite operator in STRIPS notation – this is a block stacking application of the type
seen in lecture.
 Unstack-A-B PutDown-A Pickup-B Stack-B-C

on-A-B ~on-A-B holding-A ~holding-A onTab-B ~ onTab-B holding-B ~holding-B
clear-A ~clear-A clear-A clear-B ~clear-B clear-C ~clear-C
handEmpty ~handEmpty handEmpty handEmpty ~handEmpty handEmpty
 holding-A onTable-A holding-B clear-B
 clear-B on-B-C

Preconditions Effects Preconditions Effects Preconditions Effects Preconditions Effects

The basic operators making up the composite operator are labeled along the top (Unstack-A-B, PutDown-A, Pickup-B, Stack-
B-C), with preconditions of each given below the operator name and to the left; effects to the right.

a) (2 pts) Give the preconditions of this macro/composite operator

 on-A-B, clear-A, handEmpty (preconditions of first operator)
 + onTab-B (not added prior to Pickup-B)
 + clear-C (not added prior to Stack-B-C)

b) (2 pts) Give the effects of this macro/composite operator. You need only list un-negated effects (because we can

build in a KB that allows reason from un-negated propositions to obtain the relevant negated propositions. For example,
handEmpty à ~holding-A; handEmpty à ~holding-B; …; on-A-B à ~clear-B; on-B-C à ~clear-C, …)

clear-B, on-B-C (added by last operator and not present at beginning of composite operator; handEmpty not an effect)
 + onTable-A (added by PutDown-A, not subsequently removed/negated, and not originally present)

5	minutes	
-0.5 pt for each missing answer, and extra answer
(but if they include extra negated answers, its ok)

-0.5 pt for each missing answer, and extra answer

6. Consider a CSP with the variables X, Y, Z, each with domain {1, 2, 3, 4}. Suppose the constraints are X > Y and Y > Z.

a) (3 pts) Draw the constraint network after applying the generalized arc consistency (GAC) algorithm to this CSP.

b) (3 pts) Eliminate variable Y in the network of part (a) -- that is, assuming the reduced domains obtained through the GAC

algorithm. Show the new constraint on X and Z that results. We will try to grade this so that we minimize the cascading
of errors (i.e., if you get part a wrong).

10	minutes	

X	{3,4}	 X>Y	 Y	{2,3}	 Y>Z	 Z	{1,2}	

X	>	Y	
3				2	
4				2	
4				3	

Y	>	Z	
2				1	
3				1	
3				2	

X				Y				Z	
3				2				1	
4				2				1	
4				3				1	
4				3				2	

or	simply		

X				Z	
3				1	
4				1	
4				2	

-0.5 pt for each missing answer answer from the domain of any variable. Be
forgiving if the boxes and circles aren’t explicitly shown, but the network
structure should be clear

-0.5 for any missing element of either column

Intensional description: X > Z+1, but not answer I am looking for

6. Consider a CSP with the variables X, Y, Z, each with domain {1, 2, 3, 4}. Suppose the constraints are X > Y and Y > Z.

a) (3 pts) Draw the constraint network after applying the generalized arc consistency (GAC) algorithm to this CSP.

 (X,X>Y) eliminate 1 from Domain(X) since 1 has no corresponding elements in Domain(Y) X = {1, 2, 3, 4}
 (Y,X>Y) eliminate 4 from Domain(Y) since 4 has no corresponding elements in Domain(X) Y = {1, 2, 3, 4}
 (Y,Y>Z) eliminate 1 from Domain(Y) since 1 has no corresponding elements in Domain(Y) Y = {1, 2, 3, 4}
 (X,X>Y) revisit because of change to Domain of Y – eliminate 2 from Domain(X) X = {1, 2, 3, 4}
 (Z,Y>Z) eliminate 3 and 4 from Domain(Z) Z = {1, 2, 3, 4}

10	minutes	

X	{3,4}	 X>Y	 Y	{2,3}	 Y>Z	 Z	{1,2}	

Showing work

“All of the previously consistent arcs that could, as a result of pruning X have become inconsistent are placed
back into the set to do. These are the arcs <Z, c’>, where c’ is a constraint different from c that involves, and
Z is a variable involved in c’ other than X.” (section 4.4 of Poole and Mackworth, 2nd Edition)

7.(a) (1 pt) Suppose that you have a search tree with a (maximum) branching factor of B. How many nodes will BOUNDED
depth-first search generate and place on the frontier in the worst case if the depth bound is D. Assume that when a node is
expanded, all of its children are generated and placed on the Frontier (aka fringe) at once. Give an exact answer (not an O-
notation expression), but you need not “simplify” your answer. Write clearly!

B^0 + B^1 + B^2 + . . . + B^D = Σi=0 B^i = (B^(D+1) – 1)/(B-1)

(b) (1 pt) Give the asymptotic TIME complexity (big-O expression) of a bounded depth-first search as a function of D and
B assuming that time is proportional to number of states generated.

O(B^D)

(c) (1 pt) Give the asymptotic SPACE complexity (big-O expression) of a bounded DFS as a function of D and B assuming
that space is proportional to the maximum number of states that must be retained in memory simultaneously.

O(BD) or O(B*D)

(d) (1 pt) Give the asymptotic TIME complexity (big-O expression) of a BREADTH-FIRST SEARCH (BFS) as outlined
above (branching factor B to depth D) assuming that time is proportional to number of states generated.

O(B^D)

(e) (1 pt) Give the asymptotic SPACE complexity (big-O expression) of a BFS as outlined above (branching factor B, max
depth D) assuming that space is proportional to the maximum number of states that must be retained in memory
simultaneously, as a function of D and B.

O(B^D)

5	minutes	

All or nothing for each component
D	

7.(a) (1 pt) Suppose that you have a search tree with a (maximum) branching factor of B. How many nodes will BOUNDED
depth-first search generate and place on the frontier in the worst case if the depth bound is D. Assume that when a node is
expanded, all of its children are generated and placed on the Frontier (aka fringe) at once. Give an exact answer (not an O-
notation expression), but you need not “simplify” your answer. Write clearly!

B^0 + B^1 + B^2 + . . . + B^D = Σi=0 B^i = (B^(D+1) – 1)/(B-1)

(b) (1 pt) Give the asymptotic TIME complexity (big-O expression) of a bounded depth-first search as a function of D and
B assuming that time is proportional to number of states generated. B is considered a constant

(B^(D+1) – 1)/(B-1) (B^(D+1) – 1)/B) = B^D – 1/B = O(B^D)

(c) (1 pt) Give the asymptotic SPACE complexity (big-O expression) of a bounded DFS as a function of D and B assuming
that space is proportional to the maximum number of states that must be retained in memory simultaneously.

O(BD) or O(B*D)

5	minutes	

D	

.	.	.	

B0	nodes	

B1	nodes	

B2	nodes	

BD	nodes	

.	.	.	

.	.	.	

.	.	.	 B-1	nodes	from	level	1	on	fronKer,	which	is	a	stack	

.	.	.	

.	.	.	

B-1	nodes	from	level	2	

B	nodes	from	level	D	

Taken from
Poole and Mackworth,
Artificial Intelligence

15	minutes	

8.
4
pts)

<[welcome,robots],	[]>	

<[robots],	[seg0]>	 <[],	[seg2]>	
saKsfies	goal	

10	min	 50	min	

<[],	[seg0,	seg4]>	saKsfies	goal	

50	min	

Answer to question 8 here

<	[welcome,	skiing,	robots],	[]	>	

<[skiing,	robots],	[seg0]>	 <[skiing],	[seg2]>	

10	min	 50	min	

<[],	[seg0,	seg4]>		
saKsfies	goal,	cost	of	60	
This	goal	and	its	path	are	
returned	

50	min	

<[robots],	[seg0,	seg1]>	

30	min	

<[],	[seg0,	seg1,	seg2]>	

both seg0 and seg2
cover ‘welcome’,
and this might be a
constraint violation,
but not relevant to
this problem

<[],	[seg0,	seg1,	seg4]>	

50	min	 50	min	

<[],	[seg2,	seg1]>	 <[],	[seg2,	seg4]>	

30	min	 50	min	

1	

2	

3	

4	

5	

The question asks for the “search space expanded”, which implies all the nodes above, but if only those nodes
“visited” are given (removed from Frontier), that would be acceptable this time.

Numbers 1-5 give the order in which nodes are removed from Frontier,
checked for goalness, and expanded

-1 for any missing or extra node among 1-5, and their ancestors

9. (2 pts) An anytime algorithm continues to search for solutions even after the first solution, and subsequent
solutions, are found. It is called “anytime” because it can output (or execute) the best solution found so far, any
time a solution is required. Unfortunately, there is often a penalty associated with waiting to output/execute a
solution, which the agent may not know about. This graph, taken from an Example by Poole and Mackworth (our
textbook), illustrates that the quality of solutions found through reasoning increase with time by the top-most
dashed line (we assume that the agent remembers and can output the best solution found so far, so this line will
never decrease). But the quality of solutions implied by this line don’t take into account the cost of waiting to act
on the solution. The bottom-most dotted line shows the penalty associated with waiting to act on a solution.

a) Put an ‘X’ along the timeline at the point where it is best for the agent to take action on the best solution found
so far (even if the agent doesn’t necessarily know that the time you indicate is best)

b) If the agent remembered solutions found on prior searches, how could these remembered solutions be used to
increase the agent’s performance when the same problems were encountered again?

The prior solutions could be offered up more quickly, and acted on, so that the penalty did not diminish their
effects as much. 3	minutes	

X	
All or nothing for each component

More on anytime algorithms

Suppose this is changed from
a termination step, to a step
that adds the solution to a set
of solutions continues
searching

Add <n0,…,nk> to set of solutions

+ set of solutions implemented as priority queue organized by solution “quality”

Initialize set of solutions

converted to anytime algorithm

This algorithm would run “forever” or whenever the state space was fully enumerated.

What characteristics are important in an anytime algorithm, since all solutions will be enumerated in any case?
 We want high quality solutions found earlier in the search!

else

Q
ua

lit
y

of
 s

ol
ut

io
n

(p
er

ha
ps

 th
e

in
ve

rs
e

of
 c

os
t i

f
ch

ea
pe

r i
s

be
tte

r)

Time

★	
★	

★	
★	

★	

★	

★	★	 ★	

★	

★	

★	

★	

★	

★	

★	

★	

★	

★	

★	
★	

★	
★	

★	
★	★	 ★	

★	
★	

★	★	

Q
ua

lit
y

of
 s

ol
ut

io
n

(p
er

ha
ps

 th
e

in
ve

rs
e

of
 c

os
t i

f
ch

ea
pe

r i
s

be
tte

r)

Time

★	
★	

★	
★	

★	

★	

★	★	 ★	

★	

★	

★	

★	

★	

★	

★	

★	

★	

★	

★	
★	

★	
★	

★	
★	★	 ★	

★	
★	

★	★	

Best-so-far never decreases

★	
★	★	

★	

We want something available that is very good, very fast, even if better solutions
might trickle in, characterized by rapidly diminishing returns

Q
ua

lit
y

of
 s

ol
ut

io
n

(p
er

ha
ps

 th
e

in
ve

rs
e

of
 c

os
t i

f
ch

ea
pe

r i
s

be
tte

r)

Time

★	
★	

★	
★	

★	

★	

★	★	 ★	

★	

★	

★	

★	

★	

★	

★	

★	

★	

★	

★	
★	

★	
★	

★	
★	★	 ★	

★	
★	

★	★	 ★	
★	★	

★	

We want something available that is very good, very fast, even if better solutions
might trickle in, characterized by rapidly diminishing returns

Ideal:	best	soluKons	tend	to	be	found	quickly	

Ideal:	rapidly	diminishing	returns	

