CS 4260 and CS 5260

Vanderbilt University

Lecture on Adversarial Search in Games

This lecture covers material in optional reading from section 11.3 of ArtInt

ArtInt: Poole and Mackworth, Artificial Intelligence 2E at http://artint.info/2e/html/ArtInt2e.html to include slides at http://artint.info/2e/slides/ch04/lect1.pdf

In game of Othello black moves first, but where?

Search ahead

Game ends when no player has a move

Douglas H. Fisher

Three move (or ply) lookahead

$5-2=3$

Using simple difference utility function doesn't discriminate at shallow levels

Some squares are more important than others

Use a difference of weighted sums

Use weighted utility function

Douglas H. Fisher

So is this the best path?
Does it dictate the best move?

Probably not! Opponent won't cooperate

Assumptions: larger scores better for player (Max). smaller scores better for opponent (Min) utility function is rational

Minimax search with no pruning

Minimax search with no pruning

Minimax search with no pruning

All this reasoning is going on in "mind" of AI about to move

Is there any need to examine this node (i.e., game board)?

No - the maximizing player will not move in that direction anyways

Minimax search with (apha beta) pruning

Take middle move

This slide is specific to sample Othello code - you won' be examined on it! This is a C implementation of a variation on a Lisp version by Peter Norvig in "Artificial Intelligence Programming" 1992, Morgan Kaufmann Publishers

Similarly, the upperbound established in minchoice must be compared to the lowerbound established in maxchoice in order to do alphabeta pruning.

This slide is specific to sample Othello code - you won' be examined on it!

This slide is specific to sample Othello code - you won' be examined on it!

Finally, remember that in Othello, player \mathbf{i} may not have any legal moves, so the other player, \mathbf{k}, continues to move until player \mathbf{i} can once again move. As a result, minchoice will sometimes call minchoice and maxchoice will sometimes call maxchoice.

If you run roundrobin with the current code (minmax with no pruning), then be prepared to wait quite a while. The following will eventually materialize (which I have indented for a bit better readability):
random wins=1 boards=0 random wins=2 boards=0 random wins $=0$ boards $=0$ random wins $=3$ boards $=0$ random wins $=1$ boards $=0$ random wins $=0$ boards $=0$ diff/1 wins=0 boards=1799 diff/1 wins=0 boards=1763 diff/1 wins=4 boards=2134 diff/1 wins=2 boards=2038 diff/1 wins=0 boards=1736 diff/3 wins=3 boards=200450 diff/3 wins=3 boards=202781 diff/3 wins=1 boards=208165 diff $/ 3$ wins=1 boards=174285 diff/5 wins=2 boards=18595500 diff/5 wins=4 boards=19102429 diff/5 wins=0 boards=16349918 wdiff/1 wins=0 boards=2311 wdiff/1 wins=1 boards=1944 wdiff/3 wins=1 boards=234330

```
diff/1 wins=9 boards=1824
diff/3 wins=8 boards=174938
diff/5 wins=10 boards=14970716
wdiff/1 wins=7 boards=2455
wdiff/3 wins=9 boards=293989
wdiff/5 wins=10 boards=33035881
diff/3 wins=10 boards=155657
diff \(/ 5\) wins \(=10\) boards= \(=16361232\)
wdiff/1 wins=6 boards=2397
wdiff/3 wins=7 boards=268585
wdiff \(/ 5\) wins \(=10\) boards \(=24682590\)
diff/5 wins=6 boards=19828063
wdiff/1 wins=7 boards=2301
wdiff/3 wins=9 boards=242318
wdiff \(f / 5\) wins=9 boards=26257282
wdiff/1 wins=8 boards=2383
wdiff/3 wins=5 boards=202807
wdiff \(/ 5\) wins=10 boards=22520544
wdiff/3 wins=10 boards=292058
wdiff/5 wins=9 boards=29422051
wdiff/5 wins=8 boards=28452315
```

Each line above shows the results of 10 matches against two strategies. For example, the last line shows the results of the strategy using $3-\mathrm{ply}$ lookahead with weighteddiffeval (wdiff/3) as the utility function against 5-ply lookahead with the same utility function (wdiff/5). Over 10 games, wdiff/5 wins 8 , wdiff/3 wins 1 , and there is one tie. Over 10 games, wdiff/5 (in this last case) generates $28,452,315$ boards (or an average of $2,845,232$ boards generated per game)!
random wins $=1$ boards $=0$ random wins $=2$ boards $=0$ random wins $=0$ boards $=0$ random wins $=3$ boards $=0$ random wins $=1$ boards $=0$ random wins $=0$ boards $=0$ diff1 wins=0 boards=1799 diff1 wins=0 boards=1763 diff1 wins=4 boards=2134 diffl wins=2 boards=2038 diff1 wins $=0$ boards $=1736$ diff 3 wins=3 boards=59175 diff 3 wins $=3$ boards=51624 diff3 wins=1 boards=58869 diff 3 wins=1 boards $=48521$ diff5 wins $=2$ boards $=1142881$ diff5 wins=4 boards=1063738 diff5 wins $=0$ boards=1124236 wdiff1 wins=0 boards=2311 wdiff1 wins=1 boards=1944 wdiff3 wins=1 boards=80708
diffl wins=9 boards=1824
diff3 wins=8 boards $=44887$
diff5 wins=10 boards=944422
wdiff1 wins=7 boards=2455
wdiff3 wins=9 boards=97418
wdiff5 wins=10 boards $=2839502$
diff3 wins=10 boards=44741
diff5 wins=10 boards $=1038063$
wdiff1 wins=6 boards=2397
wdiff3 wins $=7$ boards $=90605$
wdiff5 wins=10 boards=2643711
diff5 wins=6 boards=1160722
wdiff1 wins=7 boards=2301
wdiff3 wins=9 boards=84970
wdiff5 wins=9 boards=2947041
wdiff1 wins=8 boards=2383
wdiff3 wins=5 boards=76715
wdiff5 wins $=10$ boards $=2683518$
wdiff3 wins=10 boards $=89526$
wdiff5 wins $=9$ boards $=2635355$
wdiff5 wins $=8$ boards $=2844060$

Notice that the win/loss results do not change at all (minmax with alphabeta pruning chooses exactly the same moves as minmax without alphabeta pruning), but the number of generated boards is vastly reduced. For example, when wdiff5 is pitted against wdiff3, wdiff5 with pruning generates 2,844,060 boards over 10 games or an average of 284,406 boards per game, as opposed to about 10 times this without pruning.

Exercise: understand the book's algorithm on examples

```
1:procedure Minimax_alpha_beta(n,\alpha,\beta)
    Inputs
        n a node in a game tree
            \alpha,\beta}\mathrm{ real numbers
        Output
            A pair of a value for node n, path that gives this value
    best := None
    if }n\mathrm{ is a leaf node then
        return omelmate (n), None
        else if }n\mathrm{ is a MAX node hen
            for eactrenituc of }n\mathrm{ do
                score,path := MinimaxAlphaBeta (c,\alpha,\beta)
                    if score }\geq\beta\mathrm{ then
                    return score, None
            else if score > 人 then
                    \alpha := score
                    best := c:path
            return \alpha, best
        else
            for each child cof }n\mathrm{ do
            score,path := MinimaxAlphaBeta (c,\alpha,\beta)
22: if score }\leq\alpha\mathrm{ then
23: return score,None
24: else if score < \beta}\mathrm{ then
25: }\quad\beta:=\mathrm{ score
26: best :=c:path
27: return }\beta\mathrm{ ,best
```

MinimaxAlphaBeta $(R,-\infty, \infty)$

2

$$
7
$$

Max

Figure 11.6: Minimax with $\alpha-\beta$ pruning
From ArtInt (Poole and Mackworth) Section 11.3
Inputs
n a node in a game tree
α, β real numbers
Output
A pair of a value for node n, path that gives this value
best $:=$ None
if n is a leaf node then
return evaluate (n), None
else if n is a MAX node then

MinimaxAlphaBeta $(R,-\infty, \infty)$

Output

 MinimaxAlphaBeta \((R,-\infty, \infty)\)
 for each child \(c\) of \(n\) do
 score, path \(:=\) MinimaxAlphaBeta \((c, \alpha, \beta)\)
 if score \(\geq \beta\) then
 return score, None
 else if score \(>\alpha\) then
 \(\alpha\) := score
 best \(:=c\) : path
 return \(\alpha\), best
 else // n is a MIN node
 for each child \(c\) of \(n\) do
 score, path \(:=\) MinimaxAlphaBeta \((c, \alpha, \beta)\)
 if score \(\leq \alpha\) then
 return score, None
 else if score \(<\beta\) then
 \(\beta:=\) score
 best \(:=c:\) path
 return \(\beta\), best
 Figure 11.6: Minimax with $\alpha-\beta$ pruning

Inputs
n a node in a game tree
α, β real numbers
Output
A pair of a value for node n, path that gives this value
best $:=$ None
if n is a leaf node then
return evaluate (n), None
else if n is a MAX node then
11: \quad for each child c of n do
12: \quad score, path $:=$ MinimaxAlphaBeta (c, α, β)
13: \quad if score $\geq \beta$ then
14: return score, None
15: \quad else if score $>\alpha$ then
16: $\quad \alpha:=$ score
best $:=c:$ path
return α, best
else // n is a MIN node
or each child c of n do
score, path $:=$ MinimaxAlphaBeta (c, α, β)
if score $\leq \alpha$ then
MinimaxAlphaBeta $(R,-\infty, \infty)$
17:
return score, None
else if score $<\beta$ then
$\beta:=$ score
best $:=c$: path
return β, best

Figure 11.6: Minimax with $\alpha-\beta$ pruning
($, \alpha, \beta)$
Inputs
n a node in a game tree
α, β real numbers
Output
A pair of a value for node n, path that gives this value
best $:=$ None
if n is a leaf node then
return evaluate (n), None
else if n is a MAX node then
for each child c of n do
score, path $:=$ MinimaxAlphaBeta (c, α, β)
if score $\geq \beta$ then
return score, None
else if score $>\alpha$ then
$\alpha:=$ score
best $:=c:$ path
return α, best
else
for each child c of n do
score, path $:=$ MinimaxAlphaBeta (c, α, β)
if score $\leq \alpha$ then
return score, None
else if score $<\beta$ then
$\beta:=$ score
best $:=c:$ path
return β, best

Figure 11.6: Minimax with $\alpha-\beta$ pruning
Inputs
n a node in a game tree
α, β real numbers
Output
A pair of a value for node n, path that gives this value
best $:=$ None
if n is a leaf node then
return evaluate (n), None
else if n is a MAX node then
for each child c of n do
score, path $:=$ MinimaxAlphaBeta (c, α, β)
if score $\geq \beta$ then
return score, None
else if score $>\alpha$ then
$\alpha:=$ score
best $:=c:$ path
return α, best
else
for each child c of n do
score, path $:=$ MinimaxAlphaBeta (c, α, β)
if score $\leq \alpha$ then
return-eacre None
else if score $<\beta$ hen
$\beta:=$ score
best $:=c:$ path
return β, best

Figure 11.6: Minimax with $\alpha-\beta$ pruning

Inputs
n a node in a game tree
α, β real numbers
Output
A pair of a value for node n, path that gives this value
best $:=$ None
if n is a leaf node then
return evaluate (n), None
else if n is a MAX node then
11: \quad for each child c of n do
score,path $:=$ MinimaxAlphaBeta (c, α, β)
if score $\geq \beta$ then
return score, None
else if score $>\alpha$ then
α := score
best $:=c:$ path
return α, best
else
for each child c of n do
score, path $:=$ MinimaxAlphaBeta (c, α, β)
if score $\leq \alpha$ then
MinimaxAlphaBeta $(R,-\infty, \infty)$
12:
13:
$14:$
15:
16:
17:
18 :
return score, None
else if score $<\beta$ then
$\beta:=$ score
best $:=c:$ path
return β, best

MinimaxAlphaBeta $(R,-\infty, \infty)$

Output

A pair of a value for node n, path that gives this value
best := None
if n is a leaf node then
return evaluate (n), None else if n is a MAX node then
score, path $:=$ MinimaxAlphaBeta (c, α, β) if score $\geq \beta$ then
return score, None
else if score $>\alpha$ then
$\alpha:=$ score
best $:=c$: path
return α, best
19: else

20:	for each child c of n do
21:	score, path $:=$ MinimaxAlphaBeta (c, α, β)

22: \quad if score $\leq \alpha$ then
23: return score, None
24: \quad else if score $<\beta$ then
25: $\quad \beta:=$ score
26: best $:=c:$ path
27: return β, best

Figure 11.6: Minimax with $\alpha-\beta$ pruning

Inputs
n a node in a game tree
α, β real numbers
Output
A pair of a value for node n, path that gives this value
best $:=$ None
if n is a leaf node then
return evaluate (n), None
else if n is a MAX node then
11: \quad for each child c of n do
12: score, path $:=$ MinimaxAlphaBeta (c, α, β)
13: \quad if score $\geq \beta$ then
14: return score, None
15: \quad else if score $>\alpha$ then
16: $\quad \alpha:=$ score
17: best $:=c$: path
18: \quad return α, best
19: else
for each child c of n do
score, path $:=$ MinimaxAlphaBeta (c, α, β)
if score $\leq \alpha$ then
return score, None
else if score $<\beta$ then
$\beta:=$ score
best $:=c:$ path
return β, best
MinimaxAlphaBeta $(R,-\infty, \infty)$
20:

MinimaxAlphaBeta $(R,-\infty, \infty)$

Output

A pair of a value for node n, path that gives this value
best := None
if n is a leaf node then
return evaluate (n), None else if n is a MAX node then
for each child c of n do
score,path $:=$ MinimaxAlphaBeta (c, α, β)
$\geq \beta$ then
else if score $>\alpha$ then
path
for each child c of n do
if score $\leq \alpha$ then
return score, None
else if score $<\beta$ then
$\beta:=$ score
best $:=c:$ path
return β, best
Figure 11.6: Minimax with $\alpha-\beta$ pruning

MinimaxAlphaBeta $(R,-\infty, \infty)$

Max

1:procedure Minimax_alpha_beta(n, α, β)
2: Inputs
3: $\quad n$ a node in a game tree
4: $\quad \alpha, \beta$ real numbers
5: Output
6: \quad A pair of a value for node n, path that gives this value
7: best $:=$ None
8: \quad if n is a leaf node then
9: return evaluate (n), None
10: else if n is a MAX node then
11: \quad for each child c of n do
12: \quad score, path $:=$ MinimaxAlphaBeta (c, α, β)
13: \quad if score $\geq \beta$ then
14:
15:
16 :
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

hest $=-$	path
return β, best	

Figure 11.6: Minimax with $\alpha-\beta$ pruning

```
1:procedure Minimax_alpha_beta(n,\alpha,\beta)
    Inputs
        n}\mathrm{ a node in a game tree
        \alpha,\beta
    Output
        A pair of a value for node n, path that gives this value
    best := None
    if }n\mathrm{ is a leaf node then
        return evaluate (n),None
        else if }n\mathrm{ is a MAX node then
            for each child c}\mathrm{ of }n\mathrm{ do
                    score,path := MinimaxAlphaBeta (c,\alpha,\beta)
                    if score }\geq\beta\mathrm{ then
                    return score, None
            else if score > 人 then
                    \alpha := score
                    best := c:path
            return \alpha, best
        else
            for each child c of }n\mathrm{ do
            score,path := MinimaxAlphaBeta (c,\alpha,\beta)
            if score }\leq\alpha\mathrm{ then
                    return score, None
            else if score < \beta}\mathrm{ then
                \beta:= score
                best := c:path
            return }\beta\mathrm{ , best
```


MinimaxAlphaBeta $(R,-\infty, \infty)$

Figure 11.6: Minimax with $\alpha-\beta$ pruning

```
1:procedure Minimax_alpha_beta(n,\alpha,\beta)
    Inputs
        n}\mathrm{ a node in a game tree
        \alpha,\beta
    Output
        A pair of a value for node n, path that gives this value
    best := None
    if }n\mathrm{ is a leaf node then
        return evaluate ( }n)\mathrm{ , None
        else if }n\mathrm{ is a MAX node then
            for each child c of }n\mathrm{ do
                score,path := MinimaxAlphaBeta (c,\alpha,\beta)
                    if score }\geq\beta\mathrm{ then
                    return score, None
            else if score >\alpha then
                    \alpha := score
                    best := c:path
            return \alpha, best
        else
            for each child c of }n\mathrm{ do
            score,path := MinimaxAlphaBeta (c,\alpha,\beta)
            if score }\leq\alpha\mathrm{ then
                    return score, None
            else if score < \beta}\mathrm{ then
                \beta:= score
                best := c:path
            return }\beta\mathrm{ , best
```


MinimaxAlphaBeta $(R,-\infty, \infty)$

9

Figure 11.6: Minimax with $\alpha-\beta$ pruning

```
1:procedure Minimax_alpha_beta(n,\alpha,\beta)
    Inputs
        n}\mathrm{ a node in a game tree
        \alpha,\beta}\mathrm{ real numbers
    Output
        A pair of a value for node n, path that gives this value
    best := None
    if }n\mathrm{ is a leaf node then
        return evaluate ( }n)\mathrm{ , None
        else if }n\mathrm{ is a MAX node then
            for each child cof }n\mathrm{ do
                    score,path := MinimaxAlphaBeta (c,\alpha,\beta)
                    if score }\geq\beta\mathrm{ then
                    return score,None
            else if score > 人 then
                \alpha := score
                best := c:path
        return \alpha,best
    else
        for each child c}\mathrm{ of }n\mathrm{ do
            score,path := MinimaxAlphaBeta (c,\alpha,\beta)
                    if score }\leq\alpha\mathrm{ then
23: return score, None
24: else if score < \beta then
25: }\quad\beta:=\mathrm{ score
26: best :=c:path
27: return }\beta,\mathrm{ best
```

Figure 11.6: Minimax with $\alpha-\beta$ pruning

MinimaxAlphaBeta $(R,-\infty, \infty)$


```
1:procedure Minimax_alpha_beta(n,\alpha,\beta)
2: Inputs
3: }\quadn\mathrm{ a node in a game tree
4: }\alpha,\beta\mathrm{ real numbers
5: Output
A pair of a value for node n, path that gives this value
    best := None
    if }n\mathrm{ is a leaf node then
        return evaluate (n),None
        else if }n\mathrm{ is a MAX node then
            for each child cof }n\mathrm{ do
                    score,path := MinimaxAlphaBeta (c,\alpha,\beta)
                    if score }\geq\beta\mathrm{ then
                    return score, None
            else if score > 人 then
                \alpha := score
                best := c:path
        return \alpha, best
    else
        for each child c of }n\mathrm{ do
            score,path := MinimaxAlphaBeta (c,\alpha,\beta)
            if score }\leq\alpha\mathrm{ then
                    return score, None
            else if score < \beta then
                    \beta:= score
                    best := c:path
        return }\beta\mathrm{ , best
```

$22:$
$23:$
24:
25:
26:
27:

Figure 11.6: Minimax with $\alpha-\beta$ pruning

MinimaxAlphaBeta $(R,-\infty, \infty)$

9
2
7

1
$1<2$

```
1:procedure Minimax_alpha_beta(n,\alpha,\beta)
2: Inputs
        n a node in a game tree
        \alpha,\beta
    Output
        A pair of a value for node n, path that gives this value
    best := None
    if }n\mathrm{ is a leaf node then
        return evaluate (n),None
        else if }n\mathrm{ is a MAX node then
            for each child cof }n\mathrm{ do
                    score,path := MinimaxAlphaBeta (c,\alpha,\beta)
                    if score }\geq\beta\mathrm{ then
                    return score, None
            else if score >\alpha then
                \alpha := score
                best := c:path
        return \alpha, best
    else
        for each child c of }n\mathrm{ do
            score,path := MinimaxAlphaBeta (c,\alpha,\beta)
            if score}\leq\alpha\mathrm{ then
                    return score, None
            else if score < \beta}\mathrm{ then
                \beta:= score
                best := c:path
        return }\beta\mathrm{ , best
```


MinimaxAlphaBeta $(R,-\infty, \infty)$

9

Figure 11.6: Minimax with $\alpha-\beta$ pruning

```
1:procedure Minimax_alpha_beta(n,\alpha,\beta)
    Inputs
        n}\mathrm{ a node in a game tree
        \alpha,\beta}\mathrm{ real numbers
    Output
        A pair of a value for node n, path that gives this value
    best := None
    if }n\mathrm{ is a leaf node then
        return evaluate ( }n\mathrm{ ), None
        else if }n\mathrm{ is a MAX node then
            for each child cof }n\mathrm{ do
                    score,path := MinimaxAlphaBeta (c,\alpha,\beta)
            if score }\geq\beta\mathrm{ then
                    return score, None
            else if score > 人 then
                    \alpha := score
                    best := c:path
            return \alpha,best
        else
            for each child c}\mathrm{ of }n\mathrm{ do
            score,path := MinimaxAlphaBeta (c,\alpha,\beta)
            if score }\leq\alpha\mathrm{ then
                    return score, None
            else if score < \beta}\mathrm{ then
                \beta:= score
                best :=c:path
            return }\beta\mathrm{ , best
```


MinimaxAlphaBeta $(R,-\infty, \infty)$

1
0

Figure 11.6: Minimax with $\alpha-\beta$ pruning

```
1:procedure Minimax_alpha_beta(n,\alpha,\beta)
    Inputs
        n}\mathrm{ a node in a game tree
        \alpha,\beta
    Output
        A pair of a value for node n, path that gives this value
    best := None
    if }n\mathrm{ is a leaf node then
        return evaluate (n),None
        else if }n\mathrm{ is a MAX node then
            for each child cof }n\mathrm{ do
                    score,path := MinimaxAlphaBeta (c,\alpha,\beta)
                    if score }\geq\beta\mathrm{ then
                    return score, None
            else if score >\alpha then
                \alpha := score
                best := c:path
        return \alpha,best
        else
            for each child c of }n\mathrm{ do
            score,path := MinimaxAlphaBeta (c,\alpha,\beta)
            if score }\leq\alpha\mathrm{ then
                return score, None
            else if score < \beta}\mathrm{ then
                \beta:= score
                best := c:path
            return }\beta\mathrm{ , best
```

Figure 11.6: Minimax with $\alpha-\beta$ pruning

Game Tree Search Problems

Given the following game tree, compute the utility value of the root (which is at a maximizing level) as computed by minimax search, and write the utility value by the root

Game Tree Search Problems

Put an ' X ' through an arc if it and its entire subtree would be pruned when using alpha beta pruning.
Value of Root: \qquad 3

Consider the game tree below. The numbers at leaves are scores obtained by an evaluation function. Show the value of the root obtained through minimax search. Additionally, put an ' X ' through an arc if it and its entire subtree would be pruned when using alpha beta pruning.

Douglas H. Fisher

Consider the game tree below. The numbers at leaves are scores obtained by an evaluation function. Show the value of the root obtained through minimax search. Additionally, put an ' X ' through an arc if it and its entire subtree would be pruned when using alpha beta pruning.

Douglas H. Fisher

