CS 4260 and CS 5260 Vanderbilt University

Lecture on Uncertainty (Probabilities)

This lecture assumes that you have

- Read Section 8.1 through 8.3 of ArtInt (though there is some repetition, as well as additional material)

ArtInt: Poole and Mackworth, Artificial Intelligence 2E
at http:// artint.info/2e/html/ArtInt2e.html
to include slides at http://artint.info/2e/slides/ch04/lect1.pdf

Probability (review of basics)

Finite outcome spaces (worlds): $\Omega=\omega 1, \omega 2, \ldots, \omega \mathrm{~N}$ with $\mathrm{P}(\omega \mathrm{i})$ such that

- $0<=\mathrm{P}(\omega \mathrm{i})<=1.0$, and
- $\quad \Sigma \mathrm{P}(\omega \mathrm{i})=1.0$

Examples:

- Roll of a die: $\boldsymbol{\Omega}=1,2,3,4,5,6$
- Toss of a coin: $\boldsymbol{\Omega}=\mathrm{H}, \mathrm{T}$

Probability (review of basics)

Assigning probabilities to each ω i can be:

- subjective (first principles, aka "educated guess" based on domain knowledge) or
- objective (proportion/frequency)
- $\quad\left[\omega_{i}\right]=$ number of occurrences of $\omega \mathrm{i}$ in experiment
- $\mathrm{P}(\omega \mathrm{i})=[\omega \mathrm{i}] / \sum[\omega \mathrm{j}]$

Examples

- \quad subjective (fair die, fair coin): $P(1)=1 / 6, \ldots, P(6)=1 / 6 \quad P(H)=1 / 2, P(T)=1 / 2$
- objective: 57 H in 100 tosses: $\mathrm{P}(\mathrm{H})=57 / 100, \mathrm{P}(\mathrm{T})=43 / 100$

These are correct/exact probabilities over the conducted experiments, but only an estimate of probability in general.

Probability (review of basics)

Additivity of probabilities.
If $\omega \mathrm{i}$ and $\omega \mathrm{j}$ are mutually exclusive, then $\mathrm{P}(\omega \mathrm{i}$ or $\omega \mathrm{j})=\mathrm{P}(\omega \mathrm{i})+\mathrm{P}\left(\omega_{\mathrm{j}}\right)$
Example

- In a die roll: $\mathrm{P}(2$ or 5$)=\mathrm{P}(2)+\mathrm{P}(5)=2 / 6=1 / 3$ (2 and 5 are mutually exclusive)

If $\omega \mathrm{i}$ and $\omega \mathrm{j}$ are NOT (necessarily) mutually exclusive, then $\mathrm{P}(\omega \mathrm{i}$ or $\omega \mathrm{j})=\mathrm{P}(\omega \mathrm{i})+\mathrm{P}(\omega \mathrm{j})-\mathrm{P}(\omega \mathrm{i}$ and $\omega \mathrm{j})$

Don't double count the intersection

Independence of different outcome spaces or independence of sequence of draws/trials/experiments from same outcome space.
If independent then
$\mathrm{P}(\omega \mathrm{i}$ in trial/space 1 followed by $\omega \mathrm{j}$ in trial/space 2$)=\mathrm{P}(\omega \mathrm{i}) * \mathrm{P}(\omega \mathrm{j})$ for all $\omega \mathrm{i}$ and $\omega \mathrm{j}$
Examples

- $\mathrm{P}(\mathrm{H}, \mathrm{H})=\mathrm{P}(\mathrm{H}) * \mathrm{P}(\mathrm{H})=1 / 4$
- $\mathrm{P}(\mathrm{H}, 3)=\mathrm{P}(\mathrm{H}) * \mathrm{P}(3)=1 / 2 * 1 / 6=1 / 12$
- $[\mathrm{H}] /([\mathrm{H}]+[\mathrm{T}]) *([3] /[1]+[2]+[3]+[4]+[5]+[6])$

Probability (review of basics)

Countably infinite outcome spaces: e.g., flip a coin until first head

$$
\begin{aligned}
& \Omega=\mathrm{H}, \mathrm{TH}, \text { TTH, TTTH, } \ldots . \\
& \mathrm{P}(\mathrm{H})=1 / 2, \mathrm{P}(\mathrm{TH})=1 / 4, \mathrm{P}(\text { TTH })=1 / 8, \mathrm{P}(\text { TTTH })=1 / 16, \ldots .
\end{aligned}
$$

probabilities must still sum to 1 , since these outcomes are mutually exclusive.

$$
\sum_{i=0}^{\inf } 1 /\left(2^{\wedge}(i+1)\right)=1
$$

Joint outcome spaces and probabilities: W1 W2
if W1 $=\mathrm{H}, \mathrm{T}$ then $\mathrm{W} 1 \boldsymbol{W} 1=\mathrm{H}, \mathrm{H} \quad \mathrm{H}, \mathrm{T} \quad \mathrm{T}, \mathrm{H} \quad \mathrm{T}, \mathrm{T}$
(each with a probability, and probabilities must sum to 1)
if W2 2 , 2, 3, 4, 5, 6 then W1 W2 $\mathrm{H}, 1 \mathrm{H}, 2 \ldots \mathrm{H}, 6 \mathrm{~T}, 1 \ldots .$. T, 6
(each with a probability, and probabilities must sum to 1)

Probability (review of basics)

Random "variables": a real-valued function defined over an outcome space:

A random variable defines an outcome space. Probabilities can be assigned to random variable values.

After this lecture, I will not use the term "random variable" often. There is considerable confusion around the term. I will refer to variables, outcome spaces (or worlds), and functions defined over outcome spaces.

Probability (review of basics)

Expected value of a random variable (function): $\mathrm{EX}=\sum[\mathrm{xi} * \mathrm{P}(\mathrm{X}(\boldsymbol{\Omega})=\mathrm{xi})]=\sum[\mathrm{X}(\omega \mathrm{i}) * \mathrm{P}(\omega \mathrm{i})]$ where xi is a value of the random variable (function) $\mathrm{X}(\Omega)$, and ω in an outcome in Ω

Expected number of examined nodes in successful search of a binary search tree

$\Omega=$ (lookup)	10,	4,	15,	2,	11,	17,	14
$\mathrm{P}(\omega \mathrm{i})$	0.1	0.1	0.05	0.05	0.2	0.3	0.2
$\mathrm{X}(\omega \mathrm{i})$	1	2	2	3	3	3	4
$\mathrm{EX}=$	$1(0.1)+2(0.1+0.05)+3(0.05+0.2+0.3)+4(0.2)$						

Random variables (functions) used to represent cost (space, time), value (goodness, utility), etc.

$$
\mathrm{EX}=\sum_{\mathrm{x} 1}\left[\mathrm{xi}^{*} \mathrm{P}(\mathrm{X}(\Omega)=\mathrm{xi})\right]=\sum_{\omega \mathrm{i}}[\mathrm{X}(\omega \mathrm{i}) * \mathrm{P}(\omega \mathrm{i})]
$$

Probabilistic Games
(e.g., Risk)

$$
\mathrm{EX}=\sum_{\mathrm{xi}}\left[\mathrm{xi}^{*} \mathrm{P}(\mathrm{X}(\Omega)=\mathrm{xi})\right]=\sum_{\omega \mathrm{i}}[\mathrm{X}(\omega \mathrm{i}) * \mathrm{P}(\omega \mathrm{i})]
$$

$$
\mathrm{EX}=\sum_{\mathrm{xi}}[\mathrm{xi} * \mathrm{P}(\mathrm{X}(\Omega)=\mathrm{xi})]=\sum_{\omega \mathrm{i}}[\mathrm{X}(\omega \mathrm{i}) * \mathrm{P}(\omega \mathrm{i})]
$$

Expected minimax: there is a pruning method akin to alpha beta pruning in certain minimax (last week)

Current player's (Max's)
Move nearly a draw in
Terms of expected utility
 $\begin{array}{llllllllllllllllllllllll}5 & 2 & 3 & 4 & 2 & 8 & 1 & 6 & 3 & 2 & 4 & 4 & 9 & 3 & 1 & 7 & 4 & 3 & 1 & 2 & 8 & 6 & 6 & \mathrm{X}(\omega \mathrm{i})\end{array}$

Probability (review of basics)

Conditional probability: $\mathrm{P}(\mathrm{e} 1 \mid \mathrm{e} 2)=\mathrm{P}(\mathrm{e} 1$ and e 2$) / \mathrm{P}(\mathrm{e} 2)$ where e 1 is an event (a draw from an outcome space including the value of a random variable (function), and e2 is a draw from another outcome space or a proceeding/preceding draw from the same outcome space as e1 was drawn from.
e.g., $\mathrm{P}(\mathrm{flu} \mid$ sore-throat $)=\mathrm{P}($ flu and sore-throat $) / \mathrm{P}($ sore-throat $)$

$$
\mathrm{P}(\text { battery-dead } \mid \text { car-wont-start })=\mathrm{P}(\text { battery-dead and car-wont-start }) / \mathrm{P}(\text { car-wont-start })
$$

In terms of objective probability assignment

$$
\begin{aligned}
\mathrm{P}(\mathrm{e} 1 \mid \mathrm{e} 2)= & \mathrm{P}(\mathrm{e} 1 \text { and } \mathrm{e} 2) / \mathrm{P}(\mathrm{e} 2)=([\mathrm{e} 1 \text { and } 2] /[\mathrm{o}]) /([\mathrm{e} 2] /[\mathrm{o}]) \\
& =[\mathrm{e} 1 \text { and } \mathrm{e} 2] /[\mathrm{e} 2] \\
\text { where }[\mathrm{o}] & =[\mathrm{e} 1 \text { and e2] }+[\mathrm{e} 1 \text { and } \sim \mathrm{e} 2]+[\sim \mathrm{e} 1+\mathrm{e} 2]+[\sim \mathrm{e} 1+\sim \mathrm{e} 2] \\
& =([\mathrm{e} 1 \text { and e2] }+[\mathrm{e} 1 \text { and } \sim \mathrm{e} 2])+([\sim \mathrm{e} 1+\mathrm{e} 2]+[\sim \mathrm{e} 1+\sim \mathrm{e} 2]) \\
& =[\mathrm{e} 1]+[\sim \mathrm{e} 1] \\
& =([\mathrm{e} 1 \text { and e2]}+[\sim \mathrm{e} 1 \text { and e2] })+([\mathrm{e} 1+\sim \mathrm{e} 2]+[\sim \mathrm{e} 1+\sim \mathrm{e} 2]) \\
& =[\mathrm{e} 2]+[\sim \mathrm{e} 2]
\end{aligned}
$$

Conditional expectation

$$
\mathrm{E}(\mathrm{X} \mid \mathrm{Y}=\mathrm{yj})=\sum_{\mathrm{xi}} \mathrm{xi} * \mathrm{P}(\mathrm{X}=\mathrm{xi} \mid \mathrm{Y}=\mathrm{yj})=\sum_{\omega \mathrm{i}} \mathrm{X}(\omega \mathrm{i}) * \mathrm{P}(\mathrm{~W}=\omega \mathrm{i} \mid \mathrm{Y}=\mathrm{yj})
$$

Assume a plan executer in an environment in which operators do not achieve their effects with certainty, but in which some anticipated effects of an operator may not be present after an operator has been applied. Then, with some probability, applying Op1 from state Si will lead to state Si 1 and with some probability it will lead to Si2, etc. The U values are utility values of the possible resulting states (e.g., the number of goal conditions satisfied by the state).

Conditional expectation cont

$$
\mathrm{E}(\mathrm{X} \mid \mathrm{Y}=\mathrm{yj})=\sum_{\mathrm{xi}} \mathrm{xi} \mathrm{P}(\mathrm{X}=\mathrm{xi} \mid \mathrm{Y}=\mathrm{yj})=\sum_{\omega \mathrm{i}} \mathrm{X}(\omega \mathrm{i}) \mathrm{P}(\mathrm{~W}=\omega \mathrm{i} \mid \mathrm{Y}=\mathrm{yj})
$$

Conditional expectation
$E(X \mid Y=y j)=\sum_{x i}$ xi $P(X=x i \mid Y=y j)=\sum_{\omega i} X(\omega i) P(W=\omega i \mid Y=y j)$

$$
\mathrm{EU}(\mathrm{Si})=\underline{\mathrm{P}(\mathrm{Si} 1 \mid \mathrm{Si}, \mathrm{Op} 1) * \mathrm{EU}(\mathrm{Si} 1 \mid \mathrm{Si}, \mathrm{Op} 1)+\mathrm{P}(\mathrm{Si} 2 \mid \mathrm{Si}, \mathrm{Op} 1) * \mathrm{EU}(\mathrm{Si} 2 \mid \mathrm{Si}, \mathrm{Op} 1)}
$$

Make sure that you can work out an example like this, and with specific values

Probability (review of basics)

Bayes rule:

```
P(e1 | e2) = P(e1 and e2) / P(e2) -> P(e1|e2)P(e2)= P(e1 and e2)
P(e2|e1) = P(e1 and e2) / P(e1) -> P(e2|e1)P(e1)= P(e1 and e2)
```

$\rightarrow \mathbf{P}(\mathrm{e} 1 \mid \mathrm{e} 2)=[\mathrm{P}(\mathrm{e} 2 \mid \mathrm{e} 1) * \mathrm{P}(\mathrm{e} 1)] / \mathrm{P}(\mathrm{e} 2)$

Consider that a diagnostician may want to estimate $\mathbf{P}(\mathbf{D i} \mid \mathbf{S j})$ where Di^{i} is a disease, Sj_{j} is a symptom. $\mathrm{P}\left(\mathrm{Di} \mid \mathrm{Si}_{\mathrm{j}}\right)$ is hard for most experts to accurately estimate, but
$\mathrm{P}(\mathrm{Di} \mid \mathrm{Sj})=[\mathrm{P}(\mathrm{Sj} \mid \mathrm{Di}) * \mathrm{P}(\mathrm{Di})] / \mathrm{P}(\mathrm{Sj})$ and $\mathrm{P}\left(\mathrm{Sj}_{\mathrm{j}} \mid \mathrm{Di}\right)$ and $\mathrm{P}(\mathrm{Di})$ is easier for experts to accurately estimate.
$\mathrm{P}(\mathrm{S} \mathrm{j})$ is hard to estimate, but it may not be important!

$\mathrm{P}(\mathrm{D} 1 \mid \mathrm{Sj})$	$=[\mathrm{P}(\mathrm{Sj} \mid \mathrm{D} 1) * \mathrm{P}(\mathrm{D} 1)] / \mathrm{P}(\mathrm{Sj})$
$\mathrm{P}(\mathrm{D} 2 \mid \mathrm{Sj})=[\mathrm{P}(\mathrm{Sj} \mid \mathrm{D} 2) * \mathrm{P}(\mathrm{D} 2)] / \mathrm{P}(\mathrm{Sj})$	
$\ldots \ldots$	
$\mathrm{P}(\mathrm{DM} \mid \mathrm{Sj})$	$=[\mathrm{P}(\mathrm{Sj} \mid \mathrm{DM}) * \mathrm{P}(\mathrm{DM})] / \mathrm{P}(\mathrm{Sj})$

which Di (disease) is most probable note that $\mathrm{P}(\mathrm{Sj})$ is constant across choices

Probability (review of basics)

```
P(D1 | Sj) = [P(Sj| D1) * P(D1)] / P(Sj)
P(D2 | Sj) = [P(Sj|D2) *P(D2)] / P(Sj)
P(DM | Sj) = [P(Sj | DM ) * P(DM)]/P(Sj)
->
P(D1 | Sj) & P(Sj| D1) * P(D1)
P(D2 | Sj) & P(Sj | D2) * P(D2)
answering which Di which is most probable
    does not require P(Sj)
P(DM | Sj) & P(Sj | DM) * P(DM)
proportional to
```

Recall a similar observation when we discussed the Naïve Bayesian Classifier (Machine Learning)

Probability (review of basics)

Chain rule:

Consider $\mathrm{P}(\mathrm{e} 1$ and e 2$)=\mathrm{P}(\mathrm{e} 1 \mid \mathrm{e} 2) \mathrm{P}(\mathrm{e} 2)$

$$
\begin{aligned}
\mathrm{P}(\mathrm{e} 1 \text { and } \mathrm{e} 2 \text { and } \mathrm{e} 3) & =\mathrm{P}(\mathrm{e} 1 \mid \mathrm{e} 2 \text { and } \mathrm{e} 3) \mathrm{P}(\mathrm{e} 2 \text { and } \mathrm{e} 3) \\
& =\mathrm{P}(\mathrm{e} 1 \mid \mathrm{e} 2 \text { and } \mathrm{e} 3) \mathrm{P}(\mathrm{e} 2 \mid \mathrm{e} 3) \mathrm{P}(\mathrm{e} 3)
\end{aligned}
$$

In general:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 3, \ldots, \mathrm{eN}) \quad \text { read "," as "and" } \\
& \quad=\mathrm{P}(\mathrm{e} 1 \mid \mathrm{e} 2, \mathrm{e} 3, \ldots, \mathrm{eN}) \mathrm{P}(\mathrm{e} 2 \mid \mathrm{e} 3, \ldots, \mathrm{eN}) \mathrm{P}(\mathrm{e} 3 \mid \mathrm{e} 4, \ldots, \mathrm{eN}) \ldots \mathrm{P}(\mathrm{e}(\mathrm{~N}-1) \mid \mathrm{eN}) \mathrm{P}(\mathrm{eN})
\end{aligned}
$$

You have seen this before in lecture on Naïve Bayesian learning

Probability (review of basics)

Put the chain rule and Bayes rule together:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Di} \mid \mathrm{S} 1, \mathrm{~S} 2, \ldots, \mathrm{SN}) \stackrel{\text { Bayes rule }}{=}\left(\mathrm{P}\left(\mathrm{~S} 1, \mathrm{~S} 2, \ldots, \mathrm{SN} \mid \mathrm{Di}_{\mathrm{i}}\right) * \mathrm{P}(\mathrm{Di})\right) / \mathrm{P}(\mathrm{~S} 1, \mathrm{~S} 2, \ldots \mathrm{SN}) \\
& \stackrel{\text { Chain rule }}{=} \mathrm{P}(\mathrm{Di}) * \frac{\mathrm{P}(\mathrm{~S} 1 \mid \mathrm{Di})}{\mathrm{P}(\mathrm{~S} 1)} * \frac{\mathrm{P}(\mathrm{~S} 2 \mid \mathrm{Di}, \mathrm{~S} 1)}{\mathrm{P}(\mathrm{~S} 2 \mid \mathrm{S} 1)} * \ldots * \frac{\mathrm{P}(\mathrm{SN} \mid \mathrm{Di}, \mathrm{~S} 1, \ldots, \mathrm{~S}(\mathrm{~N}-1))}{\mathrm{P}(\mathrm{SN} \mid \mathrm{S} 1, \ldots, \mathrm{~S}(\mathrm{~N}-1))} \\
& \alpha \quad \mathrm{P}(\mathrm{Di}) * \mathrm{P}(\mathrm{~S} 1 \mid \mathrm{Di}) * \mathrm{P}(\mathrm{~S} 2 \mid \mathrm{Di}, \mathrm{~S} 1) * \ldots * \mathrm{P}(\mathrm{SN} \mid \mathrm{Di}, \mathrm{~S} 1, \ldots, \mathrm{~S}(\mathrm{~N}-1))
\end{aligned}
$$

allows Bayesian updating (i.e., incremental revision of probability estimate with each new piece of evidence)

Probability (review of basics)

Where do $\mathrm{P}(\mathrm{Sj} \mid \mathrm{Di}, \mathrm{S} 1, \mathrm{~S} 2, \ldots, \mathrm{~S}(\mathrm{j}-1))$ come from???
Would need a lot of data for an objective assignment that was accurate.
Experts find it difficult to estimate in a subjective assignment

Independence revisited
Outcome spaces $\Omega 1$ and $\Omega 2$ are independent iff $\mathrm{P}(\omega \mathrm{i}$ and $\omega \mathrm{j})=\mathrm{P}\left(\omega_{\mathrm{i}}\right) * \mathrm{P}\left(\omega_{\mathrm{j}}\right)$ for all $\omega \mathrm{i}$ in $\Omega 1$ and all ω j in $\Omega 2$

Alternate definition of
if independent
$\mathrm{P}(\omega \mathrm{i}$ and $\omega \mathrm{j})=\mathrm{P}(\omega \mathrm{i} \mid \omega \mathrm{j}) \mathrm{P}(\omega \mathrm{j})=\mathrm{P}(\omega \mathrm{i}) * \mathrm{P}(\omega \mathrm{j}) \longleftrightarrow \mathrm{P}(\omega \mathrm{i} \mid \omega \mathrm{j})=\mathrm{P}(\omega \mathrm{i})$

$$
\leftrightarrow \rightarrow \mathrm{P}(\omega \mathrm{j} \mid \omega \mathrm{i})=\mathrm{P}(\omega \mathrm{j})
$$

Probability (review of basics)

Conditional independence

$\Omega 1$ and $\Omega 2$ are conditionally independent given (any known outcome from) $\Omega 3$ iff
$\mathrm{P}(\omega \mathrm{i}$ and $\omega \mathrm{j} \mid \omega \mathrm{k})=\mathrm{P}(\omega \mathrm{i} \mid \omega \mathrm{k}) * \mathrm{P}(\omega \mathrm{j} \mid \omega \mathrm{k})$ for all $\omega \mathrm{i}$ in $\Omega 1$, all $\omega \mathrm{j}$ in $\Omega 2$, and all $\omega \mathrm{k}$ in $\Omega 3$

$$
\begin{aligned}
& \leftrightarrow \mathrm{P}(\omega \mathrm{i} \mid \omega \mathrm{j} \text { and } \omega \mathrm{k})=\mathrm{P}(\omega \mathrm{i} \mid \omega \mathrm{k}) \quad \mathrm{P}(\omega \mathrm{i} \text { and } \omega \mathrm{j} \mid \omega \mathrm{k})=\mathrm{P}(\omega \mathrm{i} \mid \omega j \text { and } \omega \mathrm{k}) \mathrm{P}(\omega \mathrm{j} \mid \omega \mathrm{k}) \\
& \leftarrow \mathrm{P}(\omega \mathrm{j} \mid \omega \mathrm{i} \text { and } \omega \mathrm{k})=\mathrm{P}(\omega \mathrm{j} \mid \omega \mathrm{k})
\end{aligned}
$$

We can also speak of $\Omega 1$ and $\Omega 2$ as conditionally independent given a particular outcome from $\Omega 3$

Probability (review of basics)

Conditional independence cont
If symptoms independent given disease then

$$
\mathrm{P}(\mathrm{Di} \mid \mathrm{S} 1, \mathrm{~S} 2, \ldots \mathrm{SN})
$$

α
$\mathrm{P}(\mathrm{Di}) * \mathrm{P}(\mathrm{S} 1 \mid \mathrm{Di}) * \mathrm{P}(\mathrm{S} 2 \mid \mathrm{Di}, \mathrm{S} 1) * \ldots * \mathrm{P}(\mathrm{SN} \mid \mathrm{Di}, \mathrm{S} 1, \ldots, \mathrm{~S}(\mathrm{~N}-1))$
if independent $=$
$\mathrm{P}(\mathrm{Di})^{*} \mathrm{P}(\mathrm{S} 1 \mid \mathrm{Di}) * \mathrm{P}(\mathrm{S} 2 \mid \mathrm{Di}) * \ldots * \mathrm{P}(\mathrm{SN} \mid \mathrm{Di})$

Belief (or Bayesian) Networks

Consider an ordering of variables to factor a joint probability distribution: V1, V2, V3, V4, V5

Assume the following conditional independencies:

```
\(\mathrm{P}(\mathrm{v} 1) \quad\) V2 independent of V 1
\(\mathrm{P}(\mathrm{v} 2 \mid \mathrm{v} 1)=\mathrm{P}(\mathrm{v} 2)\) and \(\mathrm{P}(\mathrm{v} 2 \mid \sim \mathrm{v} 1)=\mathrm{P}(\mathrm{v} 2), \mathrm{P}(\sim \mathrm{v} 2 \mid \mathrm{v} 1)=\mathrm{P}(\sim \mathrm{v} 2), \mathrm{P}(\sim \mathrm{v} 2 \mid \sim \mathrm{v} 1)=\mathrm{P}(\sim \mathrm{v} 2)\)
\(P(\sim v 3 \mid v 1, v 2)=P(\sim v 3 \mid v 1)\)
    and \(P(\sim v 3 \mid v 1, \sim v 2)=P(\sim v 3 \mid v 1), P(\sim v 3 \mid \sim v 1, v 2)=P(\sim v 3 \mid \sim v 1), P(\sim v 3 \mid \sim v 1, \sim v 2)=P(\sim v 3 \mid \sim v 1)\),
    \(\mathrm{P}(\mathrm{v} 3 \mid \mathrm{v} 1, \mathrm{v} 2)=\mathrm{P}(\mathrm{v} 3 \mid \mathrm{v} 1), \mathrm{P}(\mathrm{v} 3 \mid \mathrm{v} 1, \sim \mathrm{v} 2)=\mathrm{P}(\mathrm{v} 3 \mid \mathrm{v} 1), \mathrm{P}(\mathrm{v} 3 \mid \sim \mathrm{v} 1, \mathrm{v} 2)=\mathrm{P}(\mathrm{v} 3 \mid \sim \mathrm{v} 1)\),
    \(\mathrm{P}(\mathrm{v} 3 \mid \sim \mathrm{v} 1, \sim \mathrm{v} 2)=\mathrm{P}(\mathrm{v} 3 \mid \sim \mathrm{v} 1) \quad \mathrm{V} 3\) independent of V 2 conditioned on V 1
\(P(v 4 \mid v 1, v 2, \sim v 3)=P(v 4 \mid v 2, \sim v 3)\) and \(\ldots \ldots\)
\(P(\sim v 5 \mid v 1, v 2, \sim v 3, v 4)=P(\sim v 5 \mid \sim v 3)\) and \(\ldots .\).
```

A Belief (or Bayesian) Network is a graphical representation of a joint probability distribution with (conditional) independence relationships made explicit

For a particular factorization ordering (V1, V2, V3, V4, V5), construct a belief network as follows:

$$
\mathrm{P}(\mathrm{v} 1), \mathrm{P}(\sim \mathrm{v} 1) \quad \mathrm{V} 1 \mathrm{a} \text { "root" } \quad \begin{aligned}
& \mathrm{V}(\mathrm{v} 1)=0.75 \\
& \mathrm{P}(\sim \mathrm{v} 1)=0.25=1-\mathrm{P}(\mathrm{v} 1)
\end{aligned}
$$

V2 is second variable in ordering. If V2 independent of a subset of its predecessors (possibly the empty set) in ordering conditioned on a disjoint subset of predecessors (including possibly all its predecessors), then the latter subset is its parents, else V2 is a "root"

Since $P(v 2 \mid v 1)=P(v 2) \ldots$

V2 $P(v 2)$

V 3 is third variable in ordering. Since $\mathrm{P}(\mathrm{v} 3 \mid \mathrm{v} 1, \mathrm{v} 2)=\mathrm{P}(\mathrm{v} 3 \mid \mathrm{v} 1), \ldots$:

Since $P(v 4 \mid v 1, v 2, v 3)=P(v 4 \mid v 2, v 3), \ldots$

Since $P(v 5 \mid v 1, v 2, v 3, v 4)=P(v 5 \mid v 3), \ldots$:

Components of a belief network: a topology (graph) that qualitatively indicates displays the conditional independencies, and probability tables at each node

Semantics of graphical component: for each variable, V, V is independent of all of its non-descendants conditioned on its parents

More on belief (Bayesian) networks

- constructing BNs and
- inference with BNs
next time

