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Lecture on Uncertainty (Probabilities) 

This lecture assumes that you have 
•  Read Section 8.1 through 8.3 of  ArtInt (though there is some repetition,  
     as well as additional material)  
 
ArtInt: Poole and Mackworth, Artificial Intelligence 2E  
            at http://artint.info/2e/html/ArtInt2e.html 
to include slides at http://artint.info/2e/slides/ch04/lect1.pdf   
 

Douglas H. Fisher 



Probability (review of  basics) 

Finite outcome spaces (worlds): Ω = ω1, ω2, . . . , ωN  with P(ωi) such that   
 
•  0 <= P(ωi) <= 1.0, and  

•  Σ P(ωi)  = 1.0 
       
Examples:  
 
•  Roll of  a die: Ω = 1, 2, 3, 4, 5, 6        
 
•  Toss of  a coin: Ω = H, T 
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Probability (review of  basics) 

 
Assigning probabilities to each ωi can be:  
 
•  subjective (first principles, aka “educated guess” based on domain knowledge) or  
            
•  objective (proportion/frequency)    

•  [ωi] = number of  occurrences of  ωi in experiment 
                                                                   

•  P(ωi) = [ωi] / ∑[ωj] 
     
Examples 
 
•  subjective (fair die, fair coin): P(1) = 1/6, …, P(6) = 1/6       P(H) = ½,  P(T) = ½  
     
•  objective: 57 H in 100 tosses:  P(H) = 57/100,  P(T) = 43/100   
                                                    These are correct/exact probabilities over the conducted  
                                                    experiments, but only an estimate of  probability in general. 
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Probability (review of  basics) 

Additivity of  probabilities.  
 
If  ωi and ωj are mutually exclusive, then P(ωi or ωj) = P(ωi) + P(ωj) 

Example  
•  In a die roll: P(2 or 5) = P(2) + P(5) = 2/6 = 1/3  (2 and 5 are mutually exclusive) 
 

If  ωi and ωj are NOT (necessarily) mutually exclusive,  
           then P(ωi or ωj) = P(ωi) + P(ωj) – P(ωi and ωj) 
 
 
Independence of  different outcome spaces or independence of  sequence of   
               draws/trials/experiments from same outcome space.  

If  independent then 
P(ωi in trial/space 1 followed by ωj in trial/space 2) = P(ωi) * P(ωj)  for all ωi and ωj  

      
Examples  
•  P(H, H) = P(H)*P(H) = ¼         
•  P(H, 3) = P(H) * P(3) = ½ * 1/6 = 1/12 

•  [H]/([H]+[T]) * ([3]/[1]+[2]+[3]+[4]+[5]+[6]) 

ωi ωj 

Don’t double count the intersection 
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Countably infinite outcome spaces: e.g., flip a coin until first head 

          Ω = H,  TH,  TTH,   TTTH, …..    

          P(H) = ½,   P(TH) = ¼,  P(TTH) = 1/8,  P(TTTH) = 1/16, …. 

  probabilities must still sum to 1, since these outcomes are mutually exclusive. 

             ∑ 1/(2^(i+1))  = 1 

 

Joint outcome spaces and probabilities: W1 ✖ W2 

         if  W1 = H,  T   then  W1 ✖ W1 =  H,H    H,T    T,H   T,T    

                                                              (each with a probability, and probabilities must sum to 1) 

         if  W2 = 1, 2, 3, 4, 5, 6  then W1 ✖ W2 = H,1   H,2  …  H,6   T,1 …..  T,6 

                                                              (each with a probability, and probabilities must sum to 1) 

i=0 

inf 

Douglas H. Fisher 
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Random “variables”: a real-valued function defined over an outcome space: 

 

              Ω = H,  TH,  TTH,   TTTH, ….. 

  X1(Ω) =      0     1       2          3     ….   (# of  T before first H) 

  X2(Ω)         0.00001  …..     0.0002 … (muscle fatigue) 

  X3(Ω)         100.0 …………95.4  …..  (patience) 

A random variable defines an outcome space. Probabilities can be assigned to random variable 
values. 

 

After this lecture, I will not use the term “random variable” often. There is considerable 
confusion around the term. I will refer to variables, outcome spaces (or worlds), and functions 
defined over outcome spaces. 
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Expected value of  a random variable (function): EX = ∑ [xi * P(X(Ω)=xi)] = ∑ [X(ωi )*P(ωi )]  
         where xi is a value of  the random variable (function) X(Ω), and ωi in an outcome in Ω 
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e.g., Expected number of  examined nodes in successful search 
of  a binary search tree 

Ω  =  (lookup) 10,      4,      15,      2,      11,      17,      14 
P(ωi )             0.1     0.1     0.05   0.05   0.2      0.3      0.2 
X(ωi )              1        2         2       3       3          3         4  
 
EX = 1(0.1) + 2(0.1+0.05) + 3(0.05+0.2+0.3) + 4(0.2) 

Random variables (functions) used to represent cost (space, time), value (goodness, utility), etc. 
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EX = ∑ [xi * P(X(Ω)=xi)] = ∑ [X(ωi )*P(ωi )] 
xi ωi 

Expected minimax 
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EX = ∑ [xi * P(X(Ω)=xi)] = ∑ [X(ωi )*P(ωi )] 
xi ωi 

Expected minimax 
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EX = ∑ [xi * P(X(Ω)=xi)] = ∑ [X(ωi )*P(ωi )] 
xi ωi 

Expected minmax 
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Expected minimax: there is a pruning 
method akin to alpha beta pruning 
in certain minimax (last week) 
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Conditional probability:  P(e1 | e2) = P(e1 and e2) / P(e2)  where e1 is an event (a draw 
    from an outcome space including the value of  a random variable (function), and e2 is a draw 
    from another outcome space or a proceeding/preceding draw from the same outcome space 
    as e1 was drawn from. 
 
e.g.,   P(flu | sore-throat) = P(flu and sore-throat) / P(sore-throat) 
 
         P(battery-dead | car-wont-start) = P(battery-dead and car-wont-start) / P(car-wont-start) 
 
In terms of  objective probability assignment 
 
P(e1 | e2) = P(e1 and e2) / P(e2) = ([e1 and e2] / [o]) / ([e2] / [o])  
                                                     = [e1 and e2] / [e2] 
    where [o] = [e1 and e2] + [e1 and ~e2] + [~e1 + e2] + [~e1 + ~e2] 
                    = ([e1 and e2] + [e1 and ~e2])   +   ([~e1 + e2] + [~e1 + ~e2]) 
                    = [e1] + [~e1] 
                    = ([e1 and e2] + [~e1 and e2])   +   ([e1 + ~e2] + [~e1 + ~e2]) 
                    = [e2] + [~e2] 

Douglas H. Fisher 
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Conditional expectation 
 
   E(X | Y = yj)  = ∑  xi * P(X = xi | Y = yj)  = ∑  X(ωi) * P(W = ωi | Y = yj)  

xi ωi 

                                       Si 
 
 
              Si1                                               Si2 
 
 
 
Si11                   Si12                      Si21                Si22 

P(Si1 | Si, Op1) P(Si2 | Si, Op1) 

P(Si11 | Si, Op1 Si1, Op2) 
P(Si12 | Si, Op1, Si1, Op2) 

P(Si21 | Si2, Si, Op2) 
P(Si22 | Si, Op1, Si2, Op2) 

Ui11 Ui12 Ui21 Ui22 

Assume a plan executer in an environment in which operators do not achieve their 
effects with certainty, but in which some anticipated effects of  an operator may not be 
present after an operator has been applied. Then, with some probability, applying Op1 
from state Si will lead to state Si1 and with some probability it will lead to Si2, etc. The U 
values are utility values of  the possible resulting states (e.g., the number of  goal conditions 
satisfied by the state). 
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Conditional expectation cont 
 
   E(X | Y = yj)  = ∑  xi  P(X = xi | Y = yj)  = ∑  X(ωi)  P(W = ωi | Y = yj)  

xi ωi 

                                       Si 
 
 
              Si1                                               Si2 
 
 
 
Si11                   Si12                      Si21                Si22 

P(Si1 | Si, Op1) P(Si2 | Si, Op1) 

P(Si11 | Si, Op1, Si1, Op2) 
P(Si12 | Si, Op1, Si1, Op2) 

P(Si21 | Si, Op1, Si2,Op2) 

P(Si22 | Si, Op1,Si2,Op2) 

EU(Si1 | Si, Op1) = P(Si11 | Si, Op1, Si1, Op2) * Uill + P(Si12 | Si, Op1, Si1, Op2) * Uil2  

Douglas H. Fisher 

Ui11 Ui12 Ui21 Ui22 



Conditional expectation 
 
   E(X | Y = yj)  = ∑  xi  P(X = xi | Y = yj)  = ∑  X(ωi)  P(W = ωi | Y = yj)  

xi ωi 

                                       Si 
 
 
              Si1                                               Si2 
 
 
 
Si11                   Si12                      Si21                Si22 

P(Si1 | Si, Op1) P(Si2 | Si, Op1) 

P(Si11 | Si, Op1, Si1, Op2) 
P(Si12 | Si, Op1, Si1, Op2) 

P(Si21 | Si, Op1, Si2,Op2) 
P(Si22 | Si, Op1,Si2,Op2) 

EU(Si1 | Si, Op1) = P(Si11 | Si, Op1, Si1, Op2) * Uill + P(Si12 | Si, Op1, Si1, Op2) * Uil2  

EU(Si) = P(Si1 | Si, Op1) * EU(Si1 |Si, Op1) + P(Si2 | Si, Op1) * EU(Si2 |Si, Op1) 

Douglas H. Fisher 

Ui11 Ui12 Ui21 Ui22 

Make sure that you can work out an example like this, and with specific values 



Bayes rule:   
 
P(e1 | e2) = P(e1 and e2) / P(e2) à P(e1|e2)P(e2) = P(e1 and e2) 
P(e2 | e1) = P(e1 and e2) / P(e1) à P(e2|e1)P(e1) = P(e1 and e2) 
 
à  P(e1 | e2) = [P(e2 | e1) * P(e1)] / P(e2) 

Consider that a diagnostician may want to estimate P(Di | Sj)  
      where Di is a disease, Sj is a symptom. P(Di | Sj) is hard for 
      most experts to accurately estimate, but 
 
     P(Di | Sj) = [P(Sj | Di) * P(Di)] / P(Sj)   and P(Sj | Di) and P(Di) is easier 
                                                                     for experts to accurately estimate. 
 
     P(Sj) is hard to estimate, but it may not be important! 
 
P(D1 | Sj) = [P(Sj | D1) * P(D1)] / P(Sj)  
P(D2 | Sj) = [P(Sj | D2) * P(D2)] / P(Sj)                which Di (disease) is most probable 
  …..                                                                        note that P(Sj) is constant across choices 
P(DM | Sj) = [P(Sj | DM) * P(DM)] / P(Sj)  
 

Douglas H. Fisher 
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P(D1 | Sj) = [P(Sj | D1) * P(D1)] / P(Sj)       
P(D2 | Sj) = [P(Sj | D2) * P(D2)] / P(Sj)  
….. 
P(DM | Sj) = [P(Sj | DM) * P(DM)] / P(Sj)  
 
à 
 
P(D1 | Sj) α P(Sj | D1) * P(D1)       
P(D2 | Sj) α P(Sj | D2) * P(D2)              answering which Di which is most probable 
…..                                                                does not require P(Sj) 
P(DM |Sj) α P(Sj | DM) * P(DM)  
 
 
 proportional to 

Douglas H. Fisher 

Probability (review of  basics) 

Recall a similar observation when we discussed the Naïve Bayesian Classifier  
(Machine Learning) 



Chain rule: 
 
Consider  P(e1 and e2) = P(e1 | e2) P(e2) 
 
                P(e1 and e2 and e3) = P(e1 | e2 and e3) P(e2 and e3) 
 
                                                 = P(e1 | e2 and e3) P(e2 | e3) P(e3) 
 
In general: 
 
P(e1, e2,  e3,  … , eN)                read “,” as “and” 
 
       =  P(e1 | e2, e3,  … , eN) P(e2 | e3,  …., eN) P(e3 | e4,…,eN) …. P(e(N-1) | eN) P(eN) 
 

Douglas H. Fisher 
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You have seen this before in lecture on Naïve Bayesian learning 



 
Put the chain rule and Bayes rule together: 
 
    P(Di | S1, S2, …, SN)     =     (P(S1, S2, …, SN | Di) * P(Di)) / P(S1, S2, … SN) 
 
         =    P(Di)  *  P(S1 | Di)   *   P(S2 | Di, S1)   * … * P(SN | Di, S1,…,S(N-1)) 
                                 P(S1)                P(S2|S1)                     P(SN | S1,…, S(N-1)) 
 
         α    P(Di)  *  P(S1 | Di)   *   P(S2 | Di, S1)   * … * P(SN | Di, S1,…,S(N-1)) 
 
allows Bayesian updating (i.e., incremental revision of  probability estimate with each new piece of  evidence) 

Bayes rule 

Chain rule 

Douglas H. Fisher 
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Where do  P(Sj | Di, S1, S2, …, S(j-1)) come from???  
 
     Would need a lot of  data for an objective assignment that was accurate. 
     Experts find it difficult to estimate in a subjective assignment 
 
 
Independence revisited 
 
  Outcome spaces Ω1 and Ω2 are independent iff    P(ωi and ωj ) = P(ωi )  *  P(ωj ) 
       for all ωi in Ω1 and all ωj in Ω2  
 
 
P(ωi and ωj ) = P(ωi | ωj ) P(ωj ) = P(ωi )  *  P(ωj )  ßà  P(ωi | ωj ) = P(ωi )  
 
                                                                                    ßà P(ωj | ωi ) = P(ωj )  
 
 

if independent 
Alternate definition of 

independence 

Douglas H. Fisher 
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     Conditional independence 
     Ω1 and Ω2 are conditionally independent given (any known outcome from) Ω3 iff  
 
     P(ωi and ωj | ωk ) = P(ωi | ωk ) *  P(ωj | ωk )  for all ωi in Ω1, all ωj in Ω2 , and all ωk in Ω3 
 
             ßà P(ωi | ωj and ωk ) = P(ωi | ωk )         P(ωi and ωj | ωk )  = P(ωi | ωj and ωk ) P(ωj | ωk )  

             ßà P(ωj | ωi and ωk ) = P(ωj | ωk )  

     We can also speak of  Ω1 and Ω2 as conditionally independent given a particular  
              outcome from Ω3  
 

Douglas H. Fisher 
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     Conditional independence cont 
      
     If  symptoms independent given disease then 
 
          P(Di | S1, S2, …SN) 
 
                  α 
 
         P(Di)  *  P(S1 | Di)   *   P(S2 | Di, S1)   * … * P(SN | Di, S1,…,S(N-1)) 
 
                  = 
 
         P(Di)  *  P(S1 | Di)   *   P(S2 | Di)   * … * P(SN | Di) 

Douglas H. Fisher 
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if independent 



Consider an ordering of  variables to factor a joint probability distribution: V1, V2, V3, V4, V5 
 
e.g. P(v1 and v2 and ~v3 and v4 and ~v5) 
 
    = P(v1) * P(v2|v1) * P(~v3|v1,v2) * P(v4|v1,v2,~v3) * P(~v5|v1,v2,~v3,v4) 
 
Assume the following conditional independencies: 
 
 P(v1) 
 P(v2|v1) = P(v2)   and P(v2|~v1) = P(v2), P(~v2|v1) = P(~v2), P(~v2|~v1) = P(~v2) 
 P(~v3|v1,v2) = P(~v3|v1)   
    and P(~v3|v1,~v2) = P(~v3|v1), P(~v3|~v1,v2) = P(~v3|~v1), P(~v3|~v1,~v2) = P(~v3|~v1), 
            P(v3|v1,v2) = P(v3|v1), P(v3|v1,~v2) = P(v3|v1), P(v3|~v1,v2) = P(v3|~v1),  
            P(v3|~v1,~v2) = P(v3|~v1) 
 
 P(v4|v1,v2,~v3) = P(v4|v2, ~v3) and …… 
 P(~v5|v1,v2,~v3,v4) = P(~v5|~v3) and ….. 
 

V2 independent of  V1 

V3 independent of  V2 conditioned on V1 

factorization ordering 

Belief  (or Bayesian) Networks 

Douglas H. Fisher 



A Belief  (or Bayesian) Network is a graphical representation of  a joint probability  
distribution with (conditional) independence relationships made explicit 

For a particular factorization ordering (V1, V2, V3, V4, V5), construct a belief  
network as follows: 

P(v1), P(~v1) V1 
P(v1) = 0.75 
P(~v1) = 0.25 = 1 – P(v1) 

Since P(v2|v1) = P(v2) …. 

V1 a “root” 

V2 is second variable in ordering. If  V2 independent of  a subset of  its predecessors 
(possibly the empty set) in ordering conditioned on a disjoint subset of  predecessors 
(including possibly all its predecessors), then the latter subset is its parents, else 
V2 is a “root”  

V1 P(v1) V2 P(v2) 

Douglas H. Fisher 



V3 is third variable in ordering. Since P(v3|v1,v2) = P(v3|v1), …: 

V1 P(v1) V2 P(v2) 

V3 P(v3|v1) 
P(v3|~v1) 
P(~v3|v1) = 1 – P(v3|v1) 
P(~v3|~v1) = 1 – P(v3|~v1) 

Since P(v4| v1, v2, v3) = P(v4 | v2, v3), … 

V1 P(v1) V2 P(v2) 

V3 P(v3|v1) 
P(v3|~v1) 

V4 

P(v4|v2, v3), P(~v4|v2,v3) = 1-P(v4|v2,v3) 
P(v4|v2,~v3), … 
P(v4|~v2, v3), … 
P(v4|~v2, ~v3), … 
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Since P(v5|v1,v2, v3, v4) = P(v5|v3),…: 

V1 P(v1) V2 P(v2) 

V3 P(v3|v1) 
P(v3|~v1) 

V4 
P(v4|v2, v3), 
P(v4|v2,~v3), 
P(v4|~v2, v3), 
P(v4|~v2, ~v3) 

V5 P(v5|v3) 
P(v5|~v3) 

Components of  a belief  network: a topology (graph) that qualitatively indicates 
     displays the conditional independencies, and probability tables at each node 
 
Semantics of  graphical component: for each variable, V, V is independent of  all 
   of  its non-descendants conditioned on its parents 
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More on belief  (Bayesian) networks 
  
•  constructing BNs and  
•  inference with BNs 
 
next time 

Douglas H. Fisher 


