CS 4260 and CS 5260
Vanderbilt University

Lecture on Uncertainty (Sequential Models)

This lecture assumes that you have
* Read Section 8.1 through 8.3, watched lecture on belief network inference, and
read section 8.5 of Artlnt

ArtInt: Poole and Mackworth, Artificial Intelligence 2E
at http://artint.info/2e/html/ArtInt2e.html
to include slides at http://artint.info/2e/slides/ch08/lect5.pdf

Douglas H. Fisher



Project ideas

* Increased functionality -- Filling in courses to make 12
credit minimums
* Randomly?
* Heuristically?
* Interactively?
* Prior knowledge? (semantic web)
* Machine Learning

Douglas H. Fisher



= Adapted from Poole qnd l\hckwo1th Artificial Intelhgence 2E
Markov Chaln slides at http://z Anfc slides/chC D.

@ A Markov chain is a special sort of belief network:

O OasOniOna©

What probabilities need to be specified?
e P(Sp) specifies initial conditions
o P(S5:11|S;) specifies the dynamics
What independence assumptions are made?
o P(S5i41/5,...,S;) = P(5:41|S:).
e Often S; represents the state at time t. Intuitively S;

conveys all of the information about the history that can
affect the future states.

@ "The future is independent of the past given the present.”
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= Adapted from Poole qnd chkwmth Artificial Intelhgence 2E
Markov Chaln slides at http://z Anfc slides/chC D.

@ A Markov chain is a special sort of belief network:

O~~~ —~®

What probabilities need to be specified?
o P(Sp) specifies initial conditions
o P(5;11|S;) specifies the dynamics

As with previous lectures, capital S, represents an outcome space (i.e., as set of
possible states, s, and P(S)) is a probability distribution over s, s, so

P(Sy) is P(sp1), P(s)5 - -5 P(Son0>

P(S,[Sg) 18 P(s11[801)5 -+ P(s11] S0n)> £ (512 | S1)s -5 P(812] S0n)> +++> L1, | S0n,)
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= Adapted from Poole qnd l\hckwo1th Artificial Intelhgence 2E
Markov Chaln slides at http://z Anfc slides/chC D.

@ A Markov chain is a special sort of belief network:

O OasOnsOna©

What probabilities need to be specified?
@ P(Sy) specifies initial conditions
o P(S;;1|S;) specifies the dynamics
S, can represent a primitive state (or outcome) that is not decomposable, like the node in a graph,

or more typically, each S, will be a joint outcome space, as in the state of a plan from chapter 6 or
of a training (or test) datum from chapter 7.

P(s,) = P(< lab, ~rhc, swc, mw, rhm>)
For example, /

s, might be < lab, ~rhc, swc, mw, rhm>, or
s;. might be [ Scilfi = -1, Suspense = 1, Romance = -1, Ebert = 1, Siskel = 1, ..., Watch-it = 1]
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Adapted from Poole qnd l\hckwo1th Artificial Intelhgence 2E

Markov chain Adspred from B

What independence assumptions are made?
Q P(5i+1|507 Srang 5,) — P(S,'_|_1|S,').
@ Often S; represents the state at time t. Intuitively S;

conveys all of the information about the history that can
affect the future states.

@ “The future is independent of the past given the present.”

Strips-style operators from chapter 6 make this assumption trivially
e.g., puc: Precondition {cs, ~rhc}; Effect {rhc},
where P({cs, rhc,...} | {cs,~rhc,...})=1.0 if puc applied, regardless of path,
and 0.0 otherwise
or perhaps 0.3 overall (just made this up!!!)
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Adapted from Poole qnd l\hckwo1th Artificial Intelhgence 2E

Markov chain Adspred from B

What independence assumptions are made?
Q P(5i+1|507 Srang 5,) — P(S,'_|_1|S,').
@ Often S; represents the state at time t. Intuitively S;

conveys all of the information about the history that can
affect the future states.

@ “The future is independent of the past given the present.”

* But what if future does depend on past, as well as the present (where “past” corresponds to the
path to the present state)?

* For example, if I am in downtown Nashville, I might be down there for different reasons, and
my next step may be dependent of more than the state (e.g,, intersection) I am at.

* Years of historic warfare and other grievance may be the classic example of a non-Markov

process
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Adapted from Poole qnd l\hckwo1th Artificial Intelhgence 2E

Markov chain Adspred from B

What independence assumptions are made?
Q P(5i+1|507 Srang 5,) — P(S,'_|_1|S,').
@ Often S; represents the state at time t. Intuitively S;

conveys all of the information about the history that can
affect the future states.

@ “The future is independent of the past given the present.”

* But what if future does depend on past, as well as the present (where “past” corresponds to the
past to the present state)? Consider state s, and path to it as p_s,_s;.

* We can still represent as Markov process by representing a state as <s,_, p_s,_s; > That 1s,
embed the path (i.e., “the past”) to a state, into a new state description.

* What if next action also depends on a goal, g _, that agent is pursuing? Then state 1s

<Sii > > P_S0_Si~
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Adapted from Poole qnd l\hckwo1th Artificial Intelhgence 2E

Markov chain Adspred from B

@D+ DO~

@ A stationary Markov chain is when for all i/ > 0, i/ > 0,
P( Sii1 | S ,-) — P( S Jr1‘5,-,)_ j.e., transition probabilities never change
o We specify P(Sp) and P(Si+1|S5).
» Simple model, easy to specify
» Often the natural model
» The network can extend indefinitely

For example, P(< lab, rhc, swe, mw, thm> | < lab, ~rhc, swc, mw, thm>)=0.95
atstep 2, ..., at step 23, ..., at step 10037, .... then stationary dynamics (or model)

But what if robot is learning? So P(< lab, rhc, swc, mw, thm> | < lab, ~rhc, swc, mw, rhm>)=0.25
atstep 2, ..., 0.86 at step 23, ..., 0.995 at step 10037, .... then NON-stationary dynamics
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Adapted from Poole qnd l\hckwo1th Artificial Intelhgence 2E

Markov chain Adspred from B

DD~

@ A distribution over states, P is a stationary distribution if
for each state s, P(S; 1=s) = P(S;=s).
L.e., a given state s, is equally likely at each step

@ A Markov chain is ergodic if, for any two states s; and s,
there is a non-zero probability of eventually reaching s,
from s;. i.e., s2 is reachable from s1

@ A Markov chain is periodic if there is a strict temporal
regularity in visiting states. A state is only visited divisible
at time t if t mod n = m for some n, m.
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Adapted from Poole and Mackw orth Arnncml Inte]hgence 2E

Markov chain (Pagerank) s .

DD+ DO~

Consider the Markov chain:

@ Domain of §; is the set of all web pages
e P(So) is uniform; P(Sp = p;) =1/N See !
for more details
P(Sit1=pj | Si = pi)
1 / ne if px links to p;j equally likely that each link will be taken
=(1—d)/N+d=*< 1/N if px has no links wniform random jump 1o p,

0 otherwise If p, has links, but b is not one of them

Probability of mental break — pyypabilivy surfing continues

where there are N web pages and ny links from page py
@ d =~ 0.85 is the probability someone keeps surfing web
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. Adapted from Poole and Mackworth, Artificial Inte]hgence 2E
H Idden M arkov MOdeI slides at http://artint.info/2e/slides/ch08 /lect5.pd

e A Hidden Markov Model (HMM) is a belief network:

0000

The probabilities that need to be specified:

o P(Sy) specifies initial conditions
o P(S;.1|S;) specifies the dynamics

e P(O;|S;) specifies the sensor model
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. Adapted from Poole and Mackw orth Artificial Inte]hgence 2E
H I d d e n M a r kov M Od eI slides at http://artint.info/2e/slides/ch08 5.f
Filtering:

P( Si | Dl Oi) Probability distribution of each state conditioned on all prior observations

What is the current belief state based on the observation
history?

S.
ik
P(ﬁ,{|01, - O,') = P(sy, 0y...,0)/P(0y..., 0)
propto P(s,, 04, ..., 0)

P(S,=x|0,=a)? P(S,=y|0,=2)?
= P(Oy=alS=x)P(S;=x)/P(O=a) = P(O,=alS=y)P(S;=y)/P(O;=2)

\ J
I

@e Oy, query} @ ?’ @

@ then observe Oy, query $;.

o then observe O,, query S.
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. Ad’lpted from Poole and Mackw orth Artificial Inte]hgence 2E
Hidden Markov Model i s it i /e 8l
Filtering:

P( Si | Dl Oi) Probability distribution of each state conditioned on all prior observations

What is the current belief state based on the observation
history?

S.
ik
P(ﬁ,{|01, - O,') = P(sy, 0y...,0)/P(0y..., 0)
propto P(s,, 04, ..., 0)

Using what you learned about inference with belief networks, give P(S ,=x|O,=a, O,=b) only in terms of probabilities
Sfound in (or trivially computed from) the probability tables of the belief network below, where the domain of each step S

are the states x and y. The observation variables at each step are the same, with the same domains (a, b).
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. Ad’lpted from Poole and Mackw orth Artificial Inte]hgence 2E
Hidden Markov Model i s it i /e 8l

Using what you learned about inference with belief networks, give P(S ,=x|O,=a, O,=b) only in terms of probabilities
Sfound in (or trivially computed from) the probability tables of the belief network below, where the domain of each step S

are the states x and y. The observation variables at each step are the same, with the same domains (a, b).

PS,=x|O,=a, O,=b)
= P(S,=x, O,=a, O,=b) / P(O,=a, O,=h)
propto = P(§,=x, O, =a, O,=b)
= PO,;=b|S,=x, O,=a)P(S;=%, O =a)
= PO,=b|S5,=9)[P(S,=x, Oy=2, 5,=x) + P(S,=x, Oy=2, 5,=y)]
= Prre?

PS,=y|Oy=a, O;=b)
= PS;=y, Oy=a, O,;=b) / P(O,=a, O,=b)
propto = P(S,=y, Oy,=a, O,=b)

= 2%p ﬂ %
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. Adapted from Poole and Mackworth, Artific
H I d d e n M a r kov M Od eI slides at http://artint.info/2e/slides/ch08

HMMs augmented with actions, like STRIPS operators, though with probabilistically qualified effects

@ Suppose a robot wants to determine its location based on
Its actions and its sensor readings: Localization

@ This can be represented by the augmented HMM:
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. Adapted from Poole and Mackworth, Ar
H I d d e n M a r kov M Od eI slides at http://artint.info/2e/slides /ch0¢

HMMs augmented with actions, like STRIPS operators, though with probabilistically qualified effects

@ Suppose a s to determine its location based on

its actions and its sensor readings: tocahzation

This example is a bit

@ This can be represented by the augmented | misicading because the

example assumes that
an observer is computing

probabilities of the robot’s
location
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. Adapted from Poole and Mackworth, A
Hidden Markov Model s o

Example ot localization

@ Doors at positions: 2, 4, 7, 11.

@ Noisy Sensors fo sense whether in front of a door

@ Stochastic Dynamics ransition probabilities

@ Robot starts at an unknown location and must determine
where it Is.
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Hidden Markov Model

PLoc,=7 | O,=~od, A;=gR, O,=od, A;=gR, O,=od) »?? @ @

0 1 2 4 5 6 i 8 9 10 11 12 13 14 15

e P(Observe Door | At Door) = 0.8 P(~od|ad) = 0.2

Sensor Model ( | )
@ P(Observe Door | Not At Door) = 0.1 P(~od|~ad) = 0.9
e P(loc;.1 = L|action, = goRight A loc; = L) = 0.1
@ P(lociy1 = L + 1|action, = goRight A loc; = L) = 0.8

D . e P(loc;+1 = L+ 2|action; = goRight A loc; = L) = 0.074

ynamics e P(loc;.1 = L'|action, = goRight A loc; = L) = 0.002 for

Model any other location L.

» All location arithmetic is modulo 16.
» The action golLeft works the same but to the left.
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. Adapted from Poole and Mackworth, A
H I d d e n M a r kov M Od eI slides at http://artint.info/2e/slides /ch0¢

@ Example: we can combine information from a light sensor
and the door sensor Sensor Fusion  specify probability tables, and

Perform localization

St robot location at time t Location induces condit.ional |
. dependence between prior location
D, door sensor value at time t and action

L; light sensor value at time t
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Simple Language Models: bigram

Adapted from Poole qnd chkwmth Altlﬁcml Intelhgence 2E
slides at http://z :

Sentence: wq, wo, w3, ..., W,.

" @@ -

@ Domain of each variable is the set of all words.

@ What probabilities are provided?

» P(w;|w;_1) is a distribution over words for each position
given the previous word

@ How do we condition on the question “how can | phone
my phone”?
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Adapted from Poole and Mackw orth Artlhcml Intelhgence 2E

slides at http:

Naive Bayes Classifier: User's request for heIp

H is the help page the user is interested in.
What probabilities are required?

@ P(h;) for each help page h;. The user is interested in one
best web page, so ). P(h;) = 1.

e P(w; | h;) for each word w; given page h;. There can be
multiple words used in a query.

@ Given a help query: condition on the words in the query
and display the most likely help page.
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Simple Language Models: set-of-words

Adapted from Poole qnd chkwmth Altlﬁcml Intelhgence 2E
slides at http://z '

Sentence: wy, wo, wa, . . ..
Set-of-words model:

OICDHES

@ Each variable is Boolean: true when word is in the
sentence and false otherwise.

@ What probabilities are provided?
» P("a"), P("aardvark"), ..., P("zzZ"

@ How do we condition on the question “how can | phone
my phone” ?
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Simple Language Models: bag-of-words

Adapted from Poole qnd chkwmth Altlﬁcml Intelhgence 2E
slides at http://z '

Sentence: wy, Wo, Wi, ..., W,.
Bag-of-words or unigram:

OROROENO

@ Domain of each variable is the set of all words.
@ What probabilities are provided?

» P(w;) is a distribution over words for each position

@ How do we condition on the question “how can | phone
my phone”?
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Simple Language Models: bigram

Adapted from Poole qnd chkwmth Altlﬁcml Intelhgence 2E
slides at http://z :

Sentence: wq, wo, w3, ..., W,.

" @@ -

@ Domain of each variable is the set of all words.

@ What probabilities are provided?

» P(w;|w;_1) is a distribution over words for each position
given the previous word

@ How do we condition on the question “how can | phone
my phone”?
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Simple Language Models: trigram

Adapted from Poole qnd chkwmth Altlﬁcml Intelhgence 2E

slides at http://z

Sentence: wq, wo, w3, ..., W,.
trigram:

---T@

Domain of each variable is the set of all words.
What probabilities are provided?

o P(wi|lwi_1,wi_2)
N-gram

© P(w;|w;_1,...w;_py1) is a distribution over words given
the previous n — 1 words
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Predictive Typing and Error Correction

Adqpted from Poole qnd Mackv VOlth Altlﬁcml Intelhgence 2E

G- GG (- () G9) (29)-(5)

domain(W;) = {"a"," aarvark”,...,"zzz"," 1"," 7"}
domaln(LJ,) e {n an 7 " bn : " Cn e nZn : " 1” : 11211 p— }
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Adapted from Poole qnd chkwmth Artificial Intelhgence 2E

Beyond N—gra ms slides at http://z

@ A man with a big hairy cat drank the cold milk.
@ Who or what drank the milk?

Simple syntax diagram:
S
/ \
man \ drank np
VAN ™\

the cold milk
with np

N

a big  hairy cat
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Topic Model
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An example of topic modeling

Incorporating Sustainability into Computing Education
Douglas H. Fisher, Zimei1 Bian, Selina Chen
IEEE Intelligent Systems, Vol. 31, No. 5 (2016)

Sustainability and Assistive Computing (Bryn Mawr College, Fall
2010);

Computing and the Environment (Vanderbilt University, Spring 2011);
Topics in Computational Sustainability (Cornell University, Spring
2011);

Computational Sustainability (University of British Columbia, Winter
2013-2014);

Computational Sustainability (Georgia Tech, Spring 2014);

Seminar on Computational Sustainability: Algorithms for Ecology and
Conservation (University of Massachusetts Amherst, Spring 2014)

Douglas H. Fisher



Incorporating Sustainability into Computing Education
Douglas H. Fisher, Zimei1 Bian, Selina Chen
IEEE Intelligent Systems, Vol. 31, No. 5 (2016)

TOPICS GENERATED

Topic® Weight Keywords Topic Name
0 0.15074 energy power data consumption time carbon electricity environmental system GreenlT/Energy
1 0.18246 problem algorithm set time sensor greedy network number optimal Optimization/Sensor
2 0.16311 data environmental urban enetgy services development science land government Urban/Policy
3 0.09139 problem cost solution budget corridor connectivity habitat connected conservation Optimization/Land
4 0.08485 waste electronic media hazardous equipment social nigeria computer countries GreenlIT/Materials
3 0.27841 model data models species distribution set maxent detection modeling Modeling/Species
6 0.11874 energy building cost design optimization model optimisation objective buildings Optimization/Built
7 0.09318 model capture data survival time models rates parameters recapture Modeling /Method
L] 0.12163 food network species webs web time information data networks Ecology Webs
9 0.09067 climate change global water ocean sea earth fish system Earth Systems

Douglas H. Fisher




Incorporating Sustainability into Computing Education
Douglas H. Fisher, Zimei1 Bian, Selina Chen
IEEE Intelligent Systems, Vol. 31, No. 5 (2016)

COURSE TOPIC WEIGHTS
School Topic 0 Topic 1 Topic 2 Topic 3 Topic 4
Brvn Mawr 0.090943549  0.127644406 0.20480037 210605 0.265664737
Cornell 7.22E-05 0085409982 0.174295598 0.009161242 (.0)5980967
Georgia Tech  0.081458989 0.136824135 0.100419814 0.125061275  0.061678773
UBC 0.200559536 0018010526 0.172902203  0.044725581  0.052835175
UMass Amherst 1L8TE-05 0177675797 6.20E-04 0.217023506 2.66E-06

Vanderbilt  0.35419927Z  0.033780717 0.02020729 0.253033232 (.072572848

School Topic J Topic 6 Topic 7 Topic & Topic 9
Bryn Mawr 0.29306572 0.001092996  0.002332577  0.005188805 0.009245879
Cornell 0.054950987  0.056984767 0080727397 0.474219654  0.04919718
Georgia Tech  0.193939583  0.14640088 0028616956  0.038639172  0.0BGODG0423
UBC 0.102387938  0.100914674 524E-05 0010594252 0.297017732
UMass Amherst 0.284061303 0030038263 0.283903305  0.006486598 1.70E-04
Vanderbilt 0048782513 0020952409 251E-04  0.,137485102 0.058735835
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