CS 4260 and CS 5260 Vanderbilt University

Lecture on Uncertainty (Sequential Models)

This lecture assumes that you have

- Read Section 8.1 through 8.3, watched lecture on belief network inference, and read section 8.5 of ArtInt

ArtInt: Poole and Mackworth, Artificial Intelligence 2E at http://artint.info/2e/html/ArtInt2e.html
to include slides at http://artint.info/2e/slides/ch08/lect5.pdf

Project ideas

- Increased functionality -- Filling in courses to make 12 credit minimums
- Randomly?
- Heuristically?
- Interactively?
- Prior knowledge? (semantic web)
- Machine Learning
- A Markov chain is a special sort of belief network:

What probabilities need to be specified?

- $P\left(S_{0}\right)$ specifies initial conditions
- $P\left(S_{i+1} \mid S_{i}\right)$ specifies the dynamics

What independence assumptions are made?

- $P\left(S_{i+1} \mid S_{0}, \ldots, S_{i}\right)=P\left(S_{i+1} \mid S_{i}\right)$.
- Often S_{t} represents the state at time t. Intuitively S_{t} conveys all of the information about the history that can affect the future states.
- "The future is independent of the past given the present."
- A Markov chain is a special sort of belief network:

What probabilities need to be specified?

- $P\left(S_{0}\right)$ specifies initial conditions
- $P\left(S_{i+1} \mid S_{i}\right)$ specifies the dynamics

As with previous lectures, capital S_{i} represents an outcome space (i.e., as set of possible states, s_{ik}, and $\mathrm{P}\left(\mathrm{S}_{\mathrm{i}}\right)$ is a probability distribution over $\mathrm{s}_{\mathrm{ik}} \mathrm{s}$, so

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{~S}_{0}\right) \text { is } \mathrm{P}\left(\mathrm{~s}_{01}\right), \mathrm{P}\left(\mathrm{~s}_{02}\right), \ldots, \mathrm{P}\left(\mathrm{~s}_{0 \mathrm{n}_{0}}\right) \\
& \mathrm{P}\left(\mathrm{~S}_{1} \mid \mathrm{S}_{0}\right) \text { is } \mathrm{P}\left(\mathrm{~s}_{11} \mid \mathrm{s}_{01}\right), \ldots, \mathrm{P}\left(\mathrm{~s}_{11} \mid \mathrm{s}_{0 \mathrm{n}_{0}}\right), \mathrm{P}\left(\mathrm{~s}_{12} \mid \mathrm{s}_{01}\right), \ldots, \mathrm{P}\left(\mathrm{~s}_{12} \mid \mathrm{s}_{0 \mathrm{n}_{0}}\right), \ldots, \mathrm{P}\left(\mathrm{~s}_{1 \mathrm{n}_{1}} \mid \mathrm{s}_{0 \mathrm{n}_{0}}\right)
\end{aligned}
$$

Markov chain

- A Markov chain is a special sort of belief network:

What probabilities need to be specified?

- $P\left(S_{0}\right)$ specifies initial conditions
- $P\left(S_{i+1} \mid S_{i}\right)$ specifies the dynamics
S_{i} can represent a primitive state (or outcome) that is not decomposable, like the node in a graph, or more typically, each S_{i} will be a joint outcome space, as in the state of a plan from chapter 6 or of a training (or test) datum from chapter 7 .

For example,

$$
\mathrm{P}\left(\mathrm{~s}_{\mathrm{ik}}\right)=\mathrm{P}(<\text { lab }, \sim \text { rhc, swc, mw, rhm }>)
$$

s_{ik} might be $<$ lab, \sim rhc, swc, mw, rhm>, or
s_{ik} might be $[$ SciFi $=-1$, Suspense $=1$, Romance $=-1$, Ebert $=1$, Siskel $=1, \ldots$, Watch- $\mathrm{it}=1]$

Markov chain

What independence assumptions are made?

- $P\left(S_{i+1} \mid S_{0}, \ldots, S_{i}\right)=P\left(S_{i+1} \mid S_{i}\right)$.
- Often S_{t} represents the state at time t. Intuitively S_{t} conveys all of the information about the history that can affect the future states.
- "The future is independent of the past given the present."

Strips-style operators from chapter 6 make this assumption trivially
e.g., puc: Precondition $\{\mathrm{cs}, \sim \mathrm{rhc}\}$; Effect $\{\mathrm{rhc}\}$,
where $\mathrm{P}(\{\mathrm{cs}, \mathrm{rhc}, \ldots\} \mid\{\mathrm{cs}, \sim \mathrm{rhc}, \ldots\})=1.0$ if puc applied, regardless of path, and 0.0 otherwise
or perhaps 0.3 overall (just made this up!!!)

Markov chain

What independence assumptions are made?

- $P\left(S_{i+1} \mid S_{0}, \ldots, S_{i}\right)=P\left(S_{i+1} \mid S_{i}\right)$.
- Often S_{t} represents the state at time t. Intuitively S_{t} conveys all of the information about the history that can affect the future states.
- "The future is independent of the past given the present."
- But what if future does depend on past, as well as the present (where "past" corresponds to the path to the present state)?
- For example, if I am in downtown Nashville, I might be down there for different reasons, and my next step may be dependent of more than the state (e.g., intersection) I am at.
- Years of historic warfare and other grievance may be the classic example of a non-Markov process

Markov chain

What independence assumptions are made?

- $P\left(S_{i+1} \mid S_{0}, \ldots, S_{i}\right)=P\left(S_{i+1} \mid S_{i}\right)$.
- Often S_{t} represents the state at time t. Intuitively S_{t} conveys all of the information about the history that can affect the future states.
- "The future is independent of the past given the present."
- But what if future does depend on past, as well as the present (where "past" corresponds to the past to the present state)? Consider state s_{ik} and path to it as $\mathrm{p} _\mathrm{s}_{0-} \mathrm{s}_{\mathrm{ik}}$
- We can still represent as Markov process by representing a state as $<\mathrm{s}_{\mathrm{ik}}, \mathrm{p}_{-} \mathrm{s}_{0} _\mathrm{s}_{\mathrm{ik}}>$ That is, embed the path (i.e., "the past") to a state, into a new state description.
- What if next action also depends on a goal, g_{m}, that agent is pursuing? Then state is $<\mathrm{s}_{\mathrm{ik}}, \mathrm{g}_{\mathrm{m}}, \mathrm{p}_{-} \mathrm{s}_{0-\mathrm{s}_{\mathrm{ik}}}>$

Markov chain

- A stationary Markov chain is when for all $i>0, i^{\prime}>0$, $P\left(S_{i+1} \mid S_{i}\right)=P\left(S_{i^{\prime}+1} \mid S_{i^{\prime}}\right)$. ie, transition probabilities never change
- We specify $P\left(S_{0}\right)$ and $P\left(S_{i+1} \mid S_{j=}\right)$.
- Simple model, easy to specify
- Often the natural model
- The network can extend indefinitely

For example, $\mathrm{P}(<\mathrm{lab}$, rhc, swc, mw, rhm $>\mid<\mathrm{lab}, \sim \mathrm{rhc}, \mathrm{swc}, \mathrm{mw}, \mathrm{rhm}>)=0.95$ at step $2, \ldots$, at step $23, \ldots$, at step $10037, \ldots$. then stationary dynamics (or model)

But what if robot is learning? So $\mathrm{P}(<\mathrm{lab}$, rhc, swc, mw, rhm $>\mid<\mathrm{lab}, \sim$ rhc, swc, mw, rhm $>$) $=0.25$ at step $2, \ldots, 0.86$ at step $23, \ldots, 0.995$ at step $10037, \ldots$. then NON-stationary dynamics

Markov chain

- A distribution over states, P is a stationary distribution if for each state $s, P\left(S_{i+1}=s\right)=P\left(S_{i}=s\right)$.
i.e., a given state s, is equally likely at each step
- A Markov chain is ergodic if, for any two states s_{1} and s_{2}, there is a non-zero probability of eventually reaching s_{2} from s_{1}. i.e., $s 2$ is reachable from s1
- A Markov chain is periodic if there is a strict temporal regularity in visiting states. A state is only visited divisible at time t if $t \bmod n=m$ for some n, m.

Markov chain (Pagerank)

Consider the Markov chain:

- Domain of S_{i} is the set of all web pages
- $P\left(S_{0}\right)$ is uniform; $P\left(S_{0}=p_{j}\right)=1 / N$

See bttps:/ / en.wikipedia.org/ wiki/ PageRank.
for more details

$$
P\left(S_{i+1}=p_{j} \mid S_{i}=p_{k}\right)
$$

$$
=(1-d) / N+d * \begin{cases}1 / n_{k} & \text { if } p_{k} \text { links to } p_{j} \text { equally likely that each link will be taken } \\ 1 / N & \text { if } p_{k} \text { has no links uniform random jump to } p_{j} \\ 0 & \text { otherwise If } p_{k} \text { bas linkes, but } p_{j} \text { is not one of them }\end{cases}
$$

Probability of mental break Probability surfing continues
where there are N web pages and n_{k} links from page p_{k}

- $d \approx 0.85$ is the probability someone keeps surfing web

Hidden Markov Model

- A Hidden Markov Model (HMM) is a belief network:

The probabilities that need to be specified:

- $P\left(S_{0}\right)$ specifies initial conditions
- $P\left(S_{i+1} \mid S_{i}\right)$ specifies the dynamics
- $P\left(O_{i} \mid S_{i}\right)$ specifies the sensor model

Hidden Markov Model

Filtering:

$$
P\left(S_{i} \mid o_{1}, \ldots, o_{i}\right) \text { Probability distribution of each state conditioned on all prior observations }
$$

What is the current belief state based on the observation history?

$$
\begin{aligned}
& P\left(\mathscr{S}_{i} \mid o_{1}^{\mathrm{S}_{\mathrm{ik}}}, \ldots, o_{i}\right)=P\left(\mathrm{~s}_{\mathrm{ik}}, \mathrm{o}_{1}, \ldots, \mathrm{o}_{\mathrm{i}}\right) / \mathrm{P}\left(\mathrm{o}_{1}, \ldots, \mathrm{o}_{\mathrm{i}}\right) \\
& \text { propto } \mathrm{P}\left(\mathrm{~s}_{\mathrm{ik}}, \mathrm{o}_{1}, \ldots, \mathrm{o}_{\mathrm{i}}\right) \\
& \begin{array}{lr}
\mathrm{P}\left(\mathrm{~S}_{0}=\mathrm{x} \mid \mathrm{O}_{0}=\mathrm{a}\right) ? & \mathrm{P}\left(\mathrm{~S}_{0}=\mathrm{y} \mid \mathrm{O}_{0}=\mathrm{a}\right) ? \\
=\mathrm{P}\left(\mathrm{O}_{0}=\mathrm{a} \mid \mathrm{S}_{0}=\mathrm{x}\right) \mathrm{P}\left(\mathrm{~S}_{0}=\mathrm{x}\right) / \mathrm{P}\left(\mathrm{O}_{0}=\mathrm{a}\right) & =\mathrm{P}\left(\mathrm{O}_{0}=\mathrm{a} \mid \mathrm{S}_{0}=\mathrm{y}\right) \mathrm{P}\left(\mathrm{~S}_{0}=\mathrm{y}\right) / \mathrm{P}\left(\mathrm{O}_{0}=\mathrm{a}\right)
\end{array}
\end{aligned}
$$

- Observe O_{0}, query S_{0}.
- then observe O_{1}, query S_{1}.
- then observe O_{2}, query S_{2}.

Hidden Markov Model

Filtering:

$$
P\left(S_{i} \mid o_{1}, \ldots, o_{i}\right) \text { Probability distribution of each state conditioned on all prior observations }
$$

What is the current belief state based on the observation history?

$$
P\left(\boldsymbol{S}_{i} \mid \mathrm{O}_{1}, \ldots, O_{i}\right) \underset{\text { propto } \mathrm{P}\left(\mathrm{~s}_{\mathrm{ik}}, \mathrm{o}_{1}, \ldots, \mathrm{o}_{\mathrm{i}}\right)}{=} \mathrm{P}\left(\mathrm{~s}_{\mathrm{ik}}, \mathrm{o}_{1}, \ldots, \mathrm{o}_{\mathrm{i}}\right) / \mathrm{P}\left(\mathrm{o}_{1}, \ldots, \mathrm{o}_{\mathrm{i}}\right)
$$

Using what you learned about inference with belief networks, give $P\left(S_{1}=x \mid O_{1}=a, O_{2}=b\right)$ only in terms of probabilities found in (or trivially computed from) the probability tables of the belief network. below, where the domain of each step S are the states x and y. The observation variables at each step are the same, with the same domains (a, b).

- Observe O_{0}, query S_{0}.
- then observe O_{1}, query S_{1}.
- then observe O_{2}, query S_{2}.

Hidden Markov Model

Using what you learned about inference with belief networks, give $P\left(S_{1}=x \mid O_{1}=a, O_{2}=b\right)$ only in terms of probabilities found in (or trivially computed from) the probability tables of the belief network, below, where the domain of each step S are the states x and y. The observation variables at each step are the same, with the same domains (a, b).

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{~S}_{1}=\mathrm{x} \mid \mathrm{O}_{0}=\mathrm{a}, \mathrm{O}_{1}=\mathrm{b}\right) \\
& \quad=\mathrm{P}\left(\mathrm{~S}_{1}=\mathrm{x}, \mathrm{O}_{0}=\mathrm{a}, \mathrm{O}_{1}=\mathrm{b}\right) / \mathrm{P}\left(\mathrm{O}_{0}=\mathrm{a}, \mathrm{O}_{1}=\mathrm{b}\right) \\
& \quad \text { propto }=\mathrm{P}\left(\mathrm{~S}_{1}=\mathrm{x}, \mathrm{O}_{0}=\mathrm{a}, \mathrm{O}_{1}=\mathrm{b}\right) \\
& \quad=P\left(\mathrm{O}_{1}=\mathrm{b} \mid \mathrm{S}_{1}=\mathrm{x}, \mathrm{O}_{0}=\mathrm{a}\right) \mathrm{P}\left(\mathrm{~S}_{1}=\mathrm{x}, \mathrm{O}_{0}=\mathrm{a}\right) \\
& \quad=P\left(\mathrm{O}_{1}=\mathrm{b} \mid \mathrm{S}_{1}=\mathrm{x}\right)\left[\mathrm{P}\left(\mathrm{~S}_{1}=\mathrm{x}, \mathrm{O}_{0}=\mathrm{a}, \mathrm{~S}_{0}=\mathrm{x}\right)+\mathrm{P}\left(\mathrm{~S}_{1}=\mathrm{x}, \mathrm{O}_{0}=\mathrm{a}, \mathrm{~S}_{0}=\mathrm{y}\right)\right] \\
& \quad=\text { ???? }
\end{aligned}
$$

$$
\mathrm{P}\left(\mathrm{~S}_{1}=\mathrm{y} \mid \mathrm{O}_{0}=\mathrm{a}, \mathrm{O}_{1}=\mathrm{b}\right)
$$

$$
=\mathrm{P}\left(\mathrm{~S}_{1}=\mathrm{y}, \mathrm{O}_{0}=\mathrm{a}, \mathrm{O}_{1}=\mathrm{b}\right) / \mathrm{P}\left(\mathrm{O}_{0}=\mathrm{a}, \mathrm{O}_{1}=\mathrm{b}\right)
$$

$$
\text { propto }=\mathrm{P}\left(\mathrm{~S}_{1}=\mathrm{y}, \mathrm{O}_{0}=\mathrm{a}, \mathrm{O}_{1}=\mathrm{b}\right)
$$

$$
=\text { ???? }
$$

- Observe O_{0}, query S_{0}.
- then observe O_{1}, query S_{1}.
- then observe O_{2}, query S_{2}.

Hidden Markov Model

HMMs augmented with actions, like STRIPS operators, though with probabilistically qualified effects

- Suppose a robot wants to determine its location based on its actions and its sensor readings: Localization
- This can be represented by the augmented HMM:

Hidden Markov Model

HMMs augmented with actions, like STRIPS operators, though with probabilistically qualified effects

- Suppose a robot wants to determine its location based on its actions and its sensor readings: Localization
- This can be represented by the augmented F

This example is a bit misleading, because the example assumes that

Hidden Markov Model

Example of localization

- Circular corridor, with 16 locations:

- Doors at positions: 2, 4, 7, 11.
- Noisy Sensors to sense whether in front of a door
- Stochastic Dynamics transition probabilities
- Robot starts at an unknown location and must determine where it is.
(C)D. Poole and A. Mackworth 2017

Artificial Intelligence, Lecture 8.5

Hidden Markov Model

$$
\mathrm{P}\left(\mathrm{Loc}_{2}=7 \mid \mathrm{O}_{0}=\sim \mathrm{od}, \mathrm{~A}_{0}=\mathrm{gR}, \mathrm{O}_{1}=\mathrm{od}, \mathrm{~A}_{1}=\mathrm{gR}, \mathrm{O}_{2}=\mathrm{od}\right) \text { ??? }
$$

Sensor Model

- $P($ Observe Door \mid At Door $)=0.8 \quad \mathrm{P}(\sim$ od \mid ad $)=0.2$
- $P($ Observe Door \mid Not At Door $)=0.1 \mathrm{P}(\sim \mathrm{od} \mid \sim \mathrm{ad})=0.9$
- $P\left(\right.$ loc $_{t+1}=L$ action $=$ goRight \wedge loc $\left.c_{t}=L\right)=0.1$
- $P\left(\right.$ loc $c_{t+1}=L+1$ action $=$ goRight \wedge loc $\left.c_{t}=L\right)=0.8$

Dynamics
Model

- $P\left(l o c_{t+1}=L+2 \mid\right.$ action $_{t}=$ goRight $\left.\wedge l o c_{t}=L\right)=0.074$
- $P\left(l o c_{t+1}=L^{\prime} \mid\right.$ action $_{t}=$ goRight $\left.\wedge l o c_{t}=L\right)=0.002$ for any other location L^{\prime}.
- All location arithmetic is modulo 16.
- The action goLeft works the same but to the left.

Hidden Markov Model

- Example: we can combine information from a light sensor and the door sensor Sensor Fusion specify probability tables, and

Perform localization

S_{t} robot location at time t
D_{t} door sensor value at time t
L_{t} light sensor value at time t
©D. Poole and A. Mackworth 2017

Location induces conditional dependence between prior location and action

Simple Language Models: bigram

Sentence: $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$. bigram:

- Domain of each variable is the set of all words.
- What probabilities are provided?
- $P\left(w_{i} \mid w_{i-1}\right)$ is a distribution over words for each position given the previous word
- How do we condition on the question "how can I phone my phone"?

Naive Bayes Classifier: User's request for help

H is the help page the user is interested in.
What probabilities are required?

- $P\left(h_{i}\right)$ for each help page h_{i}. The user is interested in one best web page, so $\sum_{i} P\left(h_{i}\right)=1$.
- $P\left(w_{j} \mid h_{i}\right)$ for each word w_{j} given page h_{i}. There can be multiple words used in a query.
- Given a help query: condition on the words in the query and display the most likely help page.

Simple Language Models: set-of-words

Sentence: $w_{1}, w_{2}, w_{3}, \ldots$.
Set-of-words model:

- Each variable is Boolean: true when word is in the sentence and false otherwise.
- What probabilities are provided?

$$
\text { - } P(\text { " a" }), P(" \text { aardvark" }), \ldots, P(" z z z ")
$$

- How do we condition on the question "how can I phone my phone"?

Simple Language Models: bag-of-words

Sentence: $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$.
Bag-of-words or unigram:

- Domain of each variable is the set of all words.
- What probabilities are provided?
- $P\left(w_{i}\right)$ is a distribution over words for each position
- How do we condition on the question "how can I phone my phone"?

Simple Language Models: bigram

Sentence: $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$. bigram:

- Domain of each variable is the set of all words.
- What probabilities are provided?
- $P\left(w_{i} \mid w_{i-1}\right)$ is a distribution over words for each position given the previous word
- How do we condition on the question "how can I phone my phone"?

Simple Language Models: trigram

Sentence: $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$. trigram:

Domain of each variable is the set of all words.
What probabilities are provided?

- $P\left(w_{i} \mid w_{i-1}, w_{i-2}\right)$

N-gram

- $P\left(w_{i} \mid w_{i-1}, \ldots w_{i-n+1}\right)$ is a distribution over words given the previous $n-1$ words

Predictive Typing and Error Correction

 $\operatorname{domain}\left(L_{j i}\right)=\{" a ", " b ", " c ", \ldots, " z ", " 1 ", " 2 ", \ldots\}$

Beyond N-grams

- A man with a big hairy cat drank the cold milk.
- Who or what drank the milk?

Simple syntax diagram:

Topic Model

An example of topic modeling
Incorporating Sustainability into Computing Education
Douglas H. Fisher, Zimei Bian, Selina Chen IEEE Intelligent Systems, Vol. 31, No. 5 (2016)

- Sustainability and Assistive Computing (Bryn Mawr College, Fall 2010);
- Computing and the Environment (Vanderbilt University, Spring 2011);
- Topics in Computational Sustainability (Cornell University, Spring 2011);
- Computational Sustainability (University of British Columbia, Winter 2013-2014);
- Computational Sustainability (Georgia Tech, Spring 2014);
- Seminar on Computational Sustainability: Algorithms for Ecology and Conservation (University of Massachusetts Amherst, Spring 2014)

Incorporating Sustainability into Computing Education Douglas H. Fisher, Zimei Bian, Selina Chen IEEE Intelligent Systems, Vol. 31, No. 5 (2016)

TOPICS GENERATED			
Topic \#	Weight	Keywords	Topic Name
0	0.15074	energy power data consumption time carbon electricity environmental system	GreenIT/Energy
1	0.18246	problem algorithm set time sensor greedy network number optimal	Optimization/Sensor
2	0.16311	data environmental urban energy services development science land government	Urban/Policy
3	0.09139	problem cost solution budget corridor connectivity habitat connected conservation	Optimization/Land
4	0.08485	waste electronic media hazardous equipment social nigeria computer countries	GreenIT/Materials
5	0.27841	model data models species distribution set maxent detection modeling	Modeling/Species
6	0.11874	energy building cost design optimization model optimisation objective buildings	Optimization/Built
7	0.09318	model capture data survival time models rates parameters recapture	Modeling/Method
8	0.12163	food network species webs web time information data networks	Ecology Webs
9	0.09067	climate change global water ocean sea earth fish system	Earth Systems

Incorporating Sustainability into Computing Education Douglas H. Fisher, Zimei Bian, Selina Chen IEEE Intelligent Systems, Vol. 31, No. 5 (2016)

COURSE TOPIC WEIGHTS					
School	Topic 0	Topic 1	Topic 2	Topic 3	Topic 4
Bryn Mawr	0.090943549	0.127644406	0.20480037	$2.10 \mathrm{E}-05$	0.265664737
Cornell	$7.22 \mathrm{E}-05$	0.085409982	0.174295598	0.009161242	0.005980967
Georgia Tech	0.081458989	0.136824135	0.100419814	0.125061275	0.061678773
UBC	0.200559536	0.018010526	0.172902203	0.044725581	0.052835175
UMass Amherst	$1.87 \mathrm{E}-05$	0.177675797	$6.20 \mathrm{E}-04$	0.217023506	2.66E-06
Vanderbilt	0.354199272	0.033780717	0.02020729	0.253033232	0.072572848
School	Topic 5	Topic 6	Topic 7	Topic 8	Topic 9
Bryn Mawr	0.29306572	0.001092996	0.002332577	0.005188805	0.009245879
Cornell	0.054950987	0.056984767	0.089727397	0.474219654	0.04919718
Georgia Tech	0.193939583	0.14640088	0.028616956	0.038639172	0.086960423
UBC	0.102387938	0.100914674	$5.24 \mathrm{E}-05$	0.010594252	0.297017732
UMass Amherst	0.284061303	0.030038263	0.283903305	0.006486598	1.70E-04
Vanderbilt	0.048782513	0.020952409	$2.51 \mathrm{E}-04$	0.137485102	0.058735835

