CS 4260 and CS 5260 Vanderbilt University

Lecture on Uncertainty (Sequential Models)

This lecture assumes that you have

• Read Section 8.1 through 8.3, watched lecture on belief network inference, and read section 8.5 of ArtInt

ArtInt: Poole and Mackworth, Artificial Intelligence 2E at http://artint.info/2e/html/ArtInt2e.html to include slides at http://artint.info/2e/slides/ch08/lect5.pdf

Douglas H. Fisher

Project ideas

- Increased functionality -- Filling in courses to make 12 credit minimums
 - Randomly?
 - Heuristically?
 - Interactively?
 - Prior knowledge? (semantic web)
 - Machine Learning

• A Markov chain is a special sort of belief network:

What probabilities need to be specified?

- $P(S_0)$ specifies initial conditions
- $P(S_{i+1}|S_i)$ specifies the dynamics

What independence assumptions are made?

•
$$P(S_{i+1}|S_0,...,S_i) = P(S_{i+1}|S_i).$$

- Often S_t represents the state at time t. Intuitively S_t conveys all of the information about the history that can affect the future states.
- "The future is independent of the past given the present."

• A Markov chain is a special sort of belief network:

What probabilities need to be specified?

- $P(S_0)$ specifies initial conditions
- $P(S_{i+1}|S_i)$ specifies the dynamics

As with previous lectures, capital S_i represents an outcome space (i.e., as set of possible states, s_{ik} , and $P(S_i)$ is a probability distribution over s_{ik} s, so

 $P(S_0)$ is $P(s_{01})$, $P(s_{02})$, ..., $P(s_{0n_0})$

 $P(S_1 | S_0)$ is $P(s_{11} | s_{01}), ..., P(s_{11} | s_{0n_0}), P(s_{12} | s_{01}), ..., P(s_{12} | s_{0n_0}), ..., P(s_{1n_1} | s_{0n_0})$

© D. Poole and A. Mackworth 2017

• A Markov chain is a special sort of belief network:

What probabilities need to be specified?

- $P(S_0)$ specifies initial conditions
- $P(S_{i+1}|S_i)$ specifies the dynamics

 S_i can represent a primitive state (or outcome) that is not decomposable, like the node in a graph, or more typically, each S_i will be a joint outcome space, as in the state of a plan from chapter 6 or of a training (or test) datum from chapter 7.

 \rightarrow P(s_{ik}) = P(< lab, ~rhc, swc, mw, rhm>)

For example,

s_{ik} might be < lab, ~rhc, swc, mw, rhm>, or

 s_{ik} might be [SciFi = -1, Suspense = 1, Romance = -1, Ebert = 1, Siskel = 1, ..., Watch-it = 1]

© D. Poole and A. Mackworth 2017

Adapted from Poole and Mackworth, Artificial Intelligence 2E slides at <u>http://artint.info/2e/slides/ch08/lect5.pdf</u>

What independence assumptions are made?

- $P(S_{i+1}|S_0,...,S_i) = P(S_{i+1}|S_i).$
- Often S_t represents the state at time t. Intuitively S_t conveys all of the information about the history that can affect the future states.
- "The future is independent of the past given the present."

Strips-style operators from chapter 6 make this assumption trivially e.g., puc: Precondition {cs, ~rhc}; Effect {rhc}, where P({cs, rhc,...} | {cs,~rhc,...})=1.0 if puc applied, regardless of path, and 0.0 otherwise or perhaps 0.3 overall (just made this up!!!)

© D. Poole and A. Mackworth 2017

Adapted from Poole and Mackworth, Artificial Intelligence 2E slides at <u>http://artint.info/2e/slides/ch08/lect5.pdf</u>

What independence assumptions are made?

- $P(S_{i+1}|S_0,...,S_i) = P(S_{i+1}|S_i).$
- Often S_t represents the state at time t. Intuitively S_t conveys all of the information about the history that can affect the future states.
- "The future is independent of the past given the present."
- But what if future does depend on past, as well as the present (where "past" corresponds to the path to the present state)?
- For example, if I am in downtown Nashville, I might be down there for different reasons, and my next step may be dependent of more than the state (e.g., intersection) I am at.
- Years of historic warfare and other grievance may be the classic example of a non-Markov process

©D. Poole and A. Mackworth 2017

Adapted from Poole and Mackworth, Artificial Intelligence 2E slides at <u>http://artint.info/2e/slides/ch08/lect5.pdf</u>

What independence assumptions are made?

- $P(S_{i+1}|S_0,...,S_i) = P(S_{i+1}|S_i).$
- Often S_t represents the state at time t. Intuitively S_t conveys all of the information about the history that can affect the future states.
- "The future is independent of the past given the present."
- But what if future does depend on past, as well as the present (where "past" corresponds to the past to the present state)? Consider state s_{ik} and path to it as p_s₀_s_{ik}
- We can still represent as Markov process by representing a state as $\langle s_{ik}, p_s_0_s_{ik} \rangle$ That is, embed the path (i.e., "the past") to a state, into a new state description.
- What if next action also depends on a goal, g_m , that agent is pursuing? Then state is $<s_{ik}, g_m, p_s_0_s_{ik}>$

©D. Poole and A. Mackworth 2017

Adapted from Poole and Mackworth, Artificial Intelligence 2E slides at <u>http://artint.info/2e/slides/ch08/lect5.pdf</u>

- A stationary Markov chain is when for all i > 0, i' > 0, $P(S_{i+1}|S_i) = P(S_{i'+1}|S_{i'})$. *i.e., transition probabilities never change*
- We specify $P(S_0)$ and $P(S_{i+1}|S_0)$.
 - Simple model, easy to specify
 - Often the natural model
 - The network can extend indefinitely

For example, P(< lab, rhc, swc, mw, rhm> | < lab, ~rhc, swc, mw, rhm>)=0.95 at step 2, ..., at step 23, ..., at step 10037, then stationary dynamics (or model)

But what if robot is learning? So P(< lab, rhc, swc, mw, rhm>|< lab, ~rhc, swc, mw, rhm>)=0.25 at step 2, ..., 0.86 at step 23, ..., 0.995 at step 10037, then NON-stationary dynamics

©D. Poole and A. Mackworth 2017

Adapted from Poole and Mackworth, Artificial Intelligence 2E slides at <u>http://artint.info/2e/slides/ch08/lect5.pdf</u>

Artificial Intelligence, Lecture 8.5

$$(s_0) \rightarrow (s_1) \rightarrow (s_2) \rightarrow (s_3) \rightarrow (s_4)$$

 A distribution over states, P is a stationary distribution if for each state s, P(S_{i+1}=s) = P(S_i=s).

i.e., a given state s, is equally likely at each step

- A Markov chain is ergodic if, for any two states s₁ and s₂, there is a non-zero probability of eventually reaching s₂ from s₁.
 i.e., s2 is reachable from s1
- A Markov chain is periodic if there is a strict temporal regularity in visiting states. A state is only visited divisible at time t if t mod n = m for some n, m.

© D. Poole and A. Mackworth 2017

Markov chain (Pagerank)

Adapted from Poole and Mackworth, Artificial Intelligence 2E slides at <u>http://artint.info/2e/slides/ch08/lect5.pdf</u>

$$(s_0) \rightarrow (s_1) \rightarrow (s_2) \rightarrow (s_3) \rightarrow (s_4)$$

Consider the Markov chain:

- Domain of S_i is the set of all web pages
- $P(S_0)$ is uniform; $P(S_0 = p_j) = 1/N$

Artificial Intelligence, Lecture 8.5

 $P(S_{i+1} = p_j \mid S_i = p_k)$ $= (1-d)/N + d * \begin{cases} 1/n_k & \text{if } p_k \text{ links to } p_j \text{ equally likely that each link will be taken} \\ 1/N & \text{if } p_k \text{ has no links uniform random jump to } p_j \\ 0 & \text{otherwise } If p_k \text{ has links, but } p_j \text{ is not one of them} \end{cases}$ Probability of mental break Probability surfing continues

where there are N web pages and n_k links from page p_k

• $d \approx 0.85$ is the probability someone keeps surfing web

© D. Poole and A. Mackworth 2017

Adapted from Poole and Mackworth, Artificial Intelligence 2E slides at <u>http://artint.info/2e/slides/ch08/lect5.pdf</u>

• A Hidden Markov Model (HMM) is a belief network:

The probabilities that need to be specified:

- $P(S_0)$ specifies initial conditions
- $P(S_{i+1}|S_i)$ specifies the dynamics
- $P(O_i|S_i)$ specifies the sensor model

Filtering:

 $P(S_i | o_1, \ldots, o_i)$ Probability distribution of each state conditioned on all prior observations

What is the current belief state based on the observation history?

$$P(\mathbf{S}_{i}|\mathbf{o}_{1},\ldots,\mathbf{o}_{i}) = P(s_{ik},o_{1},\ldots,o_{i})/P(o_{1},\ldots,o_{i})$$

propto $P(s_{ik},o_{1},\ldots,o_{i})$

 $P(S_0 = \mathbf{x} | O_0 = a)? = P(O_0 = a | S_0 = \mathbf{x})P(S_0 = \mathbf{x})/P(O_0 = a) = P(O_0 = a | S_0 = \mathbf{y})P(S_0 = \mathbf{y})/P(O_0 = a) = P(O_0 = a | S_0 = \mathbf{y})P(S_0 = \mathbf{y})/P(O_0 = a)$

Observe O₀, query S₀.
then observe O₁, query S₁.
then observe O₂, query S₂.

o . . .

© D. Poole and A. Mackworth 2017

Filtering:

•

 $P(S_i | o_1, \ldots, o_i)$ Probability distribution of each state conditioned on all prior observations

What is the current belief state based on the observation history?

$$P(\mathbf{s}_{i}|\mathbf{o}_{1},\ldots,\mathbf{o}_{i}) = \frac{P(s_{ik},o_{1},\ldots,o_{i})}{propto} \frac{P(s_{ik},o_{1},\ldots,o_{i})}{P(o_{1},\ldots,o_{i})}$$

Using what you learned about inference with belief networks, give $P(S_1=x|O_1=a, O_2=b)$ only in terms of probabilities found in (or trivially computed from) the probability tables of the belief network below, where the domain of each step S are the states x and y. The observation variables at each step are the same, with the same domains (a, b).

Observe O₀, query S₀.
then observe O₁, query S₁.
then observe O₂, query S₂.

©D. Poole and A. Mackworth 2017

Using what you learned about inference with belief networks, give $P(S_1=x | O_1=a, O_2=b)$ only in terms of probabilities found in (or trivially computed from) the probability tables of the belief network below, where the domain of each step S are the states x and y. The observation variables at each step are the same, with the same domains (a, b).

$$P(S_{1}=x | O_{0}=a, O_{1}=b)$$

$$= P(S_{1}=x, O_{0}=a, O_{1}=b) / P(O_{0}=a, O_{1}=b)$$
propto = P(S_{1}=x, O_{0}=a, O_{1}=b)
= P(O_{1}=b | S_{1}=x, O_{0}=a)P(S_{1}=x, O_{0}=a)
$$= P(O_{1}=b | S_{1}=x)[P(S_{1}=x, O_{0}=a, S_{0}=x) + P(S_{1}=x, O_{0}=a, S_{0}=y)]$$

$$= ????$$

$$P(S_{1}=y | O_{0}=a, O_{1}=b)$$

= P(S_{1}=y, O_{0}=a, O_{1}=b) / P(O_{0}=a, O_{1}=b)
propto = P(S_{1}=y, O_{0}=a, O_{1}=b)
= ????

Observe O₀, query S₀.
then observe O₁, query S₁.
then observe O₂, query S₂.

© D. Poole and A. Mackworth 2017

HMMs augmented with actions, like STRIPS operators, though with probabilistically qualified effects

- Suppose a robot wants to determine its location based on its actions and its sensor readings: Localization
- This can be represented by the augmented HMM:

© D. Poole and A. Mackworth 2017

This example is a bit

misleading, because the example assumes that

HMMs augmented with actions, like STRIPS operators, though with probabilistically qualified effects

- Suppose a robot wants to determine its location based on its actions and its sensor readings: Localization
- This can be represented by the augmented F

©D. Poole and A. Mackworth 2017

Adapted from Poole and Mackworth, Artificial Intelligence 2E slides at <u>http://artint.info/2e/slides/ch08/lect5.pdf</u>

Example of localization

Circular corridor, with 16 locations:

- Doors at positions: 2, 4, 7, 11.
- Noisy Sensors to sense whether in front of a door
- Stochastic Dynamics *transition probabilities*
- Robot starts at an unknown location and must determine where it is.

© D. Poole and A. Mackworth 2017

Sensor Model

Dynamics

Model

Adapted from Poole and Mackworth, Artificial Intelligence 2E slides at <u>http://artint.info/2e/slides/ch08/lect5.pdf</u>

• $P(Observe \ Door \mid At \ Door) = 0.8$ $P(\sim od \mid ad) = 0.2$

• $P(Observe \ Door \mid Not \ At \ Door) = 0.1 \ P(\sim od \mid \sim ad) = 0.9$

•
$$P(loc_{t+1} = L|action_t = goRight \land loc_t = L) = 0.1$$

• $P(loc_{t+1} = L + 1 | action_t = goRight \land loc_t = L) = 0.8$

•
$$P(loc_{t+1} = L + 2 | action_t = goRight \land loc_t = L) = 0.074$$

- P(loc_{t+1} = L'|action_t = goRight ∧ loc_t = L) = 0.002 for any other location L'.
 - All location arithmetic is modulo 16.
 - The action goLeft works the same but to the left.

©D. Poole and A. Mackworth 2017

 S_t robot location at time t D_t door sensor value at time t L_t light sensor value at time t

©D. Poole and A. Mackworth 2017

Location induces conditional dependence between prior location and action

Simple Language Models: bigram

Adapted from Poole and Mackworth, Artificial Intelligence 2E slides at <u>http://artint.info/2e/slides/ch08/lect5.pdf</u>

Sentence: $w_1, w_2, w_3, \ldots, w_n$. bigram:

- Domain of each variable is the set of all words.
- What probabilities are provided?
 - P(w_i|w_{i-1}) is a distribution over words for each position given the previous word
- How do we condition on the question "how can I phone my phone"?

©D. Poole and A. Mackworth 2017

Adapted from Poole and Mackworth, Artificial Intelligence 2E slides at <u>http://artint.info/2e/slides/ch08/lect5.pdf</u>

Naive Bayes Classifier: User's request for help

H is the help page the user is interested in. What probabilities are required?

- P(h_i) for each help page h_i. The user is interested in one best web page, so ∑_i P(h_i) = 1.
- $P(w_j | h_i)$ for each word w_j given page h_i . There can be multiple words used in a query.
- Given a help query: condition on the words in the query and display the most likely help page.

Simple Language Models: set-of-words

Adapted from Poole and Mackworth, Artificial Intelligence 2E slides at <u>http://artint.info/2e/slides/ch08/lect5.pdf</u>

Sentence: w_1, w_2, w_3, \ldots Set-of-words model:

- Each variable is Boolean: true when word is in the sentence and false otherwise.
- What probabilities are provided?

P(" a"), P(" aardvark"), ..., P(" zzz")

 How do we condition on the question "how can I phone my phone"?

© D. Poole and A. Mackworth 2017

Simple Language Models: bag-of-words

Adapted from Poole and Mackworth, Artificial Intelligence 2E slides at <u>http://artint.info/2e/slides/ch08/lect5.pdf</u>

Sentence: $w_1, w_2, w_3, \ldots, w_n$. Bag-of-words or unigram:

- Domain of each variable is the set of all words.
- What probabilities are provided?
 - $P(w_i)$ is a distribution over words for each position
- How do we condition on the question "how can I phone my phone"?

Simple Language Models: bigram

Adapted from Poole and Mackworth, Artificial Intelligence 2E slides at <u>http://artint.info/2e/slides/ch08/lect5.pdf</u>

Sentence: $w_1, w_2, w_3, \ldots, w_n$. bigram:

- Domain of each variable is the set of all words.
- What probabilities are provided?
 - P(w_i|w_{i-1}) is a distribution over words for each position given the previous word
- How do we condition on the question "how can I phone my phone"?

©D. Poole and A. Mackworth 2017

Simple Language Models: trigram

Sentence: $w_1, w_2, w_3, \ldots, w_n$. trigram: Adapted from Poole and Mackworth, Artificial Intelligence 2E slides at <u>http://artint.info/2e/slides/ch08/lect5.pdf</u>

Domain of each variable is the set of all words. What probabilities are provided?

•
$$P(w_i | w_{i-1}, w_{i-2})$$

N-gram

 P(w_i|w_{i-1},...w_{i-n+1}) is a distribution over words given the previous n − 1 words

©D. Poole and A. Mackworth 2017

Predictive Typing and Error Correction

Adapted from Poole and Mackworth, Artificial Intelligence 2E slides at <u>http://artint.info/2e/slides/ch08/lect5.pdf</u>

 $domain(W_i) = \{"a", "aarvark", ..., "zzz", "\bot", "?"\}$ $domain(L_{ji}) = \{"a", "b", "c", ..., "z", "1", "2", ...\}$

©D. Poole and A. Mackworth 2017

Beyond N-grams

- A man with a big hairy cat drank the cold milk.
- Who or what drank the milk?

©D. Poole and A. Mackworth 2017

Adapted from Poole and Mackworth, Artificial Intelligence 2E slides at <u>http://artint.info/2e/slides/ch08/lect5.pdf</u>

©D. Poole and A. Mackworth 2017

An example of topic modeling

Incorporating Sustainability into Computing Education Douglas H. Fisher, Zimei Bian, Selina Chen IEEE Intelligent Systems, Vol. 31, No. 5 (2016)

- Sustainability and Assistive Computing (Bryn Mawr College, Fall 2010);
- Computing and the Environment (Vanderbilt University, Spring 2011);
- Topics in Computational Sustainability (Cornell University, Spring 2011);
- Computational Sustainability (University of British Columbia, Winter 2013–2014);
- Computational Sustainability (Georgia Tech, Spring 2014);
- Seminar on Computational Sustainability: Algorithms for Ecology and Conservation (University of Massachusetts Amherst, Spring 2014)

Incorporating Sustainability into Computing Education Douglas H. Fisher, Zimei Bian, Selina Chen IEEE Intelligent Systems, Vol. 31, No. 5 (2016)

		TOPICS GENERATED		
Topic # Weigh		Keywords	Topic Name	
0	0.15074	energy power data consumption time carbon electricity environmental system	GreenIT/Energy	
1	0.18246	problem algorithm set time sensor greedy network number optimal	Optimization/Sensor	
2	0.16311	data environmental urban energy services development science land government	Urban/Policy	
3	0.09139	problem cost solution budget corridor connectivity habitat connected conservation	Optimization/Land	
4	0.08485	waste electronic media hazardous equipment social nigeria computer countries	GreenIT/Materials	
5	0.27841	model data models species distribution set maxent detection modeling	Modeling/Species	
6	0.11874	energy building cost design optimization model optimisation objective buildings	Optimization/Built	
7	0.09318	model capture data survival time models rates parameters recapture	Modeling/Method	
8	0.12163	food network species webs web time information data networks	Ecology Webs	
9	0.09067	climate change global water ocean sea earth fish system	Earth Systems	

Incorporating Sustainability into Computing Education Douglas H. Fisher, Zimei Bian, Selina Chen IEEE Intelligent Systems, Vol. 31, No. 5 (2016)

13 al)	COL	RSE TOPI	C WEIGHT	rs	
School	Topic 0	Topic 1	Topic 2	Topic 3	Topic 4
Bryn Mawr	0.090943549	0.127644406	0.20480037	2.10E-05	0.265664737
Cornell	7.22E-05	0.085409982	0.174295598	0.009161242	0.005980967
Georgia Tech	0.081458989	0.136824135	0.100419814	0.125061275	0.061678773
UBC	0.200559536	0.018010526	0.172902203	0.044725581	0.052835175
UMass Amherst	1.87E-05	0.177675797	6.20E-04	0.217023506	2.66E-06
Vanderbilt	0.354199272	0.033780717	0.02020729	0.253033232	0.072572848
School	Topic 5	Topic 6	Topic 7	Topic 8	Topic 9
Bryn Mawr	0.29306572	0.001092996	0.002332577	0.005188805	0.009245879
Cornell	0.054950987	0.056984767	0.089727397	0.474219654	0.04919718
Georgia Tech	0.193939583	0.14640088	0.028616956	0.038639172	0.086960423
UBC	0.102387938	0.100914674	5.24E-05	0.010594252	0.297017732
UMass Amherst	0.284061303	0.030038263	0.283903305	0.006486598	1.70E-04
Vanderbilt	0.048782513	0.020952409	2.51E-04	0.137485102	0.058735835

Douglas H. Fisher