
  

CS 4260 and CS 5260 
Vanderbilt University 

 
Lecture on Uncertainty (Sequential Models) 

This lecture assumes that you have 
•  Read Section 8.1 through 8.3, watched lecture on belief  network inference, and 

read section 8.5 of  ArtInt 

 
ArtInt: Poole and Mackworth, Artificial Intelligence 2E  
            at http://artint.info/2e/html/ArtInt2e.html 
to include slides at http://artint.info/2e/slides/ch08/lect5.pdf   
 

Douglas H. Fisher 



Project ideas 
 
•  Increased functionality -- Filling in courses to make 12 

credit minimums 
•  Randomly? 
•  Heuristically? 
•  Interactively? 
•  Prior knowledge? (semantic web) 
•  Machine Learning 

Douglas H. Fisher 
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As with previous lectures, capital Si represents an outcome space (i.e., as set of  
possible states, sik, and P(Si) is a probability distribution over siks, so 
 
    P(S0) is P(s01), P(s02), …, P(s0n0

) 
 
    P(S1|S0) is P(s11|s01), …, P(s11|s0n0

), P(s12|s01), …, P(s12|s0n0
), …, P(s1n1

|s0n0
) 
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Si can represent a primitive state (or outcome) that is not decomposable, like the node in a graph, 
or more typically, each Si will be a joint outcome space, as in the state of  a plan from chapter 6 or 
of  a training (or test) datum from chapter 7. 
 
For example,  
      sik might be < lab, ~rhc, swc, mw, rhm>, or 
      sik might be [ SciFi = -1, Suspense = 1, Romance = -1, Ebert = 1, Siskel = 1, …, Watch-it = 1] 
 

P(sik) = P(< lab, ~rhc, swc, mw, rhm>) 
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Strips-style operators from chapter 6 make this assumption trivially 
  e.g., puc: Precondition {cs, ~rhc}; Effect {rhc},  
        where P({cs, rhc,…}|{cs,~rhc,…})=1.0 if  puc applied, regardless of  path, 
                                                                           and 0.0 otherwise 
                                              or perhaps 0.3 overall (just made this up!!!) 
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•  But what if  future does depend on past, as well as the present (where “past” corresponds to the 
path to the present state)?  

•  For example, if  I am in downtown Nashville, I might be down there for different reasons, and 
my next step may be dependent of  more than the state (e.g., intersection) I am at. 

•  Years of  historic warfare and other grievance may be the classic example of  a non-Markov 
process 
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•  But what if  future does depend on past, as well as the present (where “past” corresponds to the 
past to the present state)?  Consider state sik and path to it as p_s0_sik 

•  We can still represent as Markov process by representing a state as <sik , p_s0_sik> That is, 
embed the path (i.e., “the past”) to a state, into a new state description. 

•  What if  next action also depends on a goal, gm, that agent is pursuing? Then state is  
     <sik , gm, p_s0_sik>   
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For example, P(< lab, rhc, swc, mw, rhm>|< lab, ~rhc, swc, mw, rhm>)=0.95  
      at step 2 , …, at step 23, …, at step 10037, …. then stationary dynamics (or model) 
 
But what if  robot is learning? So P(< lab, rhc, swc, mw, rhm>|< lab, ~rhc, swc, mw, rhm>)=0.25  
      at step 2 , …, 0.86 at step 23, …, 0.995 at step 10037, …. then NON-stationary dynamics 

i.e., transition probabilities never change 

0 1 
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i.e., s2 is reachable from s1 

            i.e., a given state s, is equally likely at each step 
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See https://en.wikipedia.org/wiki/PageRank 
for more details 

Probability of  mental break   Probability surfing continues 

equally likely that each link will be taken 

uniform random jump to pj 

If  pk has links, but pj is not one of  them 
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Probability distribution of  each state conditioned on all prior observations 

   =    P(sik, o1,…, oi)/P(o1,…, oi)  
propto P(sik, o1, …, oi) 
   = ??? 

sik 

P(S0=x|O0=a)?                                       P(S0=y|O0=a)?  
  =  P(O0=a|S0=x)P(S0=x)/P(O0=a)             = P(O0=a|S0=y)P(S0=y)/P(O0=a) 
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Probability distribution of  each state conditioned on all prior observations 

   =    P(sik, o1,…, oi)/P(o1,…, oi)  
propto P(sik, o1, …, oi) 
   = ??? 

sik 

 
Using what you learned about inference with belief  networks, give P(S1=x|O1=a, O2=b) only in terms of  probabilities 
found in (or trivially computed from) the probability tables of  the belief  network below, where the domain of  each step S 
are the states x and y.  The observation variables at each step are the same, with the same domains (a, b).   
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Probability distribution of  each state conditioned on all prior observations 

   P(S1=y|O0=a, O1=b)  
       = P(S1=y, O0=a, O1=b) / P(O0=a, O1=b)  
       propto = P(S1=y, O0=a, O1=b) 
       =  ???? 

P(S1=x|O0=a, O1=b)  
    = P(S1=x, O0=a, O1=b) / P(O0=a, O1=b)  
   propto = P(S1=x, O0=a, O1=b)  
   = P(O1=b|S1=x, O0=a)P(S1=x, O0=a) 
   = P(O1=b|S1=x)[P(S1=x, O0=a, S0=x) + P(S1=x, O0=a, S0=y)] 
   = ???? 
 

Using what you learned about inference with belief  networks, give P(S1=x|O1=a, O2=b) only in terms of  probabilities 
found in (or trivially computed from) the probability tables of  the belief  network below, where the domain of  each step S 
are the states x and y.  The observation variables at each step are the same, with the same domains (a, b).   
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HMMs augmented with actions, like STRIPS operators, though with probabilistically qualified effects   
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HMMs augmented with actions, like STRIPS operators, though with probabilistically qualified effects   

This example is a bit  
misleading, because the  
example assumes that 
an observer is computing  
probabilities of the robot’s 
location  
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Example of  localization 

to sense whether in front of a door 

transition probabilities 
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P(Loc2=7 | O0=~od, A0=gR, O1=od, A1=gR, O2=od) ???  

Sensor Model 

Dynamics  
Model 

P(~od|ad) = 0.2 

P(~od|~ad) = 0.9 
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Specify probability tables, and 
Perform localization 

Location induces conditional 
dependence between prior location  
and action  
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Incorporating Sustainability into Computing Education 
Douglas H. Fisher, Zimei Bian, Selina Chen 

IEEE Intelligent Systems, Vol. 31, No. 5 (2016) 

•  Sustainability and Assistive Computing (Bryn Mawr College, Fall 
2010); 

•  Computing and the Environment (Vanderbilt University, Spring 2011); 
•  Topics in Computational Sustainability (Cornell University, Spring 

2011); 
•  Computational Sustainability (University of  British Columbia, Winter 

2013–2014); 
•  Computational Sustainability (Georgia Tech, Spring 2014); 
•  Seminar on Computational Sustainability: Algorithms for Ecology and 

Conservation (University of  Massachusetts Amherst, Spring 2014) 

An example of  topic modeling 
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