
  

CS 4260 and CS 5260 
Vanderbilt University 

 
Lecture on Uncertainty (Belief  Networks) 

This lecture assumes that you have 
•  Read Section 8.1 through 8.3 of  ArtInt (though there is some repetition, as well 

as additional material)  
 
ArtInt: Poole and Mackworth, Artificial Intelligence 2E  
            at http://artint.info/2e/html/ArtInt2e.html 
to include slides at http://artint.info/2e/slides/ch04/lect1.pdf   
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Q1. Consider the binary-valued variable, W, with a domain of  {w, ~w}.  What is the minimum number of  probabilities that  
need to be stored so that the probability of  any assignment of  W can be obtained (i.e., P(w), P(~w)). 
 
Options: 
 
0 
 
1  <— 
 
2 
 
4 
 
1 is the correct answer. Only P(w) need be stored, and P(~w) can be computed as 1-P(w). Alternatively, P(~w) could be  
stored, and P(w) computed. 

Feedback for Quiz Q-w9 
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Q2. Consider binary-valued variables W and X, where the domain of  W is {w, ~w} and the domain of  X is {x, ~x}.  
What is the minimum number of  probabilities that need to be stored so that the probability of  each assignment of  values  
to W and X (i.e., P(w,x), P(w,~x), P(~w,x), P(~w,~x)) can be obtained? 
 
Options: 
 
1 
 
2 
 
3 <— 
 
4 
 
3 is the correct answer. P(~w, ~x) can be computed as 1 minus the sum of  the other three, for example.  
 
Answers to both Q1 and Q2 are consistent with the text’s statement that 2n - 1 probabilities must be specified  
explicitly for value assignments of  n binary variables (see beginning of  section 8.2). 
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Q3. Consider binary-valued variables W and X, where the domain of  W is {w, ~w} and the domain of  X is {x, ~x}.  
Further, assume that W and X are independent of  each other. 
 
What is the minimum number of  probabilities that need to be stored so that the probability of  each assignment of   
values of  W and X (i.e., P(w,x), P(w,~x), P(~w,x), P(~w,~x)) can be obtained? 
 
Options: 
 
1 
 
2 <— 
 
3 
 
4 
 
The answer is 2. If  W and X are independent, then the joint probability of  any pair of  W,X values can be computed  
as the product of  the individual probabilities of  those values. For example, P(w,~x) = P(w) * P(~x). We only need  
store P(w) and P(x), from which P(~w) and P(~x), for example. 
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Q4: Consider variables W, X, Y, and Z. All four of  these variables are binary valued, so that W has a domain of  w and ~w, for example. 
 
The joint probability distribution, P(W, X, Y, Z), is specified by assigning values to probabilities to each combination of  values. There are 16 such  
assignments necessary to specify the joint distribution: 
 
P(w, x, y, z) 
P(w, x, y, ~z) 
P(w, x, ~y, z) 
… 
P(~w, ~x, ~y, ~z) 
 
Actually, there are only 15 assignments that need to be explicitly made because the sum of  all assignments must sum to 1.0, so the last of  the 16,  
say P(~w, ~x, ~y, ~z), can be computed by 1.0 - (sum of  the other 15 probabilities). 
 
Consider the following assumptions. 
 
X is independent of  W. 
Y is conditionally independent of  X given W. 
Z is conditionally independent of  W given X and Y. 
 
Under these assumptions, how many probabilities need to be stored to compute the value of  any assignment in P(W, X, Y, Z) (e.g., P(w, ~x, ~y, z)).  
It may be helpful to recall the Chain Rule (e.g., P(w, ~x, ~y, z) = P(w)*P(~x|w)*P(~y|w,~x)*P(z|w,~x,~y)). 
 
Options: 
 
4 
 
8 <— 
 
15 
 
16 
 

8 is the correct answer. If  there were NO (conditional) independencies, then the text’s guideline of  requiring 2^4 - 1 (or 15) probabilities would be  
correct. But with application of  the chain rule, some factorizations can lead to reduced numbers of  probabilities that need to be satisfied.  
 
For example, P(w, ~x, ~y, z) = P(w)*P(~x|w)*P(~y|w,~x)*P(z|w,~x,~y).  
 
P(w) needs to be specified. (count of  1 so far) 
 
P(~x|w) = P(~x) because X is independent of  W. P(x) needs to be specified. (count of  2 so far) 
 
P(~y|w,~x) = P(~y|w) because Y is conditionally independent of  X given W. P(y|w) and P(y|~w) need to be specified  
(and P(~y|w) and P(~y|~w) can be computed. (count of  4 so far) 
 
P(z|w,~x,~y) = P(z|~x,~y) because Z is conditionally independent of  W given X and Y. P(z|x,y), P(z|x,~y), P(z|~x,y), P(z|~x,~y) need to be  
specified, for example, from which conditional probabilities of  ~z can be computed. (count of  8 total) 
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Consider an ordering of  variables to factor a joint probability distribution: W, X, Y, Z 
 
e.g. P(w and x and ~y and z) 
 
    = P(w) * P(x|w) * P(~y|w, x) * P(z|w, x, ~y)  
 
Assume the following (conditional) independencies: 
 
P(W) 
  
P(X|W) = P(X), i.e., P(x|w) = P(x)  and P(x|~w) = P(x), P(~x|w) = P(~x), P(~x|~w) = P(~x) 
  
 
P(Y|W, X) = P(Y|W), i.e., 
      P(y|w, x) = P(y|w), P(y|w,~x) = P(y|w), P(y|~w, x) = P(y|~w), P(y|~w,~x) = P(y|~w) 
      P(~y|w, x) = P(~y|w), P(~y|w,~x) = P(~y|w), P(~y|~w, x) = P(~y|~w), P(~y|~w,~x) = P(~y|~w)             
 
  
 
P(Z|W, X, Y) = P(Z|X, Y), i.e.,  
       P(z|w, x, y) = P(z|x, y) and P(z|w, x,~y) = P(z|x, ~y) …… P(~z|~w, ~x, ~y) = P(~z|~x, ~y) 
  

X independent of  W 

Y independent of  X conditioned on W 

factorization ordering 

Belief  (or Bayesian) Networks 

Z independent of  W conditioned on X and Y 

1 number instead of  2 numbers  
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A Bayesian Network is a graphical representation of  a joint probability distribution  
with (conditional) independence relationships made explicit 
 
In particular, each variable (node) is (conditionally) independent of  its non-descendants  
given its parents (i.e., given assigned values for each parent). 

W P(w) 

P(~w) 
X 

P(x) 

P(~x) 

Y 
P(y|w) 

P(y|~w) 

P(~y|w) 
P(~y|~w) 

Z 

P(z|x, y)  

P(z|x,~y) 

P(z|~x, y) 

P(z|~x,~y) 

P(~z|x, y)  
P(~z|x,~y) 
P(~z|~x, y) 
P(~z|~x,~y) 
 

Douglas H. Fisher 

W has no parents – it is independent of  X X has no parents – it is independent of  W (and Y) 

Z is independent of  W,  
given Y and Z 

Y is independent  
of  X,  

given W 
Probabilities in light font, like this,  
can be computed rather than  
explicitly stored 



A bit more generally, assume n Boolean variables (for simplicity of  analysis) 
 
•  2n joint probabilities that need be stored for n variables (actually, 2n-1), in general 
 
•  In contrast, assume each variable directly influenced by at most k others (parents) 
 

•  Then each probability table will be at most 2k (actually 2k-1) numbers 
 

•  And complete network stores at most n2k numbers  
 
•  If  n = 30 and k=5 then BN stores at most 960 numbers, compared to over 

1,000,000,000 for full joint distribution 
 
 

Space savings due to BNs  
and conditional independencies generally 

Illustration due to Russell and Norvig, Artificial Intelligence, 3rd edition 

Douglas H. Fisher 



Burglary P(b) P(e) 

P(j|a) 
P(j|~a) 

Alarm 
P(a|b, e), 
P(a|b,~e), 
P(a|~b, e), 
P(a|~b, ~e) 

Earthquake 

JohnCalls MaryCalls 
P(m|a) 
P(m|~a) 

Example due to Judea Pearl 

Douglas H. Fisher 

Note state of the battery 
not explicitly stated 

Why wouldn’t John and Mary 
not always call? 

Perhaps burglar would call it 
off if there was an Earthquake? 



Recall the chain rule: 
 
P(V1 and V2 and V3 and V4 and V5) 
 
    = P(V1)P(V2|V1)P(V3|V1, V2)P(V4|V1, V2, V3)P(V5|V1, V2, V3, V4) 
 
             P(V1, V2) 
                          
                       P(V1, V2, V3) 
 
                                    P(V1, V2, V3, V4) 
 
                                                     P(V1, V2, V3, V4, V5) 
 
P(V1 and V2 and V3and V4 and V5) 
 
    = P(V4)P(V2|V4)P(V3|V4, V2)P(V1|V4, V2, V3)P(V5|V4, V2, V3, V1) 

Assume Vi a binary valued variable (T or F) 

A factorization ordering 

An alternative ordering 
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Constructing a belief  network 

For a particular factorization ordering, construct a network as follows 
(Section 8.3.2 of  text): 

P(v1), P(~v1) V1 
P(v1) = 0.75 
P(~v1) = 0.25 = 1 – P(v1) 

Suppose P(V2|V1) = P(V2) 

V1 a “root” 

V2 is second variable in ordering. If  V2 independent of  a subset of  its predecessors 
(possibly the empty set), conditioned on a disjoint subset of  predecessors 
(including possibly all its predecessors), then the latter subset is its parents, else 
V2 is a “root”  

V1 P(v1) V2 P(v2) 

Douglas H. Fisher 



V3 is third variable in ordering. 

V1 P(v1) V2 P(v2) 

V3 
P(v3|v1) 
P(v3|~v1) 
P(~v3|v1) = 1 – P(v3|v1) 
P(~v3|~v1) = 1 – P(v3|~v1) 

Assume P(V4| V1, V2, V3) = P(V4 | V2, V3) 

V1 P(v1) V2 P(v2) 

V3 
P(v3|v1) 
P(v3|~v1) 

V4 

P(v4|v2, v3), P(~v4|v2,v3) = 1-P(v4|v2,v3) 
P(v4|v2,~v3), … 
P(v4|~v2, v3), … 
P(v4|~v2, ~v3), … 

Douglas H. Fisher 

If  V3 independent of  a subset of  its predecessors 
(e.g., {V2}), conditioned on a disjoint subset of  
predecessors (e.g., {V1}) , then the latter subset is 
its parents. 
 
Assume P(V3|V1, V2) = P(V3|V1) 



Assume P(V5|V1, V2, V3, V4) = P(V5|V3)  (and P(V5|V1, V2, V3, V4) = P(V5|V1, V4))  

V1 P(v1) V2 P(v2) 

V3 
P(v3|v1) 
P(v3|~v1) 

V4 
P(v4|v2, v3), 
P(v4|v2,~v3), 
P(v4|~v2, v3), 
P(v4|~v2, ~v3) 

V5 
P(v5|v3) 
P(v5|~v3) 

Components of  a Bayesian Network: a topology (graph) that qualitatively indicates 
     displays the conditional independencies, and probability tables at each node 
 
Semantics of  graphical component: for each variable, Vi , then Vi is independent of  all 
   of  its non-descendants conditioned on its parents 
 
I will add another slide concerned with conditional indepencies conditioned on a node’s 
Markov Blanket   (next slide) 

Douglas H. Fisher 



V5 V6 

V7 

V9 V8 

Additional conditional independence property: for each variable, Vi , then Vi is 
independent of  all other nodes conditioned on its Markov Blanket 

Douglas H. Fisher 

Markov Blanket 

V1 V2 V3 

V10 V11 

V4 

The Markov Blanket of  a node, is all the node’s parents, all the node’s children, and all the other 
parent’s of  the node’s children 

The Markov Blanket of  
V7 is surrounded in 
grey: V5, V6, V8, V9 
 
So, V7 is conditionally 
independent of  V1, V2, 
V3, V4, V10, V11, 
conditioned on V5, V6, 
V8, V9 

V6 is another parent of one of 
V7’s children 

V8 and V9 are V7’s children 

V5 is V7’s only 
parent 



Burglary P(b) P(e) 

P(j|a) 
P(j|~a) 

Alarm 
P(a|b, e), 
P(a|b,~e), 
P(a|~b, e), 
P(a|~b, ~e) 

Earthquake 

JohnCalls MaryCalls 
P(m|a) 
P(m|~a) 

Douglas H. Fisher 

Any order of  the variables can lead to a “correct” BN, but  
the order that the variables are considered can yield BNs of  very different complexity 

This BN might have been constructed with ordering of  
     
                    Burglary, Earthquake, Alarm, JohnCalls, MaryCalls 



Burglary P(b) P(e) 

P(j|a) 
P(j|~a) 

Alarm 
P(a|b, e), 
P(a|b,~e), 
P(a|~b, e), 
P(a|~b, ~e) 

Earthquake 

JohnCalls MaryCalls 
P(m|a) 
P(m|~a) 

Douglas H. Fisher 

P(Burglary) 
 
P(Earthquake | Burglary) = P(Earthquake) 

P(Alarm | Burglary, Earthquake) no simplification 

P( JohnCalls | Burglary, Earthquake, Alarm) =  P( JohnCalls | Alarm)  

P( MaryCalls | Burglary, Earthquake, Alarm, JohnCalls) =  P( MaryCalls | Alarm)  

Equalities we believe are true or “close enough” 
to justify BN construction as shown 



Alarm P(a|j, m, e) 
… 

P(j) 
P(j) 

Burglary 

Earthquake 

JohnCalls 

Douglas H. Fisher 

How about ordering of   JohnCalls, MaryCalls, Earthquake, Alarm, Burglary?  

MaryCalls 
P(m|j) 
P(m|~j) 

If  John calls, its MORE probable that the alarm went off, and thus  
more probable that Mary will call 

If  both call, Earthquake more  
likely than just one call P(e|j, m) …. 

Earthquake plus call(s) will increase likelyhood of  Alarm 

?   Already more complicated than first ordering 

In general, ordering from “causes” to “manifestations” leads to simpler networks 

Illustration due to Russell and Norvig, Artificial Intelligence, 3rd edition, as well as Judea Pearl 



Where does knowledge of  conditional independence come from? 
 
a) From data. Consider congressional voting records. Suppose that we have data  
on House votes (and political party). Suppose variables are ordered 
     Party,  Immigration, StarWars, …. 
 
                                  Party   P(Republican) = 0.52    (226/435 Republicans 
                                                                                   209/435 Democrats) 
 
To determine relationship between Party and Immigration, we count 
 
       Actual Counts                                     Predicted Counts (if  Immigration and 
                                  Immigration                     Party independent) 
                                   Yes        No                                     Yes     No   
          Republican        17         209             Republican      92     134      
          Democrat         160           49            Democrat       85     124 
 
                                                                                                  P(Rep)*P(Yes) * 435 
                                                                                       = 0.52 * (17+160)/435 * 435 

Very different distributions – conclude dependent 

Douglas H. Fisher 



 
                                  Party   P(Republican) = 0.52    (226/435 Republicans 
                                                                                   209/435 Democrats) 
 
                                                                       Actual Counts 
                                                                        Immigration  
                                                                         Yes        No  
                                                 Republican        17         209       
                                                 Democrat         160           49  
 
                                                                                                   

Immigration 
P(Yes| Rep) = 0.075 
P(Yes|Dem) = 0.765 

17/226 

Consider StarWars 
    Is StarWars independent of  Party and Immigration? 
           (i.e., is P(StarWars|Party, Immigration) approx equal P(StarWars) 
                   for all combinations of  variable values?) 
           if  yes, then stop and make StarWars a “root”, else continue 
    Is StarWars independent of  Immigration conditioned on Party? 
           if  yes, then stop and make StarWars a child of  Party, else continue 
    Is StarWars independent of  Party conditioned on Immigration? 
           if  yes, then stop and make StarWars a child of  Immigration, else continue 
    Make StarWars a child of  both Party and Immigration 
 Douglas H. Fisher 



 
                                  Party   P(Republican) = 0.52    (226/435 Republicans 
                                                                                   209/435 Democrats) 
 
                               
                               Actual Counts         Actual Counts                      
                                Immigration              StarWars 
                                Yes        No              Yes      No 
       Republican        17         209            219         7      
       Democrat         160           49            24        185 
 
                                                                                                   

Immigration 
P(Yes| Rep) = 0.075 
P(Yes|Dem) = 0.765 

17/226 

Consider StarWars 
    Is StarWars independent of  Party and Immigration? 
            

                           Actual Counts 
                             Immigration 
                           Yes               No 
Republican 
Democrat 
                      Yes    No      Yes    No 
                                StarWars 

  14          3        205      4     
8         152        16        33 

                         Predicted Counts 
                             Immigration 
                           Yes               No 
Republican 
Democrat 
                      Yes    No      Yes    No 
                                StarWars 

  9.5       7.5       117      92     
89         71        27        22 

different – not independent 

P(Rep & Imm=Y)P(SW=Y)435 

Douglas H. Fisher 



Party 

Immigration StarWars 

Further tests might indicate 

i.e., Immigration and StarWars are independent conditioned on Party 

This process of  building a BN from data is a form of  unsupervised 
machine learning 

In this particular example, the BN above can be viewed as supporting 
the naïve Bayesian classifier (for predicting Party) 

Suppose given I=y and SW=n, predict Party 
 
P(Party=Dem | I=y, SW=n)  
         =   P(I=y, SW=n|Party=Dem)P(Dem)/P(I=y, SW=n) 
         α   P(I=y, SW=n|Party=Dem)P(Dem)  
         =   P(I=y|Party=Dem)P(SW=n|Party=Dem)P(Dem)  

P(Party = Rep) 
P(Party = Dem) 

P(StarWars = y| Party = Rep) 
P(StarWars = y| Party = Dem) 
P(StarWars = n| Party = Rep) 
P(StarWars = n| Party = Dem) 

P(Immigration = y| Party = Rep) 
P(Immigration = y| Party = Dem) 
P(Immigration = n| Party = Rep) 
P(Immigration = n| Party = Dem) 

P(Party=Rep | I=y, SW=n)  
         =   P(I=y, SW=n|Party=Rep)P(Rep)/P(I=y, SW=n) 
         α   P(I=y, SW=n|Party=Rep)P(Rep)  
         =   P(I=y|Party=Rep)P(SW=n|Party=Rep)P(Rep)  

Douglas H. Fisher 



Where does knowledge of  conditional independence come from? 
 
b) “First principles” 
 
For example, suppose that the grounds keeper sets sprinkler timers 
to a fixed schedule that depends on the season (Summer, Winter, 
Spring, Fall), and suppose that the probability that it rains or not  
is dependent on season. We might write: 
 
                                         

This model might differ from one in which a homeowner manually 
turns on a sprinkler 

Season 

Rains Sprinkler 

Season 

Rains Sprinkler 

Douglas H. Fisher 
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More on building BNs from first principles 

CS 4959 

CS 1101 
CS 1103 

CS 1151 
CS 2201 
CS 2212 
CS 2231 
CS 3250 
CS 3251 
CS 3259 

CS 3270 
CS 3281 
CS 3282 
CS 4260 
CS 4278 
CS 4285 
CS 4287 
CS 2204 
CS 3252 
CS 3265 
CS 3274 

CS 4269 
CS 4279 
CS 4283 
CS 4288 
CS 3258 
CS 3276 
CS 4266 

Consider CS courses in the Vanderbilt catalog 

For the highlighted courses, construct a BN for predicting 
grades in query courses from known or assumed grades in 
evidence courses 
 
Construct a network 
 
Can you compute the probability of each grade (A,B,C,D,F) 
from one or more known or assumed grades in other courses? 
 
 



Consider the following: 

       H            B 
 
E             L 
 
F             D 

P(b) P(h) 

P(e|h) 
P(e|~h) 

P(l|h,b)    P(l|~h,b) 
P(l|h,~b)  P(l|~h,~b) 

P(d|l) 
P(d|~l)  

P(f|e) 
P(f|~e) 

H: Hardware problems (h) or not (~h) 
B: Bugs in code (b) or not (~b) 
E: Editor running (e) or not (~e) 
L: Lisp interpreter running (l) or not (~l) 
F: Cursor flashing (f) or not (~f) 
D: prompt displayed (d) or not (~d) 

Douglas H. Fisher 

In lecture, we barely started on inference with BNs – we will pick up here next lecture 


