CS 4260 and CS 5260
 Vanderbilt University

Lecture on Uncertainty (Belief Networks)

This lecture assumes that you have

- Read Section 8.1 through 8.3 of ArtInt (though there is some repetition, as well as additional material)

ArtInt: Poole and Mackworth, Artificial Intelligence 2E at http://artint.info/2e/html/ArtInt2e.html
to include slides at http://artint.info/2e/slides/ch04/lect1.pdf

Feedback for Quiz Q-w9

Q1. Consider the binary-valued variable, W , with a domain of $\{\mathrm{w}, \sim \mathrm{w}\}$. What is the minimum number of probabilities that need to be stored so that the probability of any assignment of W can be obtained (i.e., $\mathrm{P}(\mathrm{w}), \mathrm{P}(\sim \mathrm{w})$).

Options:

0
$1<-$

2

4

1 is the correct answer. Only $\mathrm{P}(\mathrm{w})$ need be stored, and $\mathrm{P}(\sim \mathrm{w})$ can be computed as $1-\mathrm{P}(\mathrm{w})$. Alternatively, $\mathrm{P}(\sim \mathrm{w})$ could be stored, and $\mathrm{P}(\mathrm{w})$ computed.

Q2. Consider binary-valued variables W and X, where the domain of W is $\{w, \sim w\}$ and the domain of X is $\{x, \sim x\}$. What is the minimum number of probabilities that need to be stored so that the probability of each assignment of values to W and X (i.e., $\mathrm{P}(\mathrm{w}, \mathrm{x}), \mathrm{P}(\mathrm{w}, \sim \mathrm{x}), \mathrm{P}(\sim \mathrm{w}, \mathrm{x}), \mathrm{P}(\sim \mathrm{w}, \sim \mathrm{x}))$ can be obtained?

Options:

1

2
$3<-$

4

3 is the correct answer. $\mathrm{P}(\sim \mathrm{w}, \sim \mathrm{x})$ can be computed as 1 minus the sum of the other three, for example.
Answers to both Q1 and Q2 are consistent with the text's statement that $2^{\mathrm{n}}-1$ probabilities must be specified explicitly for value assignments of n binary variables (see beginning of section 8.2).

Q3. Consider binary-valued variables W and X, where the domain of W is $\{w, \sim w\}$ and the domain of X is $\{x, \sim x\}$. Further, assume that W and X are independent of each other.

What is the minimum number of probabilities that need to be stored so that the probability of each assignment of values of W and X (i.e., $\mathrm{P}(\mathrm{w}, \mathrm{x}), \mathrm{P}(\mathrm{w}, \sim \mathrm{x}), \mathrm{P}(\sim \mathrm{w}, \mathrm{x}), \mathrm{P}(\sim \mathrm{w}, \sim \mathrm{x}))$ can be obtained?

Options:
1
$2<$ —
3

4

The answer is 2 . If W and X are independent, then the joint probability of any pair of W, X values can be computed as the product of the individual probabilities of those values. For example, $\mathrm{P}(\mathrm{w}, \sim \mathrm{x})=\mathrm{P}(\mathrm{w}) * \mathrm{P}(\sim \mathrm{x})$. We only need store $\mathrm{P}(\mathrm{w})$ and $\mathrm{P}(\mathrm{x})$, from which $\mathrm{P}(\sim \mathrm{w})$ and $\mathrm{P}(\sim \mathrm{x})$, for example.

Q4: Consider variables $\mathrm{W}, \mathrm{X}, \mathrm{Y}$, and Z . All four of these variables are binary valued, so that W has a domain of w and $\sim \mathrm{w}$, for example.
The joint probability distribution, $\mathrm{P}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})$, is specified by assigning values to probabilities to each combination of values. There are 16 such assignments necessary to specify the joint distribution:
$\mathrm{P}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})$
$P(w, x, y, \sim z)$
$\mathrm{P}(\mathrm{w}, \mathrm{x}, \sim \mathrm{y}, \mathrm{z})$
...
$\mathrm{P}\left(\sim \mathrm{w}, \sim \mathrm{x}, \sim \mathrm{y}, \sim_{\mathrm{z}}\right)$

Actually, there are only 15 assignments that need to be explicitly made because the sum of all assignments must sum to 1.0 , so the last of the 16 , say $\mathrm{P}(\sim \mathrm{w}, \sim \mathrm{x}, \sim \mathrm{y}, \sim \mathrm{z})$, can be computed by 1.0 - (sum of the other 15 probabilities).

Consider the following assumptions.
X is independent of W .
Y is conditionally independent of X given W .
Z is conditionally independent of W given X and Y .
Under these assumptions, how many probabilities need to be stored to compute the value of any assignment in $\mathrm{P}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})(\mathrm{e} . \mathrm{g} ., \mathrm{P}(\mathrm{w}, \sim \mathrm{x}, \sim \mathrm{y}, \mathrm{z})$). It may be helpful to recall the Chain Rule (e.g., $\mathrm{P}(\mathrm{w}, \sim \mathrm{x}, \sim \mathrm{y}, \mathrm{z})=\mathrm{P}(\mathrm{w}) * \mathrm{P}(\sim \mathrm{x} \mid \mathrm{w}) * \mathrm{P}(\sim y \mid \mathrm{w}, \sim \mathrm{x}) * \mathrm{P}(\mathrm{z} \mid \mathrm{w}, \sim \mathrm{x}, \sim \mathrm{y}))$.

Options: 8 is the correct answer. If there were NO (conditional) independencies, then the text's guideline of requiring $2 \wedge 4-1$ (or 15) probabilities would be correct. But with application of the chain rule, some factorizations can lead to reduced numbers of probabilities that need to be satisfied.

$$
\text { For example, } \mathrm{P}(\mathrm{w}, \sim \mathrm{x}, \sim \mathrm{y}, \mathrm{z})=\mathrm{P}(\mathrm{w}) * \mathrm{P}(\sim \mathrm{x} \mid \mathrm{w}) * \mathrm{P}(\sim \mathrm{y} \mid \mathrm{w}, \sim \mathrm{x}) * \mathrm{P}(\mathrm{z} \mid \mathrm{w}, \sim \mathrm{x}, \sim \mathrm{y}) \text {. }
$$

$\mathrm{P}(\mathrm{w})$ needs to be specified. (count of 1 so far)

16 $\mathrm{P}(\sim \mathrm{x} \mid \mathrm{w})=\mathrm{P}(\sim \mathrm{x})$ because X is independent of $\mathrm{W} . \mathrm{P}(\mathrm{x})$ needs to be specified. (count of 2 so far)
$6 \quad P(\sim y \mid w, \sim x)=P(\sim y \mid w)$ because Y is conditionally independent of X given W. $P(y \mid w)$ and $P(y \mid \sim w)$ need to be specified (and $P(\sim y \mid w)$ and $P(\sim y \mid \sim w)$ can be computed. (count of 4 so far)
$\mathrm{P}(\mathrm{z} \mid \mathrm{w}, \sim \mathrm{x}, \sim \mathrm{y})=\mathrm{P}(\mathrm{z} \mid \sim \mathrm{x}, \sim \mathrm{y})$ because Z is conditionally independent of W given X and $\mathrm{Y} . \mathrm{P}(\mathrm{z} \mid \mathrm{x}, \mathrm{y}), \mathrm{P}(\mathrm{z} \mid \mathrm{x}, \sim \mathrm{y}), \mathrm{P}(\mathrm{z} \mid \sim \mathrm{x}, \mathrm{y}), \mathrm{P}(\mathrm{z} \mid \sim \mathrm{x}, \sim \mathrm{y})$ need to be specified, for example, from which conditional probabilities of \sim_{z} can be computed. (count of 8 total)

Belief (or Bayesian) Networks

Consider an ordering of variables to factor a joint probability distribution: W, X, Y, Z

Assume the following (conditional) independencies:
$\mathrm{P}(\mathrm{W})$

```
X independent of W
P}(\textrm{X}|\textrm{W})=\textrm{P}(\textrm{X}), i.e., P(x|w)= P(x) and P(x | ~w w = P(x), P(~x|w)= P(~x), P(~x | ~w ) = P(~x
```

Y independent of X conditioned on W

```
\(\mathrm{P}(\mathrm{Y} \mid \mathrm{W}, \mathrm{X})=\mathrm{P}(\mathrm{Y} \mid \mathrm{W})\), i.e.,
1 number instead of 2 numbers
    \(\mathrm{P}(\mathrm{y} \mid \mathrm{w}, \mathrm{x})=\mathrm{P}(\mathrm{y} \mid \mathrm{w}), \mathrm{P}(\mathrm{y} \mid \mathrm{w}, \sim \mathrm{x})=\mathrm{P}(\mathrm{y} \mid \mathrm{w}), \mathrm{P}(\mathrm{y} \mid \sim \mathrm{w}, \mathrm{x})=\mathrm{P}(\mathrm{y} \mid \sim \mathrm{w}), \mathrm{P}(\mathrm{y} \mid \sim \mathrm{w}, \sim \mathrm{x})=\mathrm{P}(\mathrm{y} \mid \sim \mathrm{w})\)
    \(\mathrm{P}(\sim y \mid w, x)=P(\sim y \mid w), P(\sim y \mid w, \sim x)=P(\sim y \mid w), P(\sim y \mid \sim w, x)=P(\sim y \mid \sim w), P(\sim y \mid \sim w, \sim x)=P(\sim y \mid \sim w)\)
```

Z independent of W conditioned on X and Y
$\mathrm{P}(\mathrm{Z} \mid \mathrm{W}, \mathrm{X}, \mathrm{Y})=\mathrm{P}(\mathrm{Z} \mid \mathrm{X}, \mathrm{Y})$, i.e.,
$\mathrm{P}(z \mid w, x, y)=P(z \mid x, y)$ and $P(z \mid w, x, \sim y)=P(z \mid x, \sim y) \ldots \ldots P(\sim z \mid \sim w, \sim x, \sim y)=P(\sim z \mid \sim x, \sim y)$

A Bayesian Network is a graphical representation of a joint probability distribution with (conditional) independence relationships made explicit

In particular, each variable (node) is (conditionally) independent of its non-descendants given its parents (i.e., given assigned values for each parent).

W has no parents - it is independent of X
X has no parents - it is independent of W (and Y)

Probabilities in light font, like this, can be computed rather than explicitly stored

Space savings due to BNs and conditional independencies generally

A bit more generally, assume n Boolean variables (for simplicity of analysis)

- 2^{n} joint probabilities that need be stored for n variables (actually, $2^{\mathrm{n}}-1$), in general
- In contrast, assume each variable directly influenced by at most k others (parents)
- Then each probability table will be at most 2^{k} (actually $2^{\mathrm{k}}-1$) numbers
- And complete network stores at most n2 2^{k} numbers
- If $\mathrm{n}=30$ and $\mathrm{k}=5$ then BN stores at most 960 numbers, compared to over $1,000,000,000$ for full joint distribution

Illustration due to Russell and Norvig, Artificial Intelligence, $3^{\text {rd }}$ edition

Example due to Judea Pearl

Perhaps burglar would call it off if there was an Earthquake?

Why wouldn't John and Mary not always call?

Recall the chain rule:
$P\left(V_{1}\right.$ and V_{2} and V_{3} and V_{4} and $\left.V_{5}\right)$
A factorization ordering

$$
=\underbrace{\mathrm{P}\left(\mathrm{~V}_{1}\right) \mathrm{P}\left(\mathrm{~V}_{2} \mid \mathrm{V}_{1}\right)}_{\mathrm{P}\left(\mathrm{~V}_{1}, V_{2}\right)} \mathrm{P}\left(\mathrm{~V}_{3} \mid \mathrm{V}_{1}, \mathrm{~V}_{2}\right) \mathrm{P}\left(\stackrel{V}{4}_{4} \mid \mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}\right) \mathrm{P}\left(\stackrel{V}{5}_{5} \mid \mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}\right)
$$

$$
\underbrace{P\left(V_{1}, V_{2}, V_{3}\right)}_{P\left(V_{1}, V_{2}, V_{3}, V_{4}, V_{5}\right)}
$$

$P\left(V_{1}\right.$ and V_{2} and V_{3} and V_{4} and $\left.V_{5}\right)$
An alternative ordering

$$
=P\left(V_{4}\right) P\left(V_{2} \mid V_{4}\right) P\left(V_{3} \mid V_{4}, V_{2}\right) P\left(V_{1} \mid V_{4}, V_{2}, V_{3}\right) P\left(V_{5} \mid V_{4}, V_{2}, V_{3}, V_{1}\right)
$$

Constructing a belief network

For a particular factorization ordering, construct a network as follows (Section 8.3.2 of text):

$$
\mathrm{P}\left(\mathrm{v}_{1}\right), \mathrm{P}\left(\sim \mathrm{v}_{1}\right) \mathrm{V}_{1} \mathrm{a} \text { "root" } \quad \begin{aligned}
& \mathrm{V}(\mathrm{v} 1)=0.75 \\
& \mathrm{P}(\sim \mathrm{v} 1)=0.25=1-\mathrm{P}(\mathrm{v} 1)
\end{aligned}
$$

V_{2} is second variable in ordering. If V_{2} independent of a subset of its predecessors (possibly the empty set), conditioned on a disjoint subset of predecessors (including possibly all its predecessors), then the latter subset is its parents, else V_{2} is a "root"

Suppose $\mathrm{P}\left(\mathrm{V}_{2} \mid \mathrm{V}_{1}\right)=\mathrm{P}\left(\mathrm{V}_{2}\right)$

$$
\mathrm{P}(\mathrm{v} 1) \quad \mathrm{V}_{1} \quad \mathrm{~V}(\mathrm{v} 2)
$$

V_{3} is third variable in ordering.

Assume $\mathrm{P}\left(\mathrm{V}_{4} \mid \mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}\right)=\mathrm{P}\left(\mathrm{V}_{4} \left\lvert\, \begin{array}{l}\left.\mathrm{V}_{2}, \mathrm{~V}_{3}\right)\end{array}\right.\right.$

Assume $\mathrm{P}\left(\mathrm{V}_{5} \mid \mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}\right)=\mathrm{P}\left(\mathrm{V}_{5} \mid \mathrm{V}_{3}\right) \quad\left(\operatorname{and} \mathrm{P}\left(\mathrm{V}_{5} \mid \mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}\right)=\mathrm{P}\left(\mathrm{V}_{5} \mid \mathrm{V}_{1}, \mathrm{~V}_{4}\right)\right.$)

Components of a Bayesian Network: a topology (graph) that qualitatively indicates displays the conditional independencies, and probability tables at each node

Semantics of graphical component: for each variable, V_{i}, then V_{i} is independent of all of its non-descendants conditioned on its parents

I will add another slide concerned with conditional indepencies conditioned on a node's Markor Blanket (next slide)

Markov Blanket

Additional conditional independence property: for each variable, V_{i}, then V_{i} is independent of all other nodes conditioned on its Markov Blanket
The Markov Blanket of a node, is all the node's parents, all the node's children, and all the other parent's of the node's children

The Markov Blanket of V_{7} is surrounded in grey: $\mathrm{V}_{5}, \mathrm{~V}_{6}, \mathrm{~V}_{8}, \mathrm{~V}_{9}$ So, V_{7} is conditionally independent of V_{1}, V_{2}, $V_{3}, V_{4}, V_{10}, V_{11}$, conditioned on V_{5}, V_{6}, $\mathrm{V}_{8}, \mathrm{~V}_{9}$

Any order of the variables can lead to a "correct" BN, but the order that the variables are considered can yield BNs of very different complexity

This BN might have been constructed with ordering of
Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

P (Burglary)
$\mathrm{P}($ Earthquake | Burglary $)=\mathrm{P}($ Earthquake $)$

Equalities we believe are true or "close enough" to justify BN construction as shown

P(Alarm | Burglary, Earthquake) no simplification
P(JohnCalls | Burglary, Earthquake, Alarm) $=\mathrm{P}($ JohnCalls \mid Alarm $)$
$\mathrm{P}($ MaryCalls | Burglary, Earthquake, Alarm, JohnCalls $)=\mathrm{P}($ MaryCalls \mid Alarm $)$

How about ordering of JohnCalls, MaryCalls, Earthquake, Alarm, Burglary?

In general, ordering from "causes" to "manifestations" leads to simpler networks

Where does knowledge of conditional independence come from?

a) From data. Consider congressional voting records. Suppose that we have data on House votes (and political party). Suppose variables are ordered Party, Immigration, StarWars,

$$
\begin{aligned}
\text { Party } P(\text { Republican })=0.52 \quad & (226 / 435 \text { Republicans } \\
& 209 / 435 \text { Democrats })
\end{aligned}
$$

To determine relationship between Party and Immigration, we count

Actual Counts

	Immigration		
	Yes	No	
Republican	17	209	Rep
Democrat	160	49	De

Very different distributions - conclude dependent

Predicted Counts (if Immigration and Party independent)

	Yes	No
Republican	92	134
Democrat	85	124

$$
\begin{gathered}
\mathrm{P}(\mathrm{Rep}) * \mathrm{P}(\mathrm{Yes}) * 435 \\
=0.52 *(17+160) / 435 * 435
\end{gathered}
$$

Actual Counts

Immigration
Yes No
Republican 17209
Democrat 160
49

Consider StarWars
Is StarWars independent of Party and Immigration?
(i.e., is P (StarWars | Party, Immigration) approx equal P (StarWars)
for all combinations of variable values?)
if yes, then stop and make StarWars a "root", else continue
Is StarWars independent of Immigration conditioned on Party?
if yes, then stop and make StarWars a child of Party, else continue
Is StarWars independent of Party conditioned on Immigration?
if yes, then stop and make StarWars a child of Immigration, else continue
Make StarWars a child of both Party and Immigration

Consider StarWars
Is StarWars independent of Party and Immigration?

Republican Democrat	Actual Counts Immigration Yes				Predicted Coun Immigration				
	14	3	205	4	Republican	9.5	7.5	117	92
	8	152	16	33	Democrat	89	71	27	22
	Yes		$\begin{aligned} & \text { Yes } \\ & \text { ars } \end{aligned}$		- not indepen				No

Further tests might indicate
$\mathrm{P}($ Immigration $=y \mid$ Party $=$ Rep $)$
$P($ Immigration $=y \mid$ Party $=$ Dem $)$ $\mathrm{P}($ Immigration $=\mathrm{n} \mid$ Party $=$ Rep $)$
$\mathrm{P}($ Immigration $=\mathrm{n} \mid$ Party $=$ Dem $)$

i.e., Immigration and StarWars are independent conditioned on Party

This process of building a BN from data is a form of unsupervised machine learning

In this particular example, the BN above can be viewed as supporting the naïve Bayesian classifier (for predicting Party)

Suppose given $\mathrm{I}=\mathrm{y}$ and $\mathrm{SW}=\mathrm{n}$, predict Party

```
P(Party=Dem | I=y, SW=n)
    = P(I=y,SW=n|Party=Dem)P(Dem)/P(I=y,SW=n)
    \alpha P(I=y,SW=n|Party=Dem)P(Dem)
    = P(I=y |Party=Dem)P(SW=n | Party=Dem )P(Dem)
```

```
P(Party=Rep | I=y, SW=n)
```

P(Party=Rep | I=y, SW=n)
= P(I=y,SW=n|Party=Rep)P(Rep)/P(I=y, SW=n)
= P(I=y,SW=n|Party=Rep)P(Rep)/P(I=y, SW=n)
\alpha P(I=y, SW=n|Party=Rep)P(Rep)
\alpha P(I=y, SW=n|Party=Rep)P(Rep)
= P(I=y |Party=Rep)P(SW=n |Party=Rep)P(Rep)

```
    = P(I=y |Party=Rep)P(SW=n |Party=Rep)P(Rep)
```

Where does knowledge of conditional independence come from?
b) "First principles"

For example, suppose that the grounds keeper sets sprinkler timers to a fixed schedule that depends on the season (Summer, Winter, Spring, Fall), and suppose that the probability that it rains or not is dependent on season. We might write:

This model might differ from one in which a homeowner manually turns on a sprinkler

More on building BNs from first principles

Consider CS courses in the Vanderbilt catalog

CS	4959
CS	1101
CS	1103
CS	1151
CS	2201
CS	2212
CS	2231
CS	3250
CS	3251
CS	3259
CS	3270
CS	3281
CS	3282
CS	4260
CS	4278
CS	4285
CS	4287
CS	2204
CS	3252
CS	3265
CS	4269
CS	4279
CS	4283
CS	4288
CS	3258
CS	32766

For the highlighted courses, construct a BN for predicting grades in query courses from known or assumed grades in evidence courses

Construct a network

Can you compute the probability of each grade (A,B,C,D,F) from one or more known or assumed grades in other courses?

In lecture, we barely started on inference with BNs - we will pick up here next lecture

Consider the following:

H: Hardware problems (h) or not ($\sim \mathrm{h}$)
B: Bugs in code (b) or not (\sim b)
E: Editor running (e) or not ($\sim \mathrm{e}$)
L: Lisp interpreter running (l) or not (~ 1)
F: Cursor flashing (f) or not ($\sim \mathrm{f}$)
D: prompt displayed (d) or not $(\sim \mathrm{d})$

