CS 4260 and CS 5260
Vanderbilt University

Lecture on Uncertainty
(Inference with Beliet Networks)

This lecture assumes that you have

* Read Section 8.1 through 8.3 of Artlnt (though there is some repetition, as well
as additional material)

* Seen previous two lectures on probability and belief network semantics

ArtInt: Poole and Mackworth, Artificial Intelligence 2E
at http://artint.info/2e/html/ArtInt2e.html
to include slides at http://artint.info/2e/slides/ch04/lectl.pdf

Douglas H. Fisher

Pe|h) P(|h,b) P(|~h,b)
Ple|~h) P(l|h,~b) P(|~h,~b)
P(t]e) P(d]1)
P(t|~e) P(d|~)

H: Hardware problems (h) or not (~h)
B: Bugs in code (b) or not (~b)

E: Editor running (e) or not (~e)

L: Lisp interpreter running (1) or not (~I)
F: Cursor flashing (f) or not (~f)

D: prompt displayed (d) or not (~d)

Note that H,B,E,LLED order is consistent with the BN (assuming it was constructed using the
method of the previous lecture), but so are others such as B,H,LL,D,E,FF (a node comes after all

its ancestors)
Douglas H. Fisher

Consider the following:

Pd|hb) P{|~h,b)

P(e|~h) P(l|h,~b) P(|~h,~b)
P(f]e) (D) PA|)
P(t|~e) P(d|~])

P(h> Nb) S, Nl) f) d)"D JOZﬂlerOb&le/Z@/

alwavs true

= P(h)P(~b | h)P(e | h, ~b)P(~1|h, ~b,)P(f| h, ~b, e, ~)P(d | h, ~b, e, ~1, f)

true given BN above

= P(h)P(=b57P(e | h)P(~1 [k, ~b)P(f| &)P(d | ~])
1-P(b) 1-P(|h,~b)
Computing a joint probability over specific value assignments to all the variables is straightforward; it is simply the
product of all the (conditional) probabilities in the probability tables that reflect those valne assignments.

Douglas H. Fisher

Another joint probability computation

Pd|hb) P{|~h,b)

P(e|~h) P(l|h,~b) P(|~h,~b)
P(f|¢) (D) PA|)
P(f| ~e) P(d|~I])

P(~h, b, ¢, I, ~f, ~d)?
Will typically not have to show this intermediate step, but may be helpful for partial credit, if you are clear

= P(~h)P(b | ~h)P(e| ~h, b)P(| ~h, b,)P(~f| ~h, b, e,)P(~d| ~h, b, €, 1, ~)

true given BN above
= PA)PB)P(e| ~h)P(| ~hb)P(-£E P

1-P(h) 1-P(tf|le) 1-P(f|e)

On an exam, you need not rewrite negated P(~x|...) as 1-P(x|...), unless I say otherwise. In most of what
Sfollows, I will not do that rewriting.

Douglas H. Fisher

What about joint probabilities over a subset of variables

P(e|h) P(|h,b) Pd|~h,b)
P(e|~h) P(l|h,~b) P(|~h,~b)
P(f|¢) (D) PA|)

P(t|~e) P(d|~])

P(~h, e, ~f)? P(~h, e, ~f) = P(~h)P(e| ~h)P(~f]|e)

P(~h, ¢)? P(~h, e) = P(~h)P(e| ~h)

If a variable is included in
the set, then all of its
parents are too

P(h,b,~,d)? P(h, b, ~1,d) = Ph)PL)P(~1| h, b)P(d|~])
P(h, ~b, I)? P(h, ~b, 1) = P(h)P(~b)P(| h, ~b)

P(h, ~b)? P(h, ~b) = P(h)P(~b)

Douglas H. Fisher

P(h) (B) PO)
blelh) (1) PAIb)

Plel~h) P(l| ~b)
P(t|e) Pd|])
P(t|~e) @ P(d]|~])

A network can be disconnected, but computation again straightforward if each variable with
a value in the joint probability has assigned values for its parents in the set too.

P(e, h,~ 1, b) = P(e|h)P(h)P(~1|b)P(b)

Douglas H. Fisher

What about joint probabilities of connected P(h) @ @ P(b)

variables, some with unassigned parents

We must use only probabilities P(C | h>
in tables (or trivially computed). P(C | Nh)

Pd|h,b) P{|~h,b)
P(|h,~b) P(|~h,~b)
P (D)

Pd|~])

Expand scope of involved variables P(t|e)
to include the ancestors of P(f| ~ 6)
assigned variables, and “sum out”

these unassigned variables.

P(C, ~f>9 H, the parent of E, (e A h)and (e A ~h)

. .
1sn’t assigned are mutuallff exclusive

| |
But P(e) not P(e) = P(e, h) + P(e, ~h
Ple, <07 Ple,~) = POP(~F|e) amywherein P<<e | hiP(h) : P<e>| ~h)P(~h)
tables

Ple, ~§ = POP(~£|¢) = [Ple[b)P(h) + Ple| ~h)P(~H)P(~f|c)

P(e, ~f) expressed in terrr!s of ONLY probabilities found in BN
tables (or trivially computed from them). This is the answer I am
typically looking for.

Douglas H. Fisher

Another joint probability of connected P(h) @ @ P(b)

variables, some with unassigned parents

P(e|h) P(|hb) P(|~h,b)
Pe|~h) P(l|h,~b) P(|~h,~b)
P(t|e) Pd|])
P(t]|~e) P(d|~])
P(~1, ~d)? Expand scope of involved variables
, to include the ancestors of
P(~1, ~d) = P(~))P(~d | ~]) assigned variables, and “sum out”

these unassigned variables.

= [(P(~Lh,b)+P(~Lh,~b)+P(~l,~h,b)+P(~L,~h,~b)] P(~d | ~I)

= [(P(~1|h,b)P(h)P(b) + P(~1|h,~b)P(h)P(~b) + P(~1| ~h,b)P(~h)P(b) + P(~1| ~h,~b)P(~h)P(~b)] P(~d|~])

v
Expressed in terms of ONLY probabilities found in BN tables (or trivially computed from them).

Or we could have written

P(~1, ~d) = P(h,b,~L,~d) + P(h,~b,~L~d) + P(~h,b,~L~d) + P(~h,~b,~1,~d)
= P(~1|h,b)P()P(B)P(~d | ~) + ... + P(~1| ~h,~b)P(~h)P(~b)P(~d | ~])
= [P(~1|h,b)P(h)P(b) + P(~1|h,~b)P(h)P(~b) + P(~1| ~h,b)P(~h)P(b) + P(~1| ~h,~b)P(~h)P(~b)] P(~d| ~I)

Douglas H. Fisher

P P Towards an algorithm for computing
<h> H @ joint probabilities
() Pdihb) ~Pd|~hb)
P(l|h,~b) P(|~h,~b)

Cumulative P(~1, ~d)?
@ P(d | D oduct
P|~) Prodt =

Cumulative
sum

Cumulative products @ @

/%{64@\

Table

Lookup
Douglas H. Fisher

P () (B) PO vt n dri o o
"7) PAIbb) Pd|~hb)
P(|h,~b) P(|~h,~b)
@ P(d|]) do a depth-first traversal
P(d|~])

Cumulative

Douglas H. Fisher

P(b, ~1, ~d)? P(e|h)

This is very much like the previous P(C | Nh) P(] | h)~b> P(l | Nh,Nb)
problem, but one of L’s parents

is assigned (L.e., B), and thus we P(f| 6) P(d | 1)
need only sum over values of H P(f | Ne) P(d | ND

Pd|hb) Pd|~hb)

P(b, ~1, ~d) = P(b, ~)P(~d|~I)

= [(P(~L, h, b) + P(~L,~h, b)] P(~d|~])
if more

e = [(P(~1|h, b)P(h)P(b) + P(~1| ~h, b)P(~h)P(b)] P(~d|~])

Expressed in terms of ONLY probabilities found in BN tables (or trivially computed from them).

Given BN structure
E————
P(b, ~1, ~d) = P(b) P(~1| B)P(~d|b, ~]) = P(b, ~)P(~d| ~)

—

a general equality

Douglas H. Fisher

P(e)?

We must use only probabilities P(C | h>h P(l | h>b> P@ | Nh>b>

in tables (or trivially computed). P(G | -~) P(l | h,"“b) P(l | Nh,"“b)
Expand scope to involve E’s P(f| 6) P(d | 1)

parents, and “sum out” all the P(f | Ne) P(d | ND

values of E.

P(e) = P(e, h) + P(e, ~h) = P(e|h)P(h) + P(e| ~h)P(~h)

P(~f)? You do this one.

How about computing a joint probability of nodes not directly connected? Sum over their
ancestor nodes.

P(e,1) = P(e, h, 1, b) + P(e, h, L, ~b) + P(e, ~h, 1, b) + P(e, ~h, L, ~b) = finish it

Douglas H. Fisher

A network can be disconnected, P(h) @ P(b)

but same rule of summing over

ancestors applies. P(C | h) Pd|b
Ple[~h) @ pél ~>b)

P(fe) P | 1)
P(t]~e) (2 Pd|~)

P(e,) = P(e, I, h,b) + P(e, |, h, ~b) + P(e, |, ~h, b) + P(e, 1, ~h, ~b)

= P(e,], h, b) + P(e, |, h, ~b) + P(e, 1, ~h, b) + P(e, 1, ~h, ~b)

= Ple[m)Ph)PI[b)P(b)
+ P(e|h)P()P(| ~b)P(~b)

if more
Zf;j:;gﬁm + P(e | Nh)P(Nh)P(l | b)P(b)
| + P(c| ~h)P(~h)P(l | ~b)P(~b)

Expressed in terms of ONLY probabilities found in BN tables (or trivially computed from them).

|
P(e, 1, h, b) = PMh)P(b|h)P1]|h, b)P(e|h, b,]) = P(h)P(b)P(|b)P(e|h)

Chain rule BN structure

Douglas H. Fisher

We know how to compute joint probabilities, so how about computing
conditional probabilities?

P(e|h) P(|h,b) Pd|~h,b)
P(e|~h) P(l|h,~b) P(|~h,~b)
P(t|e) Pd|])

P(f| ~e) P(d|~D)

P(~1|h,~b)? 1—-P(|h,~b) (essentially table lookup in this example)

If the network was constructed using an ordering of variables from
causes to manifestations, then this is inference of manifestation (and
“hidden” or intermediate) variables from causes.

Douglas H. Fisher

Consider the following: P(h) @ P(b)

We must use only probabilities
in tables (or trivially computed). P(C | h>
Expand scope of involved variables P(e | Nh)
to fill gaps between assigned variables,

(1.) PAIhb) P(|~hb)
P(|h,~b) P(|~h,~b)

and “sum out” these unassigned
variables. - ° P(f| €> @ P(d | 1)
P(t| ~e) P(d|~I])
P(d|h,~b)? A conditional probability can be expressed as two
joint probabilities
— P(d) h, ~b> / P(h)Nb» Note that P(h, ~b) isn t referenced in

final expression of P(d|h,~b), because
their values have been fixed, and (h,~b)
[P(d, 1,h,~b)+P(d,~l,h,Nb)] /P(h,Nb) assumed true (with probability 1.0)

= [Pd|DPA |h,~b)P(h,~b)+P(d|~1) P(~1|h,~b)P(h,~b)]/P(h,~b)

— P(d | DP(I | h,Nb>+P(d | Nl) P(Nl | h,~b> Douglas H. Fisher

Consider the following: P(h) @ P(b)

P(e|h) (1) PAIhb) P(|~hb)
P(e|~h) P(l|h,~b) P(|~h,~b)
P(f]e) (D) PA|)
P(t| ~e) P(d|~I])
P(f|h)?
— P(f, h) / P(h)) Note that P(h) isn 't referenced in
final expression of P(f|h), because
_ _ their values have been fixed, and (h)
a [P(f’ < h> + P<f’ < h>]/P<h> assumed true (with probability 1.0)

= [P(E[e)P(e|h)P(h) + P(f| ~e)P(~e[h)P(h)]/P(h)

= P(f|e)P(e | h) + P(f| ~¢) P(~e|h)

Douglas H. Fisher

Consider the following: Pty () () P

P(e|h) P(|h,b) P(|~h,b)
P12 Ple|~h) P(l|h,~b) P(l|~h,~b)
| P(f|¢) (D) PA|)
= P(~Lh)/P(h) P(f|~e) Pd|~I)

— [P(Nl,h,b) + P(Nl,h,fvb)] /P(h) We must involve B
= [P(~1|h,b)P(h,b) + P(~1|h,~b)P(h,~b)] / P(h)
= [P(~1{h,b)P(h)P(b) + P(~1|h,~b)P(h)P(~b)] / P(h)

— P(~1 | h b)P(b) + P<~1 | h Nb>P<~b) Final expression does not reference
’ ’ P(h), reflecting that H is fixed

Douglas H. Fisher

We can reason about P(h) g P(b)

causes from
manifestations: Plefh) g Pl|h,b) P(@|~h,b)
P(e|~h) P(l|h,~b) P(|~h,~b)
P(h|t)? P(f|e) Pd|])
P(f| ~¢) @ P(d|~])
= P(h, §)/P(f)

= [P(h,e,f)+P(h,~e,f)] /P(Q We must involve E — fill the gap

= [P(E[e)P(e|h)P(h) + P(f| ~e)P(~e[h)P(h)]/P(H)

= [P(f]e)P(e|h)P(h) + P(f| ~e)P(~e|h)P(h)]/[P(f,e,h)+P(f,e,~h)+P(f,~e,h)+P(f,~e,~h)]

= [P(E[e)P(e|)P(h) + P(f| ~e)P(~e|h)P(h)]
/ [P(E]e)P(e[h)P(h) + P(f])P(e[~h)P(~h) + P(f| ~¢)P(~e[h)P(h) + P(f| ~¢)P(~e|~h)P(~h)]

Douglas H. Fisher

Notice that there is P(h) g P(b)

some repeated

computation P(€|h) P(l|h,b) P(l| Nh,b)
putatt P(e|~h) g P(1|h,~b) P{|~h,~b)
P(f|e) P[]
P(f| ~¢) @ P(d[~D)
Phf)?
= P(h, §)/P(f)

= [P(h,e,f+P(h,~¢,0)]/P(f)

= [P(f|e)P(e|h)P(h) + P(f| ~e)P(~e|h)P(h)]/[P(f,e,h)+P(f,e,~h)+P(f,~e,h)+P(f,~e,~h)]

= [PE[eP(e|h)P(h) + P(f]| ~e)P(~e|h)P(h)]
/ [P(E[e)P(e[h)P(h) + P(f])P(e| ~h)P(~h) + P(f| ~¢)P(~e[h)P(h) + P(f| ~¢)P(~e [~h)P(~h)]

Douglas H. Fisher

L induces conditional P(h) @ @ P(b)

dependence on
H and B Ple|h) P(|hb) P(Q|~h,b)
P(1|h,~b) P(|~h,~b)

(D) P}
P(h|1)? P(t]| ~e) P(d|~I)

= P(h,)/P()
Don't need to expand P(l) ont

- [P(l | h>b)P<h>P T P(l | haNb>P(h>P<Nb>] / P(D to make a point about

conditional dependence

P(b|])?
= P(b,)/ P()
= [PA[h,b)P(M)P(b) + P | ~h,b)P(~h)P(b)] / P()

Douglas H. Fisher

L induces conditional P(h) @ @ P(b)

dependence on

H and B P(e|h) P{|h,b) P({|~h,b)

P(h, b1 P(e|~h) P(l|h,~b) P(l|~h,~b)
P(t]e) P[]

= P(h, b, I)/P() P(t|~e¢) Pd|~1)

= [PA[h,b)P®)P(h) / P(D)

Does P(h,b |) = P(h |) * P(b | 1) ? from previous slide
Equivalent

definitions of
— P
P<h | 13 b> P<h | D : " conditional
independence

Pb|l, h) =Pb|])? P(b|h,l) on next slide

—_—

These equalities are not true; knowing L. induces dependence on H and B. For
example, if L is known, and we are additionally told H, this changes the

robability of B (and B 1d ch H
probability o (an would change) Douglas H. Fisher

Consider the following: Ph) @ @ P(b)

Ple|h) Pd|hb) P(|~hb)
P(b|h, 1)? Pel~h P(I|h,~b) P(|~h,~b)
P(f|¢) (D) P@|Y
= P(b,h,l)/P(h,]) P(f]| ~e) Pd|~1)

= PA[h,b)Pb)P(h) / [PA[|h,b)P(B)P(h) + Pd|h, ~b)P(~b)P(h)]
= P(|h,b)P(b)P(h) / [PA|h,b)PbL)P(h) + P(|h, ~b)P(~b)P(h)]

= P(|h,b)P(b) / [PA|h,b)P(b) + P(|h, ~b)P(~b)]

If H and B both have causal influence on L (and D), then a known value of one (e.g., H),
will typically alter the probability of the other (e.g., B) conditioned on H'S value. For example.
If h and b each make [more likely, then if we know h

Douglas H. Fisher

Aside: Show equivalence between definitions of conditional independence. For
example, show that

P(h, b|l) = P(h|]) * P(b|]) implies P(b |1, h) = P(b|])

l

P(h,b |) =P [) * PO | 1)

Multiply both sides by P(l)

POPh, b [) =POPH | D *Ppb | D
P(h, b, 1) = P(h,) * P(b[1)
Divide both sides by P(h,)
P(h, b, 1)/P(h, 1) = P(b|D)

P(b|h, 1) = P[]

Douglas H. Fisher

Pe|h) P(|h,b) P(|~h,b)
Ple|~h) P(l|h,~b) P(l|~h,~b)
P(t]e) Pd|])

P(t|~e) @ P(d|~)

P[] = °? P(f | b 1) = ?
P(f | Lh) = »? Pd | h) = ?
P(f | b) =? Ph|)? =?

Douglas H. Fisher

