CS 4260 and CS 5260
Vanderbilt University

ILecture on Uniformed Search

This lecture assumes that you have

* Read Chapter 2 through section 2.3 of Artlnt (15 pages)

* Read Chapter 3 through section 3.5.2 of ArtlInt (20 pages) and

* Watched Doug’s iterative deepening search video playlist (material from
section 3.5.3 optional reading)

Artlnt: Poole and Mackworth, Artificial Intelligence 2E
at http:/ /artintinfo/2e/html/Artlnt2e.html
and some slides at https://artint.info/2e/slides/index.html

Iterative Deepening playlist:
https:/ /www.youtube.com/watch?v=7Qco]jSVT38&list=PLXAjOiP{89kPs82cbS6j9PR3t7ZzixnaO

Learning Objectives

At the end of the class you should be able to:
@ define a directed graph
@ represent a problem as a state-space graph

@ explain how a generic searching algorithm works

©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 1

e Often we are not given an algorithm to solve a problem, but
only a specification of what is a solution — we have to search
for a solution.

@ A typical problem is when the agent is in one state, it has a
set of deterministic actions it can carry out, and wants to get
to a goal state.

@ Many Al problems can be abstracted into the problem of
finding a path in a directed graph.

@ Often there is more than one way to represent a problem as a
graph.

©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 2

State-space Search

flat or modular or hierarchical

explicit states or features or individuals and relations
static or finite stage or indefinite stage or infinite stage
fully observable or partially observable

deterministic or stochastic dynamics

goals or complex preferences

single agent or multiple agents

knowledge is given or knowledge is learned

perfect rationality or bounded rationality

©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 3

Directed Graphs

@ A (directed) graph consists of a set N of nodes and a set A of
ordered pairs of nodes, called arcs.

@ Node ny is a neighbor of ny if there is an arc from ny to ns.
That is, if (n1, np) € A.

@ A path is a sequence of nodes (ng, ny,...,nk) such that
<n,'_1, n,-) e A.

@ The length of path (ng, n1,...,nk) is k.

@ Given a set of start nodes and goal nodes, a solution is a path
from a start node to a goal node.

©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 10

Example Problem for Delivery Robot

The robot wants to get from outside room 103 to the inside of

room 123.
r131 ri29 ri27 ri25 ri23 ri21 ri19
storage
0131 0129 5127 0125 0123 0121 0119
117
d1 42 1 o117 |/ "
c2
d3 c3 o115 |/ r115
al b1 b2
0113 r113
a2 a3 b3 b4
mail ts 0101 0103 0105 0107 0109 o111
main :
office [stairs —| 101 r103 r105 r107 r109 r111

©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 11

Search tree for Figure 3.1 of Poole and Mackworth, assuming robot starts at 0103,
with a goal of being in r123, with all arcs bidirectional (e.g., doors open in both directions,

which is a different assumption than text’s)

0103

/\

0101 r103 0105

ts rl01 0103 a3 0103 0l03 rl05 ol07 0103 bl

' TN /I\

Note the repeated states. When searching |
an explicit graph, we could simply mark
a state when we visited, and thereby spot

|
|

|

|

|

1 I

I repeats (assuming we clear those marks l / \
: between searches) '

|

!

I

|

0121 0123
' rl23
0103 0123
: ///”N\\\

' r123

Partial Search Space for a Video Game

Grid game: Rob needs to collect coins Ci, (o, (3, (4, without

running out of fuel, and end up at location (1,1):

I I
9 Fuel

Rob
C3

©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 16 11 /17

Partial Search Space for a Video Game

Grid game: Rob needs to collect coins Cq, (G, (3, (4, without

running out of fuel, and end up at location (1,1):

| |
9 |Fuel (<5s6ftff>

T; : ((595ftf6 (<5 7@85“‘”))

'Z <<584fttf>>

+ 5 (K4920£t6F))

\ > (K884t)

((5.9.19.5t£fF))
State: Goal:
{(X-pos, Y-pos,Fuel,C1,C2,C3,C4) K1.1.211L1)

©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 17 12 /17

Problem Solving by Graph Searching

ends of

paths on
i frontier 7‘
node ~

7

s,

unexplored nodes

Ry

N,
@

©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 19

Graph Search Algorithm

Input: a graph,
a set of start nodes,
Boolean procedure goal(n) that tests if n is a goal node.
frontier :== {(s) : s is a start node}
while frontier is not empty:
select and remove path (ng, ..., ny) from frontier
if goal(ny)
return (ng,..., ng)
for every neighbor n of ny
add (ng, ..., ng, n) to frontier
end while

©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 20

15 /17

Initial state

Basic Search methods of a tree

Leaves are terminal states with no successors (or neighbors).

Depth-first search (DFS) of a tree

State Stack (Frontier):

{A} N\, PopA,checkifAisa goal

Push successors of A

{B,C,D}
{E,F,C,D}
{IK,L,F,C,D}
{L,F,C,D}
{F,C,D}

M, C,D }
C,Dj

{G’ H, D} Assume each state in stack also includes the path used to reach it.
{N, H,D } So, A is really (A, ()), B is really (B, (A)), E is really (E, (A B)),

{H, D } K is really (K, (A, B, E)), Lis really (L, (A, B, E)), F is (F, (A, B)), etc.
This convention differs very slightly from textbook’s.
{0, P, D}

{P, D} Pop P, check if P a goal, stop, return (P, (A, C, H)) or (A> C > H = P)

Breadth-first search (BFS) of a tree

State Queue (Frontier):
{ A} \' Dequeue A, check if A 1s a goal,

(B, C, DE?queue successors of A

{C,D,E, F} @
{D,E,F,G,H}

{E,F,G,H, 1, J}
{F,G,H,1LJ,K, L}

{G,H, 1,J,K, L, M}

{H,1,J, K, L, M, N}

(LI, K,L,M,N,O, P

{J,K, L, M, N, O, P, Q}

{K,L, M,N,O, P,Q,R, S}
{L,M,N,O,P,Q,R, S}

{M,N, O,P,Q,R, S}
{N,O,P,Q,R, S}
{0, P, Q,R, S}
fP.Q,R, S

b
} Dequeue P, check if P a goal, stop, return (P, (A, C, H)) or (A> C > H -2 P)

Iterative deepening DFS of a tree

State Stack (Frontier):

1] {A}, {}

2] {A}, {B, C, D}, {C, D}, {D}, {}

3] {A}, {B, C, D}, {E, F, C, D},{F, C, D}, {C, D}, {G, H, D}, {H, D},
D}, AL JY, U5, 4

4] {A}, {B,C,D}, {E, F, C,D}, {K, L, F, C, D}, {L, F, C, D}, {F, C, D},
{M, C, D}, {C, D}, {G, H, D}, {N, H, D}, {H, D}, {O, P, D},
{P, D} Pop P, check if P a goal, stop, return (P, (A, C, H)) or (A-> C > H - P)

Iterative widening BFS of a tree

State Queue:

11{A}, {B, &P}, {E}, {K}, {}

2] 1A}, iB, C}, {C, E}, {E, G}, {G, K}, {K, N}, {N}, {}

3] {A}, {B, C, D}, {C,D,E}, {D, E, G}, {E, G, 1}, {G, I, K}, {I, K, N},

{K, N, Q}a {N, Q}a {Q} Dequeue Q, check if Q a goal, stop,
return (Q, (A, D, I)) or (A=> D 2> 12> Q)

Search tree for Figure 3.1 of Poole and Mackworth, assuming robot starts at 0103,
with a goal of being in r123, with all arcs bidirectional (a different assumption than text’s)

0103

%\

ol01 r103 0105

ts r101 0103 a3 0103 0l03 rl105 o107 0103 bl

/E\/}\

2 arcs

I
Note the repeated states. When searching :
an explicit graph, we could simply mark '
a state when we visited, and thereby spot
repeats (assuming we clear those marks : / \

between searches) |

|
I6 arcs

cl

0121 0123
P T
rl123
0103 0123

' r123

replaced on Open
(already on

Open or Path to TOS State Stack

Searching a graph /@\ :
with DFS A L
Successors not ' ' \® \.®

Explored States

Explored) State (Frontier)
{A} t

(A) {B, C} {A}
A (A,B) {E.D, C} {A, B}
B (A.BF) (G.H, D, C} (A, B, F)
FH (A,B,F,G) {L,1, H, D, C} {A, B, F, G}
GI1 (A,B,F,G) {I, H, D, C} {A,B,F,G,L}
GL (ABFEGJI {JLHD,C (A,B.F.G,L,1I)
HI (ABEGL]) {M. H,D,C) (A,B,F,G,L, 11

M is goal, return (M, (A,B,F,G,LJ))

Tennessee
Supreme
Court _

BR F

Searching a graph
with BFS A 1 (D)
(— Ot
Repeated \ @
Successors Path State Queue (Frontier) Explored ®/
() {A}
(A) {B.C} {A}
A (A) {C.D.F} {A,B}
A.D (A,B) {D,F,E} {A,B,C}
B,C,E (A,B) (F,E} {A,B,C,D}
B (A,C) {E,G.H} {A.B,C,.D,F}
C,D.H (A,B,F) (G,H} {A,B,C.D,F,E}
FH (A,B,F) (HL.I {A,B,C,D,F,E,G}
E.FG (A,BFG) {L,LIK} {A,B,C,D,F,E,G,H}
G.I (A,BFG) {LIK! {A,B,C,D,F,E,G,H,L}
G.L,J (ABFH) {JK} {A,B,C,D,F,E,G,H,L,I}
H,I (A.BFH) (KM} {A,B,C,D,F,E,G,H,L,LJ}

H.M (A.B,F,H,)J) {M} Ms goal, return (M, (A,B,F,H.J))

Searching a graph 1 /@\j B
with costs (Lowest ~ 5 7

Cost First Search) A\ 1 Dk 4

Repeated
SUCCEsSOrs Path State Priority Queue (Frontier) Closed
() {A(0)}
(A) {B(1), C(3)} A(0)
A(l) (A,B) {F(2), C(3), D(6)} A(0),B(1)

continue the example

