CS 4260 and CS 5260 Vanderbilt University

Lecture on Uniformed Search

This lecture assumes that you have

- Read Chapter 2 through section 2.3 of ArtInt (15 pages)
- Read Chapter 3 through section 3.5.2 of ArtInt (20 pages) and
- Watched Doug's iterative deepening search video playlist (material from section 3.5.3 optional reading)

ArtInt: Poole and Mackworth, Artificial Intelligence 2E

at http://artint.info/2e/html/ArtInt2e.html

and some slides at https://artint.info/2e/slides/index.html

Iterative Deepening playlist:

https://www.youtube.com/watch?v=7QcoJjSVT38&list=PLXAjOiPf89kPs82cbS6j9PR3t7ZzixnaO

At the end of the class you should be able to:

- define a directed graph
- represent a problem as a state-space graph
- explain how a generic searching algorithm works

- Often we are not given an algorithm to solve a problem, but only a specification of what is a solution — we have to search for a solution.
- A typical problem is when the agent is in one state, it has a set of deterministic actions it can carry out, and wants to get to a goal state.
- Many AI problems can be abstracted into the problem of finding a path in a directed graph.
- Often there is more than one way to represent a problem as a graph.

2/17

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality

< D >

- A (directed) graph consists of a set *N* of nodes and a set *A* of ordered pairs of nodes, called arcs.
- Node n_2 is a neighbor of n_1 if there is an arc from n_1 to n_2 . That is, if $\langle n_1, n_2 \rangle \in A$.
- A path is a sequence of nodes $\langle n_0, n_1, \ldots, n_k \rangle$ such that $\langle n_{i-1}, n_i \rangle \in A$.
- The length of path $\langle n_0, n_1, \ldots, n_k \rangle$ is k.
- Given a set of start nodes and goal nodes, a solution is a path from a start node to a goal node.

Example Problem for Delivery Robot

The robot wants to get from outside room 103 to the inside of room 123.

7/17

Search tree for Figure 3.1 of Poole and Mackworth, assuming robot starts at 0103, with a goal of being in r123, with all arcs bidirectional (e.g., doors open in both directions, which is a different assumption than text's)

Grid game: Rob needs to collect coins C_1 , C_2 , C_3 , C_4 , without running out of fuel, and end up at location (1, 1):

11/17

Grid game: Rob needs to collect coins C_1 , C_2 , C_3 , C_4 , without running out of fuel, and end up at location (1, 1):

Problem Solving by Graph Searching

14/17

 $\langle \Box \rangle$

Input: a graph, a set of start nodes, Boolean procedure goal(n) that tests if n is a goal node. *frontier* := { $\langle s \rangle$: *s* is a start node} while *frontier* is not empty: select and remove path $\langle n_0, \ldots, n_k \rangle$ from frontier if $goal(n_k)$ return $\langle n_0, \ldots, n_k \rangle$ for every neighbor n of n_k add $\langle n_0, \ldots, n_k, n \rangle$ to frontier end while

15/17

Leaves are terminal states with no successors (or neighbors).

K is really (K, (A, B, E)), L is really (L, (A, B, E)), F is (F, (A, B)), etc. This convention differs very slightly from textbook's.

 $\{{\bf P}, {\bf D}\}$ Pop P, check if P a goal, stop, return (P, (A, C, H)) or $(A \rightarrow C \rightarrow H \rightarrow P)$

 $\{0, P, D\}$

Breadth-first search (BFS) of a tree

State Queue:

1] {A}, {B, C, D}, {E}, {K}, {}

2] {A}, {B, C}, {C, E}, {E, G}, {G, K}, {K, N}, {N}, {}

3] {A}, {B, C, D}, {C, D, E}, {D, E, G}, {E, G, I}, {G, I, K}, {I, K, N}, {K, N, Q}, {N, Q}, {Q} Dequeue Q, check if Q a goal, stop, return (Q, (A, D, I)) or $(A \rightarrow D \rightarrow I \rightarrow Q)$

Search tree for Figure 3.1 of Poole and Mackworth, assuming robot starts at 0103, with a goal of being in r123, with all arcs bidirectional (a different assumption than text's)

Searching with DFS Successors					
replaced on Open					
(already on			(K)		
Open or	Path to TOS	State Stack	Explored States		
Explored)	State	(Frontier)			
		$\{A\}$	{}		
	(A)	$\{\underline{\mathbf{B}}, \underline{\mathbf{C}}\}$	$\{\tilde{A}\}$		
А	(A,B)	{ <u>F, D,</u> C}	$\{A, B\}$		
В	(A,B,F)	{ <u>G, H</u> , D, C}	$\{A, B, F\}$		
FH	(A,B,F,G)	{ <u>L, I</u> , H, D, C}	$\{A, B, F, G\}$		
GI	(A,B,F,G)	$\{I, H, D, C\}$	$\{A, B, F, G, L\}$		
GL	(A,B,F,G,I)	{ <u>J</u> , H, D, C}	$\{A, B, F, G, L, I\}$		
ΗI	(A,B,F,G,I,J)	$\{\underline{M}, H, D, C\}$	$\{A, B, F, G, L, I, J\}$		
M is goal, return (M, (A,B,F,G,I,J))					

 $\overline{}$

Searchi with BF	ng a graph 7S	A	
Repeated Successors	Path St	ate Queue (Fro	ntier) Explored
A A,D B,C,E B C,D,H F,H E,F,G G,I G,L,J H,I H,M	() (A) (A) (A,B) (A,B) (A,B,F) (A,B,F) (A,B,F,G) (A,B,F,G) (A,B,F,H) (A,B,F,H) (A,B,F,H) (A,B,F,H,J)		$ \{A\} \\ \{A,B\} \\ \{A,B,C\} \\ \{A,B,C,D\} \\ \{A,B,C,D,F\} \\ \{A,B,C,D,F,E\} \\ \{A,B,C,D,F,E,G\} \\ \{A,B,C,D,F,E,G,H\} \\ \{A,B,C,D,F,E,G,H,L\} \\ \{A,B,C,D,F,E,G,H,L,I\} \\ \{A,B,C,D,F,E,C,H,L,I\} \\ \{A,B,C,D,F,E,C,H,L,I\}$

continue the example