Example 6.1 Consider a delivery robot world with mail and coffee to deliver. Assume a simplified domain with tour locations as shown in Figure 6.1

Features to describe states

RLoc

- Rob's location

RHC

- Rob has coffee

SWC

- Sam wants coffee

MW

- Mail is waiting

RHM

- Rob has mail

Actions

```
mc
    - move clockwise
mcc
    - move counterclockwise
puc
    - pickup coffee
dc
    - deliver coffee
pum
    - pickup mail
dm
- deliver mail
```


Adapted from ArtInt

State	Action	Resulting State
(lab, $\neg r h c, s w c, \neg m w, r h m)$	$m c$	(mr, $\neg r h c, s w c, \neg m w, r h m)$
(lab, $\neg r h c, s w c, \neg m w, r h m)$	$m c c$	(off, $\neg r h c, s w c, \neg m w, r h m)$
(off, $\neg r h c, s w c, \neg m w, r h m)$	$d m$	(off, $\neg r h c, s w c, \neg m w, \neg r h m)$
(off, $\neg r h c, s w c, \neg m w, r h m)$	$m c c$	$(c s, \neg r h c, s w c, \neg m w, r h m)$
(off, $\neg r h c, s w c, \neg m w, r h m)$	$m c$	(lab, $\neg r h c, s w c, \neg m w, r h m)$
\ldots	\ldots	\ldots

Figure 6.1 : Part of the search space for a state-space planner

$$
\begin{aligned}
& \text { puc: }[R H C=\sim r h c, R L O C=c s] \rightarrow[R H C=r h c] \\
& \text { dc: }[R H C=r h c, R L O C=o f f] \rightarrow[R H C=\sim r h c, S W C=\sim s w c] \\
& \text { mc_cs: }[R L O C=c s] \rightarrow[R L O C=o f f] \\
& \text { mcc_so }=[R L O C=o f f] \rightarrow[R L O C=c s]
\end{aligned}
$$

$$
\text { Goal }=\{\sim s w c\}
$$

. . .

Regression or backward planning: neighbors (children) of a node, N , stem from operators with effects that would need to be achieved to satisfy (sub)goals of N

Exercise 6 from Section 6.8 of text (if we want to use composite (aka macro) operators in search (forward or backward) then we need precondition and effects just like any operator

Existing notation: a is an action; $\operatorname{pre}(\mathrm{a}), \operatorname{eff}(\mathrm{a})$

C is a set of conditions (variable value assignments)

Conflicts $(\mathrm{C} 1, \mathrm{C} 2)=$ set of conditions in C 2 that conflict with a condition in C 1

$$
=\left\{\mathrm{V}=\mathrm{v} \text { in } \mathrm{C} 2 \mid \text { Exists } \mathrm{V}=\mathrm{v}^{\prime} \text { in } \mathrm{C} 1 \text { where } \mathrm{v} \neq \mathrm{v}^{\prime}\right\}
$$

Define WeakestResult (a) = the minimal set of conditions true after action a 'executed'

$$
=\operatorname{eff}(\mathrm{a})+(\operatorname{pre}(\mathrm{a})-\text { conflicts }(\operatorname{eff}(\mathrm{a}), \operatorname{pre}(\mathrm{a})))
$$ Preconditions that are no longer true

(a) What is $\operatorname{eff}(\mathrm{a} 1 ; \mathrm{a} 2)$?
$\operatorname{eff}(\mathrm{a} 1 ; \mathrm{a} 2)=[\operatorname{eff}(\mathrm{a} 2)-\operatorname{pre}(\mathrm{a} 2)-\operatorname{pre}(\mathrm{a} 1)]+[\operatorname{eff}(\mathrm{a} 1)-\operatorname{pre}(\mathrm{a} 1)-\operatorname{conflicts}(\operatorname{eff}(\mathrm{a} 2), \operatorname{eff}(\mathrm{a} 1))]$
If an operator only reflects those conditions that CHANGE, then there will be no conditions shared in eff(a2) and pre(a2), and there should NOT be any shared with pre(a1) in final macro (composite) operator
(b) When is the composite action impossible?

When Conflicts (WeakestResult(a1), pre(a2)) $\neq\{ \}$
In contrast, composite operator $(\mathrm{a} 1 ; \mathrm{a} 2)$ is consistent if Conflicts $($ WeakestResult $(\mathrm{a} 1)$, pre $(\mathrm{a} 2))=\{ \}$

Exercise 6 from section 6.8 of text cont

> or WeakestResult(a1)
(c) What is pre $(a 1 ; a 2)$?
$\operatorname{pre}(\mathrm{a} 1 ; \mathrm{a} 2)=[\operatorname{pre}(\mathrm{a} 1)]+[\operatorname{pre}(\mathrm{a} 2)-\operatorname{eff}(\mathrm{a} 1)]$
(d) puc;mc_cs where puc: $[\sim$ rhc, cs] \rightarrow [rhc] and mc_cs: $[\mathrm{cs}] \rightarrow$ [off]
pre(puc; mc_cs) $=[\sim$ rhc, cs $] \quad$ eff(puc; mc_cs) $=[$ rhc, off $]$
Typo in example 6.1 (noted on hypthes.is) (e) puc; mc_cs; dc where dc: [rhc, off] $\rightarrow[\sim \mathrm{rhc}, \sim$ swc] Fixed in online version of book for F2018 pre(puc;mc_cs; dc) = pre((puc;mc_cs); dc) FYI pre(puc;mc_cs; dc) $=[\sim$ rhc, cs $] \quad$ eff(puc;mc_cs; $d c)=[\sim s w c$, off $]$
(f) mcc_off;puc;mc_cs;dc where mcc_off $=[$ off $] \rightarrow$ css]

Various typos
Fixed as indicated
They would be in video
pre(mcc_off;puc;mc_cs;dc) = pre(mcc_off; ((puc;mc_cs); dc)) FYI
pre(mcc_off;puc;mc_cs;dc) $=[$ off, \sim rhc] eff(mcc_off;puc;mc_cs;dc) $=[\sim s w c]$

