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CS 4260 and CS 5260 
Vanderbilt University 

 
Lecture on Evaluation 

This lecture assumes that you have 
•  Read Section 7.1 through 7.2 of  ArtInt and  
 
ArtInt: Poole and Mackworth, Artificial Intelligence 2E  
            at http://artint.info/2e/html/ArtInt2e.html 
to include slides at http://artint.info/2e/slides/ch04/lect1.pdf   
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P(C=c1) * P(SciFi = -1|c1) * P(Terror = 1|c1) * P(Romance = -1|c1) * P(Ebert = 1|c1) *  P(Siskel = 1|c1) * ….] 

Douglas H. Fisher 

We have see two supervised machine learning strategies 
 
•  Naïve Bayesian learning (was optional during ML week; required later)) 
 
 
•  Decision tree learning 
 

How can we compare them? 
 
How can we characterize their learning independent of  each other? 
 
How do we parameterize each of  them to maximize performance? 
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•  Testing a classifier/predictor on data that was used for training is overly optimistic, 
•  even if  the method doesn’t memorize each data per se 

 
•  More realistic, in most cases, is to test on previously unseen data 
 
•  What does this tell us? 
 
•  If  there are N training data, then test set accuracy (or error) approximates (to an unknown 

extent) the performance of  classifiers constructed by the learning method on N training data 

Training and Test Data Sets 

Train Test 

Avail Universe 
of  data 
(e.g., all 
patients, all 
movies) 

But typically, most interested in performance on universe 

Performance (on test set) 

         N 
Amount of  training 
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Using repeated Train and Test splits 

Given:  M data available, Avail 
 Learning Trials, L 

              Training set size, N 
 Test set size, M-N 

 
Local:  Training Set, Train 

 Test Set, Test 
               Classifier 
               AggregatedPerformance (e.g., Mean, Median, Mode) 
 
Initialize AggregatedPerformance 
Repeat L times { 
        Train ß Randomly draw N data from Avail, “without replacement” 
        Test ß Avail – Train 
        Classifier ß Learn(Train) 
        AggregatedPerformance ß Performance(Classifier, Test) + AggregatedPerformance 
} 
Return AggregatedPerformance 

Performance (on test set) 

         N 
Amount of  training 

This provides approximation of  performance (on Universe)  
of  learning method at training size of  N 
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Generating Learning Curves through repeated  
Train and Test splits 

Given:  M data available, Avail 
 Learning Trials, L 

               Training set sizes, N1…Nmax 
 Test set size, M-Nmax 

 
Local:  Training Set, Train 

 Test Set, Test 
                Classifier 
                AggregatedPerformanceVector 
 
Initialize AggregatedPerformanceVector 
Repeat L times { 
        Train ß Randomly draw Nmax data from Avail,  
                                               “without replacement” 
        Test ß Avail – Train 
        Partition Train into 1 to max bins, TrainBin1 through TrainBinmax 
        For k = 1 to max { 
             Classifier ß Learn(Union of  TrainBin1 through TrainBink) 
             AggregatedPerformanceVector[k]  
                        ß Performance(Classifier, Test) + AggregatedPerformanceVector[k] 
} 
Return AggregatedPerformanceVector 

Performance (on test set) 

  N1      N2       N3      N4 

Train 

Test 

Bin1 Bin2 Bin3 Bin4 

This provides approximation of  performance (on Universe) of  learning method at different training N 
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Comparing Learning Curves of  Different 
Supervised Machine Learning Methods 

Given:  … 
Local:  … 
 
Initialize AggregatedPerformanceVectorMethod1 (e.g., TDIDT) 
Initialize AggregatedPerformanceVectorMethod2 (e.g., NBC) 
Repeat L times { 
        Train ß Randomly draw Nmax data from Avail,  
                                               “without replacement” 
        Test ß Avail – Train 
        Partition Train into 1-to-max bins, TrainBin1 through TrainBinmax 
        For k = 1 to max { 
             Classifier1 ß Learn1(Union of  TrainBin1 through TrainBink) 
             AggregatedPerformanceVectorMethod1[k]  
                        ß Performance(Classifier1, Test) + AggregatedPerformanceVector1[k] 
             Classifier2 ß Learn2(Union of  TrainBin1 through TrainBink) 
             AggregatedPerformanceVectorMethod2[k]  
                        ß Performance(Classifier2, Test) + AggregatedPerformanceVector2[k] 
} 
Return AggregatedPerformanceVectorMethod1, AggregatedPerformanceVectorMethod2 

Performance (on test set) 

  N1      N2       N3      N4 

Train 

Test 

Bin1 Bin2 Bin3 Bin4 

This provides approximations of  performance (on Universe)  
of  each method at different training N 
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Performance (on test set) 

  N1      N2       N3      N4 

Test 

Train Bin1 Bin2 Bin3 Bin4 

How Might we use in Real Setting 

1. Use Training/Test splits to  
plot performance 

Performance (Projected) 

  N1      N2       N3      N4 

2. Curve fit learning behavior to project performance  
(on universe) at larger N 

Train Bin1 Bin2 Bin3 Bin4 

Former  
Test 

and deploy classifier 

All available data 
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Performance 

  M-M/K 

K-Fold Cross Validation 

All available data 

Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 

1.  Randomize order of  available M data  
2.  divide available data into K (e.g., 10) equal size bins or folds 
3.  For I = 1 to K { 

•  Train on union of  all folds, except foldI 
•  Test on foldI 

4.  Average results 

M-Fold Cross Validation 
(or leave-one-out cross validation) 

Divide a data set of  size M into M singleton folds, and follow algorithm above 
(e.g., for each dataum, train on M-1 other data and test on the datum) 
 
This is often regarded as the best way to leverage the existing data and get as close as one 
can to estimating performance on a final deployed classifier trained on all data 


