

1

CS 4260 and CS 5260
Vanderbilt University

Lecture on Evaluation

This lecture assumes that you have
•  Read Section 7.1 through 7.2 of ArtInt and

ArtInt: Poole and Mackworth, Artificial Intelligence 2E
 at http://artint.info/2e/html/ArtInt2e.html
to include slides at http://artint.info/2e/slides/ch04/lect1.pdf

2

P(C=c1) * P(SciFi = -1|c1) * P(Terror = 1|c1) * P(Romance = -1|c1) * P(Ebert = 1|c1) * P(Siskel = 1|c1) * ….]

Douglas H. Fisher

We have see two supervised machine learning strategies

•  Naïve Bayesian learning (was optional during ML week; required later))

•  Decision tree learning

How can we compare them?

How can we characterize their learning independent of each other?

How do we parameterize each of them to maximize performance?

3

•  Testing a classifier/predictor on data that was used for training is overly optimistic,
•  even if the method doesn’t memorize each data per se

•  More realistic, in most cases, is to test on previously unseen data

•  What does this tell us?

•  If there are N training data, then test set accuracy (or error) approximates (to an unknown

extent) the performance of classifiers constructed by the learning method on N training data

Training and Test Data Sets

Train Test

Avail Universe
of data
(e.g., all
patients, all
movies)

But typically, most interested in performance on universe

Performance (on test set)

 N
Amount of training

D
ou

gl
a
s

H
.
F

is
h

er

4

Using repeated Train and Test splits

Given: M data available, Avail
 Learning Trials, L

 Training set size, N
 Test set size, M-N

Local: Training Set, Train

 Test Set, Test
 Classifier
 AggregatedPerformance (e.g., Mean, Median, Mode)

Initialize AggregatedPerformance
Repeat L times {
 Train ß Randomly draw N data from Avail, “without replacement”
 Test ß Avail – Train
 Classifier ß Learn(Train)
 AggregatedPerformance ß Performance(Classifier, Test) + AggregatedPerformance
}
Return AggregatedPerformance

Performance (on test set)

 N
Amount of training

This provides approximation of performance (on Universe)
of learning method at training size of N

D
ou

gl
a
s

H
.
F

is
h

er

5

Generating Learning Curves through repeated
Train and Test splits

Given: M data available, Avail
 Learning Trials, L

 Training set sizes, N1…Nmax
 Test set size, M-Nmax

Local: Training Set, Train

 Test Set, Test
 Classifier
 AggregatedPerformanceVector

Initialize AggregatedPerformanceVector
Repeat L times {
 Train ß Randomly draw Nmax data from Avail,
 “without replacement”
 Test ß Avail – Train
 Partition Train into 1 to max bins, TrainBin1 through TrainBinmax
 For k = 1 to max {
 Classifier ß Learn(Union of TrainBin1 through TrainBink)
 AggregatedPerformanceVector[k]
 ß Performance(Classifier, Test) + AggregatedPerformanceVector[k]
}
Return AggregatedPerformanceVector

Performance (on test set)

 N1 N2 N3 N4

Train

Test

Bin1 Bin2 Bin3 Bin4

This provides approximation of performance (on Universe) of learning method at different training N

D
ou

gl
a
s

H
.
F

is
h

er

6

Comparing Learning Curves of Different
Supervised Machine Learning Methods

Given: …
Local: …

Initialize AggregatedPerformanceVectorMethod1 (e.g., TDIDT)
Initialize AggregatedPerformanceVectorMethod2 (e.g., NBC)
Repeat L times {
 Train ß Randomly draw Nmax data from Avail,
 “without replacement”
 Test ß Avail – Train
 Partition Train into 1-to-max bins, TrainBin1 through TrainBinmax
 For k = 1 to max {
 Classifier1 ß Learn1(Union of TrainBin1 through TrainBink)
 AggregatedPerformanceVectorMethod1[k]
 ß Performance(Classifier1, Test) + AggregatedPerformanceVector1[k]
 Classifier2 ß Learn2(Union of TrainBin1 through TrainBink)
 AggregatedPerformanceVectorMethod2[k]
 ß Performance(Classifier2, Test) + AggregatedPerformanceVector2[k]
}
Return AggregatedPerformanceVectorMethod1, AggregatedPerformanceVectorMethod2

Performance (on test set)

 N1 N2 N3 N4

Train

Test

Bin1 Bin2 Bin3 Bin4

This provides approximations of performance (on Universe)
of each method at different training N

D
ou

gl
a
s

H
.
F

is
h

er

7

Performance (on test set)

 N1 N2 N3 N4

Test

Train Bin1 Bin2 Bin3 Bin4

How Might we use in Real Setting

1. Use Training/Test splits to
plot performance

Performance (Projected)

 N1 N2 N3 N4

2. Curve fit learning behavior to project performance
(on universe) at larger N

Train Bin1 Bin2 Bin3 Bin4

Former
Test

and deploy classifier

All available data

8

Performance

 M-M/K

K-Fold Cross Validation

All available data

Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10

1.  Randomize order of available M data
2.  divide available data into K (e.g., 10) equal size bins or folds
3.  For I = 1 to K {

•  Train on union of all folds, except foldI
•  Test on foldI

4.  Average results

M-Fold Cross Validation
(or leave-one-out cross validation)

Divide a data set of size M into M singleton folds, and follow algorithm above
(e.g., for each dataum, train on M-1 other data and test on the datum)

This is often regarded as the best way to leverage the existing data and get as close as one
can to estimating performance on a final deployed classifier trained on all data

