CS 4260 and CS 5260 Vanderbilt University

Lecture on NBCs

This lecture assumes that you have

- Read Section 7.1 through 7.2 of ArtInt and

ArtInt: Poole and Mackworth, Artificial Intelligence 2E at http:/ / artint.info/2e/html/ArtInt2e.html
to include slides at http:/ / artint.info/2e/slides/ch04/lect1.pdf

Empirical (aka data-driven) Supervised Learning

Given: a set of classified objects (a training data set)
Find: a classifier or predictor (for predicting class membership of unclassified data - a test set)

An example training set:

Index	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3} \cdot \cdots$	\cdot	$\mathrm{~V}_{\mathrm{m}}$	C
1	v_{11}	v_{21}	v_{32}			$\mathrm{v}_{\mathrm{m} 2}$
2	v_{12}	v_{22}	v_{32}		$\mathrm{v}_{\mathrm{m} 1}$	c_{2}
\cdot	\cdot	\cdot				
n	v_{12}	v_{21}	v_{31}			$\mathrm{v}_{\mathrm{m} 2}$
	c_{1}					

Subsequent example (but NOT general) assumptions: two values per variable, two classes

Bayesian Classifier

Given a vector $V=\left\{\begin{array}{llll}v_{11}, & v_{22}, & v_{31}, \ldots . & v_{m} 2 \\ c_{?}\end{array}\right\}$
Compute:

$$
P\left(c_{1} \mid v_{11}, v_{22}, v_{31}, \ldots, v_{m 2}\right)=P\left(c_{1}, v_{11}, v_{22}, v_{31}, \ldots, v_{m 2}\right) / P\left(v_{11}, v_{22}, v_{31}, \ldots, v_{m 2}\right)
$$

Compute:

$$
P\left(c_{2} \mid v_{11}, v_{22}, v_{31}, \ldots, v_{m 2}\right)=P\left(c_{2}, v_{11}, v_{22}, v_{31}, \ldots, v_{m 2}\right) / P\left(v_{11}, v_{22}, v_{31}, \ldots, v_{m 2}\right)
$$

Classify V as in c_{1} or c_{2}, whichever yields higher conditional probability

Background: $P(a \mid y)=P(a, y) / P(y)$, where (a, y) is same as $(a \wedge y)$ and $(a$ and $y)$

Bayesian Classifier cont

Note that denominators are equal, so if we are only interested in most probable, we need only compute the numerators

Compute:

$$
\mathrm{P}\left(\mathrm{c}_{1} \mid \mathrm{v}_{11}, \mathrm{v}_{22}, \mathrm{v}_{31}, \ldots, \mathrm{v}_{\mathrm{m} 2}\right) \text { propto } \mathrm{P}\left(\mathrm{c}_{1}, \mathrm{v}_{11}, \mathrm{v}_{22}, \mathrm{v}_{31}, \ldots, \mathrm{v}_{\mathrm{m} 2}\right) \not \perp \mathrm{P}\left(\mathrm{v}_{11}, v_{22}, v_{31}, \ldots, \mathrm{v}_{\mathrm{m} 2}\right)
$$

Compute:

$$
\mathrm{P}\left(\mathrm{c}_{2} \mid \mathrm{v}_{11}, \mathrm{v}_{22}, \mathrm{v}_{31}, \ldots, \mathrm{v}_{\mathrm{m} 2}\right) \text { propto } \mathrm{P}\left(\mathrm{c}_{2}, \mathrm{v}_{11}, \mathrm{v}_{22}, \mathrm{v}_{31}, \ldots, \mathrm{v}_{\mathrm{m} 2}\right) \nrightarrow \mathrm{P}\left(\mathrm{v}_{11}, \mathrm{v}_{22}, \mathrm{v}_{31}, \ldots, \mathrm{v}_{\mathrm{m} 2}\right)
$$

Classify V as in c_{1} or c_{2}, whichever yields higher joint probability

Background: the chain rule:

$$
\begin{aligned}
& \text { P(c, v1, v2, v3, v4) } \\
& \text { A factorization ordering } \\
& \mathrm{P}(\mathrm{c}, \mathrm{v} 1, \mathrm{v} 2) \\
& \text { P(c, v1, v2, v3) } \\
& P(c, v 1, v 2, v 3, v 4)
\end{aligned}
$$

$\mathrm{P}(\mathrm{c}, \mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 4)$
An alternative ordering
$=\mathrm{P}(\mathrm{v} 4) * \mathrm{P}(\mathrm{v} 2 \mid \mathrm{v} 4) * \mathrm{P}(\mathrm{v} 3 \mid \mathrm{v} 4, \mathrm{v} 2) * \mathrm{P}(\mathrm{v} 1 \mid \mathrm{v} 4, \mathrm{v} 2, \mathrm{v} 3) * \mathrm{P}(\mathrm{c} \mid \mathrm{v} 4, \mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 1)$

Background: conditional independence

```
P(c, v},\mp@subsup{v}{2}{},\mp@subsup{v}{3}{},\mp@subsup{v}{4}{}
=P(c)*P(\mp@subsup{v}{1}{}|\textrm{c})*\textrm{P}(\mp@subsup{\textrm{v}}{2}{}|\textrm{c},\mp@subsup{\textrm{v}}{1}{})*\textrm{P}(\mp@subsup{\textrm{v}}{3}{}|\textrm{c},\mp@subsup{\textrm{v}}{1}{},\mp@subsup{\textrm{v}}{2}{})*\textrm{P}(\mp@subsup{\textrm{v}}{4}{}|\textrm{c},\mp@subsup{\textrm{v}}{1}{},\mp@subsup{\textrm{v}}{2}{},\mp@subsup{\textrm{v}}{3}{})
= P(c)}* P(\mp@subsup{v}{1}{}|\textrm{c})*P(\mp@subsup{\textrm{v}}{2}{}|\textrm{c})*P(\mp@subsup{\textrm{v}}{3}{}|\textrm{c})*P(\mp@subsup{\textrm{v}}{4}{}|\textrm{c}
    if }\mp@subsup{\textrm{v}}{\textrm{i}}{}\textrm{s}\mathrm{ are independent conditioned on c (or conditionally independent given c)
Example: Skin-cover in { hair, feathers, scales }
    Heart in {4-chambers, 3-chambers, 2 chambers}
    Transport in {walk, fly, swim}
    Class in {mammal, bird, fish}
P(mammal, hair, 4-chamber, walk)
    \approx P(mammal) * P(hair |mammal) * P(4-chamber |mammal) * P(walk |mammal)
P(fish, scale, 2-chamber, swim) \approx P(fish) * P(scale | fish) * P(2-chamber |fish) * P(swim | fish)
P(bird, hair, 3-chamber, swim) ~ P(bird) * P(hair | bird) * P(3-chamber|bird) * P(swim | bird)
Example: Language in {English, Mandarin, Hindi, Spanish, French, ...,Tsalagi, Esperanto}
    Country in {United States, China, India, Spain, Germany, Mexico, Canada, ...}
P(US, English) \approxP(US)*P(English |US)
P(US, English, Mandarin, French) \approx P(US) * P(English |US) * P(Mandarin |US) * P(French |US)

\section*{Naive Bayesian Classifier}

Given a vector \(V=\left\{\begin{array}{lll}v_{11} & v_{22}, & v_{31}, \ldots, \\ v_{m} 2 & c_{?}\end{array}\right\}\)
\(P\left(c_{1} \mid v_{11}, v_{22}, v_{31}, \ldots, v_{m 2}\right)\) proportional to \(P\left(c_{1}, v_{11}, v_{22}, v_{31}, \ldots, v_{m 2}\right)\)
\[
\begin{gathered}
=\mathrm{P}\left(\mathrm{v}_{11} \mid \mathrm{v}_{22}, \mathrm{v}_{31}, \ldots, \mathrm{v}_{\mathrm{m} 2}, \mathrm{c}_{1}\right) \mathrm{P}\left(\mathrm{v}_{22} \mid \mathrm{v}_{31}, \ldots, \mathrm{v}_{\mathrm{m} 2}, \mathrm{c}_{1}\right), \ldots, \mathrm{P}\left(\mathrm{v}_{\mathrm{m} 2} \mid \mathrm{c}_{1}\right) \mathrm{P}\left(\mathrm{c}_{1}\right) \\
= \\
=\mathrm{P}\left(\mathrm{v}_{11} \mid \mathrm{c}_{1}\right) \mathrm{P}\left(\mathrm{v}_{22} \mid \mathrm{c}_{1}\right) \mathrm{P}\left(\mathrm{v}_{31} \mid \mathrm{c}_{1}\right) \ldots \mathrm{P}\left(\mathrm{v}_{\mathrm{m} 2} \mid \mathrm{c}_{1}\right) \mathrm{P}\left(\mathrm{c}_{1}\right) \\
\text { under assumption that Vi's are independent conditioned on } C
\end{gathered}
\]
\(P\left(c_{2} \mid v_{11}, v_{22}, v_{31}, \ldots, v_{m 2}\right)\) proportional to \(P\left(c_{2}, v_{11}, v_{22}, v_{31}, \ldots, v_{m 2}\right)\)
\[
\begin{gathered}
=\mathrm{P}\left(\mathrm{v}_{11} \mid \mathrm{v}_{22}, \mathrm{v}_{31}, \ldots, \mathrm{v}_{\mathrm{m} 2}, \mathrm{c}_{2}\right) \mathrm{P}\left(\mathrm{v}_{22} \mid \mathrm{v}_{31}, \ldots, \mathrm{v}_{\mathrm{m} 2}, \mathrm{c}_{2}\right) \ldots \mathrm{P}\left(\mathrm{v}_{\mathrm{m} 2} \mid \mathrm{c}_{2}\right) \mathrm{P}\left(\mathrm{c}_{2}\right) \\
=\mathrm{P}\left(\mathrm{v}_{11} \mid \mathrm{c}_{2}\right) \mathrm{P}\left(\mathrm{v}_{22} \mid \mathrm{c}_{2}\right) \mathrm{P}\left(\mathrm{v}_{31} \mid \mathrm{c}_{2}\right) \ldots . \mathrm{P}\left(\mathrm{v}_{\mathrm{m} 2} \mid \mathrm{c}_{2}\right) \mathrm{P}\left(\mathrm{c}_{2}\right) \\
\text { under assumption that Vis are independent conditioned on } \mathrm{C}
\end{gathered}
\]

Classify V as in c 1 or c 2 , whichever yields higher joint probability under assumption of conditional independence

\section*{Learning a Naive Bayesian Classifier}

View probabilities as proportions computed over training set.
\[
\begin{aligned}
& \mathrm{P}\left(\mathrm{v}_{11} \mid \mathrm{c}_{1}\right) * \mathrm{P}\left(\mathrm{v}_{22} \mid \mathrm{c}_{1}\right) * \mathrm{P}\left(\mathrm{v}_{31} \mid \mathrm{c}_{1}\right) * \ldots * \mathrm{P}\left(\mathrm{v}_{\mathrm{m} 2} \mid \mathrm{c}_{1}\right) * \mathrm{P}\left(\mathrm{c}_{1}\right) \\
& \quad=\quad\left[\mathrm{v}_{11}, \mathrm{c}_{1}\right] /[\mathrm{c} 1] *\left[\mathrm{v}_{22}, \mathrm{c}_{1}\right] /\left[\mathrm{c}_{1}\right] *\left[\mathrm{v}_{31}, \mathrm{c}_{1}\right] /\left[\mathrm{c}_{1}\right] * \ldots *\left[\mathrm{v}_{\mathrm{m} 2}, \mathrm{c}_{1}\right] /\left[\mathrm{c}_{1}\right] *\left[\mathrm{c}_{1}\right] /[]
\end{aligned}
\]
where [conditions] is the number of objects/rows in the training set that satisfy all the conditions. So [v11, c1] is the number of training data that are members of c 1 and have \(\mathrm{V} 1=\mathrm{v} 11,[\mathrm{c} 1]\) is the number of training objects in c 1 , [] is the total number of training objects.

Learning in this case, is a matter of counting the number of rows in training data in which various conditions satisfied:
- each class/variable-value pair
- each class
- total number of rows
\[
\begin{aligned}
& \mathrm{P}\left(\mathrm{v}_{11}, \mathrm{v}_{22}, \mathrm{v}_{31}, \mathrm{c}_{1}\right) \\
& =\mathrm{P}\left(\mathrm{v}_{11} \mid \mathrm{v}_{22}, \mathrm{v}_{31}, \mathrm{c}_{1}\right) * \mathrm{P}\left(\mathrm{v}_{22} \mid \mathrm{v}_{31}, \mathrm{c}_{1}\right) * \mathrm{P}\left(\mathrm{v}_{31} \mid \mathrm{c}_{1}\right) * \mathrm{P}\left(\mathrm{c}_{1}\right) \\
& =\left[\mathrm{v}_{11}, \mathrm{v}_{22}, \mathrm{v}_{31}, \mathrm{c}_{1}\right] /\left[\mathrm{v}_{22}, \mathrm{v}_{31}, \mathrm{c}_{1}\right] *\left[\mathrm{v}_{22}, \mathrm{v}_{31}, \mathrm{c}_{1}\right] /\left[\mathrm{v}_{31}, \mathrm{c}_{1}\right] *\left[\mathrm{v}_{31}, \mathrm{c}_{1}\right] /\left[\mathrm{c}_{1}\right] *\left[\mathrm{c}_{1}\right] /[] \\
& =\left[\mathrm{v}_{11}, \mathrm{v}_{22}, \mathrm{v}_{31}, \mathrm{c}_{1}\right] /[]
\end{aligned}
\]

Given a vector \(\mathrm{V}=\left\{\begin{array}{lll}1, & -1, & 0, \ldots, 1\end{array}\right\}\)
Compute:
There are often unknown values during training (and test)
\[
\begin{aligned}
& \mathrm{P}(-1 \mid 1,-1,0, \ldots, 1) \text { as } \mathrm{P}(1 \mid-1) \mathrm{P}(-1 \mid-1) \mathrm{P}(0-1) \ldots \mathrm{P}(1 \mid-1) \mathrm{P}(-1) \\
& \mathrm{P}(1 \mid 1,-1,0, \ldots, 1) \text { as } \mathrm{P}(1 \mid 1) \mathrm{P}(-1 \mid 1) \mathrm{P}(0,1) \ldots \mathrm{P}(1 \mid 1) \mathrm{P}(1)
\end{aligned}
\]

Classify V as in c1 or c2, whichever yields higher probability
\begin{tabular}{|c|c|c|c|c|}
\hline V1 & V2 & V3 & Vm & \\
\hline c1 [v11, cl] & [v21,c1] & [v31,c1] & [vm1, cl] & \\
\hline [v12,c1] & [v22,c1] & [v32,c1] & [vm2, c1] & \\
\hline c2 [ \([\mathrm{v} 11, \mathrm{c} 2]\) & [v21,c2] & [v31,c2] & [vm1,c2] & \\
\hline [v12,c2] & [v22,c2] & [v32,c2] & [vm2,c2] & \\
\hline [v11] & [v21] & [v31] & [vm1] & \\
\hline [v12] & [v22] & [v32] & [vm2] & \\
\hline
\end{tabular}

Consider an (multidimensional) array implementation of int, and estimate \(\mathrm{P}(\mathrm{vij} \mid \mathrm{ck})\) as \(([\mathrm{vij}, \mathrm{ck}]+1) /([\mathrm{ck}]+2)\), and \(\mathrm{P}(\mathrm{ck})\) as ([ck]+1)/([]+2)

Number of classes
Number of Vi values

Pseudo-counts to avoid the zero-probability problem and to```

