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Early Days of AI (and still) 

AI (or KB) analysts would interview experts (e.g., medicine, manufacturing) 
 
To elicit the “rules” the experts used for diagnosis and other processing 
 
From these rules, build an “expert system” 
 
Often a painful process 
 
Supervised machine learning (early 1980s)  
 
 
Let the human expert do what the expert does best: exercise “rules by labeling data 
 
Let the machine do what the machine does best: find patterns that are  
     predictive of labels 
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Issues, variations, optimizations, etc: 
 
•       continuous attributes 
           hard versus soft splits 
•       other node types (e.g., perceptron trees) 
•       continuous classes (regression trees) 
•       termination conditions (pruning) 
•       selection measures (see problem DT1) 
•       missing values 
            during training 
            during classification (see expansion) 
•       noise in data 
•       irrelevant attributes 
•       less greedy variants (e.g., lookahead) 
•       incremental construction 
•       applications (e.g., Banding) 
•       cognitive modeling (e.g., Hunt) 
•       DT based approaches to nearest neighbor search, object recognition 
•       background knowledge to augment feature space       



http://en.wikipedia.org/wiki/CMYK_color_model 
http://en.wikipedia.org/wiki/Rotogravure  

Rotogravure  
Printing  

Press 

Features and Constraints 
(and machine learning and rotogravure printing) 

Douglas H. Fisher 



http://en.wikipedia.org/wiki/File:Rotogravure_PrintUnit.svg 

A single printing unit 

Douglas H. Fisher 



http://en.wikipedia.org/wiki/
File:Rotogravure_PrintUnit.svg 

A cylinder band 

Douglas H. Fisher 



result of a 
cylinder band 

Douglas H. Fisher 



Context at one large printing plant 
of R R Donnelley & Sons 

•  Plant runs 24/7 with hard deadlines 
 
•  538 banding incidents in 1989 
 
•  Each band required 1.5 to 6 hours to remedy 
 
•  Time of 3 to 10 crew members 
 
•  What to do? 

Douglas H. Fisher 



“attribute” is 
synonymous  
with “variable” 

Machine Learning (ML) to the Rescue …  
   but ML systems require data 

Attributes of 
printing unit (e.g., 
ink viscosity and  
temp); printing press  
(paper type, rotation 
speed), ambient  
conditions (e.g., 
temperature,  
humidity), etc 
 

Table	from		
Bob	Evans	and	Doug	Fisher,		
“Overcoming	Process	Delays		
with	Decision	Tree	Induc9on”	
IEEE	Expert,	Vol.	9,	No.	1,	
Feb	1994,	pp.	60-66.	

Douglas H. Fisher 

30+	variables	



Machine Learning approach to Banding 

•  Take system “snaphots” along 30+ variables 
•  when job banded, and  
•  when it did not!    (evidence-based reasoning!) 

 
•  Over 500+ such snapshots (of 30+ features each), 

•  About half of banded and half of not, 
•  Learn patterns of variable values (aka features) 
        of when banding would likely occur and when not 

 
•  From discovered patterns from the data, 

•  Make constraints on operating conditions that press  
             crews (or automated agents) should adhere to 
 

Douglas H. Fisher 



Machine Learning approach to Banding 

•  Take system “snaphots” along 30+ variables 
•  when job banded, and  
•  when it did not!    (evidence-based reasoning!) 

 
•  Over 500+ such snapshots (of 30+ features each), 

•  About half of banded and half of not, 
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Machine Learning approach to Banding 

•  Take system “snaphots” along 30+ variables 
•  when job banded, and  
•  when it did not!    (evidence-based reasoning!) 

 
•  Over 500+ such snapshots (of 30+ features each), 

•  About half of banded and half of not, 
•  Learn patterns of variable values (aka features) 
        of when banding would likely occur and when not 

 
•  From discovered patterns from the data, 

•  Make constraints on operating conditions that press  
             crews (or automated agents) should adhere to 
 
Chrome Solution Ratio > t1 (high)   and 
   Ink Temperature <= t2     (low)     and 
       Ink Viscosity > t3         (high)                è No Banding 

Douglas H. Fisher 



Machine Learning approach to Banding 

•  Take system “snaphots” along 30+ variables 
•  when job banded, and  
•  when it did not!    (evidence-based reasoning!) 

 
•  Over 500+ such snapshots (of 30+ features each), 

•  About half of banded and half of not, 
•  Learn patterns of variable values (aka features) 
        of when banding would likely occur and when not 

 
•  From discovered patterns from the data, 

•  Make constraints on operating conditions that press  
             crews (or automated agents) should adhere to 
 
Years   1989  1990  1991  1992  1993  1994  1995  1996  1997  1998 
Bands   538     384   138     66      42     109     21      26     37      26 

Douglas H. Fisher 

Conta- 
Minated 
ink 

Decrease in bands due to 
increase in acceptance of 
learned rules 



Machine Learning Relationship(s)  
to  

Constraint Satisfaction 

Douglas H. Fisher 

Humidity    ink visc    ink temp    CSR  …         Banded? 
 
     85               25               75          180                   NO 
     92               27               81          179                   NO 
 
         . . . 
 
    70                18               100         105                  YES 
    86                16               105         120                  YES 
      

Variables 
(30+) 

S
n

ap
sh

o
ts

 

GIVEN                                                FIND 
•  a set of variables                                an assignment of variables 
•  a domain for each variable                      to particular values 
•  a set of constraints                                 that satisfy constraints 

Constraint: Banded? = NO      Trivial Solution: Each assignment found 
                                                  in NOT Banded snapshots 
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Machine Learning Relationship(s)  
to  

Constraint Satisfaction 

Douglas H. Fisher 

Humidity    ink visc    ink temp    CSR  … 
 
     85               25               75          180             NOT Banded 
     92               27               81          179             NOT Banded 
 
         . . . 
 
    70                18               100         105            Banded 
    86                16               105         120            Banded 
      

Variables 
(30+) 

S
n

ap
sh

o
ts

 

FIND 
•   an assignment of variables to particular values that satisfy constraints 
è discovery of ‘maximal’ subdomains for each variable and 
                                                               relationships between variables 
Chrome Solution Ratio > t1 (high)   and 
   Ink Temperature <= t2     (low)     and 
       Ink Viscosity > t3         (high)   and  
           don’t care on remainder 



If you want to learn more about the machine learning application to rotogravure 
printing 
 
Evans, B. and Fisher, D. (2002) “Using Decision tree Induction to Minimize Process 
Delays in the Printing Industry.” In Handbook of Data Mining and Knowledge 
Discovery,  W. Klosgen and J. Zytkow (Eds), Oxford University press, Retrieved 
from   
http://www.vuse.vanderbilt.edu/~dfisher/KDD-Handbook/printing.pdf 
 
Bob Evans and Doug Fisher, “Overcoming Process Delays with Decision Tree 
Induction” IEEE Expert, Vol. 9, No. 1, Feb 1994, pp. 60-66. 
 
 
 



Variations of DT Induction 

Regression trees predict values along a continuously-valued dependent variable 

Regression tree over one variable, with an illustration from Srinivasan and Fisher 
(1995) IEEE Software Engineering paper on estimating software development time 
(http://dl.acm.org/citation.cfm?id=205309) 



Variations of DT Induction 
R regression tree over one variable, with an illustration from the 
IEEE Software Engineering paper on estimating software development time. 

We also discussed using linear regression at each regression tree leaf instead of 
using zero-order models (i.e., h(x) = θ0 ) at each leaf. For example, using a linear 
regression model over x, we might have the following at two leaves of the 
regression tree.  

To make a prediction of y for a given x, we would classify  
the x to a leaf and then use the linear model over that leaf  
to estimate y by h(x).  
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Lots of different search algorithms possible !! 
 
Ensembles of classifiers 
 
Other supervised approaches: ANNs, SVMs, … 
 
Relational (e.g., first-order) representations, such as: 
 
          IF R(?c1, ?r1) Λ R(?c2, ?r1) Λ R(?c3, ?r2) Λ R(?c4, ?r2) Λ R(?c5, ?r2) 
                     Λ ≠(?c1, ?c2) Λ ≠(?c3, ?c4) Λ ≠(?c3, ?c5) Λ ≠(?c4, ?c5) 
          THEN FullHouse(?c1, ?c2, ?c3, ?c4, ?c5)  
 
K 
H 

K 
C 

5 
S 

5 
D 

5 
C 

6 
S 

6 
H 

7 
C 

7 
H 

7 
D 

9 
H 

9 
D 

2 
C 

2 
D 

2 
H 

A 
C 

A 
H 

3 
C 

3 
H 

3 
D 

The matching problem (on sets of feature vectors) 
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Empirical, Supervised Learning 
      Example: Naïve Bayesian Classifiers 
      Subclass: Supervised Rule Induction 
               Example: Decision tree induction 
                  Example: Brute-force induction of decision rules 
Empirical, Unsupervised Learning 
       Unsupervised Rule Induction 
              Association Rule Learning 
      Bayesian Network Learning 
       Clustering 
Analytical Learning 
        Explanation-Based Learning 
Empirical/Analytic Hybrids 
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Unsupervised Performance Task:  Pattern Completion 

0.5   ?   0.01  -0.12 …. ?       C’     C’’ 

0.5   0.75   0.01 –0.12  …. –0.45     c’1   c’’2 

Knowledge 
     Base 
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Environment 

Learning 
Component 

Performance 
Component 

data 

Knowledge 
     Base  Incomplete Data 

Completed data 

Amount of training 

test data 
accuracy 

0.5   ?   0.01  -0.12 …. ? 

0.5   0.75   0.01 –0.12  …. –0.45 

A 

B 

C 
Different attributes 
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Example: Unsupervised rule induction of Association Rules 
               (market-basket analysis) 

In a nutshell: run brute force rule discovery for all possible consequents, 
not simply single variable values (e.g., V1=v12), but consequents that are 
conjunctions of variable values (e.g., V1=v12 & V4=v42 & V5=v51).  
 
Retain rules A à C  such that P(A & C) >= T1 and P(C|A) >= T2. These thresholds 
enable pruning of the search space (A and C are themselves conjunctions). 
 
Problem: a plethora of rules, most uninteresting, are produced. 
 
Solutions: Organize/prune rules by 
 
       a) Interestingness (e.g., AàC interesting if P(A, C) >> P(A)P(C) or << P(A)P(C) 
 
       b) confidence (a confidence interval around coverage and/or accuracy) 
 
       c) support for top-level goal 



Doug Fisher 24 

v1 P(v1) v2 P(v2) 

v3 
P(v3|v1) 
P(v3|~v1) 

v4 
P(v4|v2, v3), 
P(v4|v2,~v3), 
P(v4|~v2, v3), 
P(v4|~v2, ~v3) 

v5 P(v5|v3) 
P(v5|~v3) 

Components of a Bayesian Network: a topology (graph) that qualitatively indicates 
     displays the conditional independencies, and probability tables at each node 
 
Semantics of graphical component: for each variable, v, v is independent of all 
   of its non-descendents conditioned on its parents 
 
A Bayesian Network is a graphical representation of a joint probability distribution  
with (conditional) independence relationships made explicit  

Example (Empirical, Unsupervised): Learning Bayesian Networks 
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Example (Empirical, Unsupervised): Clustering 
 
Given data (vectors of variable values) 
Compute a partition (clusters) of the vectors, such that vectors within  
     a cluster  tend to be similar, and vectors across clusters tend to be 
     dissimilar 
 
For example,  
 
          V1      V2      V3     V4 ………….. VM        
  1      0.3      0.7      0.1    -0.2 ………….  -0.5  
  2      0.4      0.8      0.01   0.1 ………….   -0.4  
                     ………………….. 
N-1   -0.3     0.1      1.01   0.8 ………….   1.3    
  N    -0.5     0.03    1.1     0.9 ………….   0.9    

1,2… …,N-1,N 



Doug Fisher 26 

Cluster summary representations (e.g., the centroid) 
 
          V1      V2      V3     V4 ………….. VM           
  1      0.3      0.7      0.1    -0.2 ………….  -0.5 
  2      0.4      0.8      0.01   0.1 ………….   -0.4  
                     ………………….. 
N-1   -0.3     0.1      1.01   0.8 ………….   1.3   
  N    -0.5     0.03    1.1     0.9 ………….   0.9    

1,2… …,N-1,N 

0.35  0.75  0.05  -0.05 …. –0.45                 -0.4  0.05  1.05  0.85 …. 1.1 
         (centroid for C1)                                        (centroid for C2) 

C1               C2 
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Using summary representations for inference 

1,2… …,N-1,N 

0.35  0.75  0.05  -0.05 …. –0.45                 -0.4  0.05  1.05  0.85 …. 1.1 
         (centroid for C1)                                        (centroid for C2) 

C1               C2 

0.5   ?   0.01  -0.12 …. ?     

0.5   0.75   0.01 –0.12  …. –0.45   
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K-means 
 
Clustering K-Means (Data, K) { 
     ClusterCentroids = K randomly selected vectors from Data 
     for each d in Data 
           assign d to cluster with closest centroid 
     do { 
         compute new cluster centroids 
         for each d in Data 
              assign d to cluster with closest centroid 
      } while NOT termination condition 
} 
 
 
“closest”: Euclidean distance 
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Empirical, Supervised Learning 
      Example: Naïve Bayesian Classifiers 
      Subclass: Supervised Rule Induction 
               Example: Decision tree induction 
                  Example: Brute-force induction of decision rules 
Empirical, Unsupervised Learning 
       Unsupervised Rule Induction 
              Association Rule Learning 
      Bayesian Network Learning 
       Clustering 
Analytical Learning 
        Explanation-Based Learning 
Empirical/Analytic Hybrids 
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Environment 

Learning 
Component 

Performance 
Component 

data 

Knowledge 
     Base  Problem(s)  

Solved Problem(s) 

Amount of training (Number of problem solved) 

Problem 
Solving 
Quality 
or speed 
or … 
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Learning macros: Given a plan, generalize the plan so that the generalized plan 
                             can be applied in a greater number of situations 
Objective: reusing previously-developed generalized plans (aka macro-operators) 
                  will reduce the cost (improve the “speed”) of subsequent planning 

A 

B 

C 

B 

A 

Start State GoalSpec 

Unstack(A,B) à Putdown(A) à Unstack(B,C) à Stack(B,A) 
 
               (Generalize) è 
 
Unstack(?x1, ?y1) à Putdown(?x1) à Unstack(?y1, ?z1) à Stack(?y1, ?x1) 


