Search Algorithms

Generic Search Covered in Class

1:procedure Search(G, S, goal)

Inputs
G: graph with nodes N and arcs A
s: start node
goal: Boolean function of nodes

Output
path from s to a node for which goal is true
or | if there are no solution paths

Local

Frontier: set of paths

Frontier := {<8>}

while Frontier # {} do

select and remove <n0, ‘e nk> from Frontier
if goal (nk) then
return no,...,nk>
Frontier := Frontier U {(no,...,nk,n> : <nk,n> & A}
return |

DFS Version

1:procedure Search(G, S, goal)
Inputs
G: graph with nodes N and arcs A
s: start node
goal: Boolean function of nodes
Output
path from s to a node for which goal is true
or | if there are no solution paths This is a
Local
Frontier: set of paths

Frontier := {<s>}

while Frontier # {} do

stack!

select and remove <n0, ‘e nk> from Frontier
if goal (nk) then
return no,...,nk>
Frontier := Frontier U {(no,...,nk,n> : <nk,n> & A}
return |

Racket Code

(define (DFS maze)
;3 define local variables
(let ([start-node (list null maze)]
[frontier (make-stack)]
[visited-states (make-set)]
[current-node nulll)
;3 set the initial values for the current node and frontier
(set! current-node start-node)
(set! frontier (push-stack start-node frontier))
;3 loop thr h frontier
(for ([i (in-naturals)]
33 break if the frontier is empty or the goal is found

(is-goal (second current-node))))
3+ pop the next value off the frontier
(set!-values (current-node frontier) (pop-stack frontier))
;3 add the visited state to the froniter
(set! visited-states
(push-set
;3 visited states should contain just the state, not the path
(second current-node)
visited-states))
;3 loop through all successors and add them to the frontier
(for ([succ
(get-succ
sis SU ssors are determined from the state, not the sate + path
(second current-node))]
;3 don't add visited states to the frontier
#:unless (ismember? (second succ) visited-states))
3+ push each successor to the fronti
(set! frontier
(push-stack
;3 build the next node to appear on the frontier, this must include the full path and the successor
(list
;3 add the new action on to the front of the path-so-far (we will reverse this path at the end
(cons (first succ) (first current-node))
(second succ))
frontier)))
)
if the goal was found return the path to it
(if (is-goal (second current-node))
(reverse (first current-node))
;; other wise return false
#f)))

Same Thing Without the Comments

(define (DFS maze)
(let ([start-node (list null maze)]
[frontier (make-stack)]
[visited-states (make-set)]
[current-node null])
(set! current-node start-node)
(set! frontier (push-stack start-node frontier))
(for ([i (in-naturals)]
#:break (or
(empty? frontier)
(is-goal (second current-node))))
(set!-values (current-node frontier) (pop-stack frontier))
(set! visited-states
(push-set
(second current-node)
visited-states))
(for ([succ
(get-succ
(second current-node))]
#:unless (ismember? (second succ) visited-states))
(set! frontier
(push-stack
(list
(cons (first succ) (first current-node))
(second succ))
frontier)))

)
(if (is-goal (second current-node))
(reverse (first current-node))
#f)))

Side-by-side

: 59 | (define (DFS maze)
l-procedure Search(G, Sv goal) 60 | _Llgppt[start-node (list null maze)]
2 Inputs —— - =517 [frontier (make-stack)]
—_-—— 62 ’ [visited-states (make-set)]
3 G: graph with nodes N and arcs 4 — 63 7 [current-node null])
-—— ~64 (set! current-node start-node)
4 s: start node — A “ 65 ' (set! frontier (push-stack start-node frontier))
5: goal: Boolean function of nodes — — _ -, }6—‘ (for ([i (in-naturals)]
i — = —/_ — #:break (or
6: Output A /— B =~ >(empty7 frontier)
7 path from s to a node for which goal igtrtie . =~ ? - e gua’. (SEeuny GHRRENE Aone)) .
, -~ 10 i(set'—values (current-node frontier) (pop-stack frontier))
8 or | if there are no solution path} - - N (set! visited-states
: - - 72| (push-set
9 Local -’ ’, - - - - 7% (second current-node)
10: Frontier: set of paths .~ P 774 " ([visited—states))
- s 75 or ([succ
11: Frontier := {()} - P s 76 (get-succ
. . - 77 (second current-node))]
12: while Frontier 7é {} do - // 78 #:unless (ismember? (second succ) visited-states))
. 79 (set! frontier
13: select and remove (no, ey nk> from Frontier 80 (push-stack
_ if voal 81 Y (ust
14: IT goa. (nk) then 82 7 (cons (first succ) (first current-node))
) 83| » (second succ))
15: return <n0,...,nk> ~ - - 24/ : frontier)))
16: Frontier := Frontier U {(no, c ooy Ny ny =~<Tl7c', 17)-6 A}_B 6l ﬁ (is-goal (second current-node))
17: return | = = = e o e e o e e e e e e e e -88' - ;reverse (first current-node))

Some Things not Addressed in the Pseudo Code

e Loops and tracking visited states
o The pseudo code does not try to avoid loops, but exploring loops can easily blow up your
frontier
e Separate action and state representations
o Inthe racket code the frontier must store a representation of the final state in addition to paths
SO successors can be generated
e \What is pushed to the frontier must be a deep copy of the path so far

o The problem of mutability doesn’t come up much in functional languages like Racket, but this
can cause a lot of bugs in languages with more mutability like C, Java and Python

Stepping Through the Solution

(define (DFS maze)

(let ([start-node (list null maze)] Define Local
[frontier (make-stack)])
[visited-states (make-set)] Variables
[current-node null])

(set! current-node start-node)
(set! frontier (push-stack start-node frontier))
(for ([i (in-naturals)]
#:break (or
(empty? frontier)
(is-goal (second current-node))))
(set!-values (current-node frontier) (pop-stack frontier))
(set! visited-states
(push-set
(second current-node)
visited-states))
(for ([succ
(get-succ
(second current-node))]
#:unless (ismember? (second succ) visited-states))
(set! frontier
(push-stack
(list
(cons (first succ) (first current-node))
(second succ))
frontier)))

)
(if (is-goal (second current-node))
(reverse (first current-node))
#f)))

Stepping Through the Solution

(define (DFS maze)
(let ([start-node (list null maze)]

[frontier (make-stack)]
[visited-states (make-set)]
[current-node null])
(set! current-node start-node) Set Initial
(set! frontier (push-stack start-node frontier))
(for ([i (in-naturals)] Values
#:break (or
(empty? frontier)
(is-goal (second current-node))))
(set!-values (current-node frontier) (pop-stack frontier))
(set! visited-states
(push-set
(second current-node)
visited-states))
(for ([succ
(get-succ
(second current-node))]
#:unless (ismember? (second succ) visited-states))
(set! frontier
(push-stack
(list
(cons (first succ) (first current-node))
(second succ))
frontier)))

)
(if (is-goal (second current-node))
(reverse (first current-node))
#f)))

Stepping Through the Solution

(define (DFS maze)
(let ([start-node (list null maze)]
[frontier (make-stack)]
[visited-states (make-set)]
[current-node null])
(set! current-node start-node)
(set! frontier (push-stack start-node frontier))
(for ([i (in-naturals)]
#:break (or Loop through
(empty? frontier) the f ti
(is-goal (second current-node)))) e frontuer
(set!-values (current-node frontier) (pop-stack frontier))
(set! visited-states
(push-set
(second current-node)
visited-states))
(for ([succ
(get-succ
(second current-node))]
#:unless (ismember? (second succ) visited-states))
(set! frontier
(push-stack
(list
(cons (first succ) (first current-node))
(second succ))
frontier)))

)
(if (is-goal (second current-node))
(reverse (first current-node))
#f)))

Stepping Through the Solution

We need to
(define (DFS maze) test both
(let ([start-node (list null maze)]
[frontier (make-stack)] break
[visited-states (make-set)] conditions

[current-node null])
(set! current-node start-node)
(set! frontier (push-stack start-node frontier))
(for ([i (in-naturals)]
#:break (or
(empty? frontier)
(is—qgoal (second current-node))))
(set!-values (current-node frontier) (pop-stack frontier))
(set! visited-states
(push-set
(second current-node)
visited-states))
(for ([succ
(get-succ
(second current-node))]
#:unless (ismember? (second succ) visited-states))
(set! frontier
(push-stack
(list
(cons (first succ) (first current-node))
(second succ))
frontier)))
)
(if (is-goal (second current-node))
(reverse (first current-node))
#f)))

here since

T CRULE
break
statement in
the
pseudocode,
we don’t have
a mid-loop
break
statement

Stepping Through the Solution

(define (DFS maze)
(let ([start-node (list null maze)]
[frontier (make-stack)]
[visited-states (make-set)]
[current-node null])
(set! current-node start-node)
(set! frontier (push-stack start-node frontier))
(for ([i (in-naturals)]
#:break (or
(empty? frontier) Pop the next
(is-goal (second current-node))))
(set!-values (current-node frontier) (pop-stack frontier)) value off the
(set! visited-states frontier
(push-set
(second current-node)
visited-states))
(for ([succ
(get-succ
(second current-node))]
#:unless (ismember? (second succ) visited-states))
(set! frontier
(push-stack
(list
(cons (first succ) (first current-node))
(second succ))
frontier)))

)
(if (is-goal (second current-node))
(reverse (first current-node))
#f)))

Stepping Through the Solution

(define (DFS maze)
(let ([start-node (list null maze)]
[frontier (make-stack)]
[visited-states (make-set)]
[current-node null])
(set! current-node start-node)
(set! frontier (push-stack start-node frontier))
(for ([i (in-naturals)]
#:break (or
(empty? frontier)
(is-goal (second current-node))))
(set!-values (current-node frontier) (pop-stack frontier)) Push the
(set! visited-states expanded

(push-set
(second current-node) state onto the

visited-states)) .
(for ([succ set of visited

(get-succ states
(second current-node))]
#:unless (ismember? (second succ) visited-states))
(set! frontier

(push-stack

(list
(cons (first succ) (first current-node))
(second succ))

frontier)))

)
(if (is-goal (second current-node))
(reverse (first current-node))
#f)))

Stepping Through the Solution

(define (DFS maze)
(let ([start-node (list null maze)]
[frontier (make-stack)]
[visited-states (make-set)]
[current-node null])
(set! current-node start-node)
(set! frontier (push-stack start-node frontier))

for ([i (in-natural _
(for (i:lbﬁégkn?ol:ra s)] A state is not

(empty? frontier) the same as a
(is-goal (second current-node))))

(set!-values (current-node frontier) (pop-stack frontier)) frontier node

(set! visited-states which is a
(push-set

(second current-node) path + a state,

visited-states))
(for ([succ Sl only

(get-succ add the state
(second current-node))] I=F
#:unless (ismember? (second succ) visited-states)) to the visited
(set! frontier states

(push-stack

(list

(cons (first succ) (first current-node))

(second succ))

frontier)))

)
(if (is-goal (second current-node))
(reverse (first current-node))
#f)))

Stepping Through the Solution

(define (DFS maze)
(let ([start-node (list null maze)]
[frontier (make-stack)]
[visited-states (make-set)]
[current-node null])
(set! current-node start-node)
(set! frontier (push-stack start-node frontier))
(for ([i (in-naturals)]
#:break (or
(empty? frontier)
(is-goal (second current-node))))
(set!-values (current-node frontier) (pop-stack frontier))
(set! visited-states
(push-set
(second current-node) Loop through

visited-states))
successors to

(for ([succ
(get-succ add them to

(second current-node))] .
#:unless (ismember? (second succ) visited-states)) the frontier
(set! frontier
(push-stack
(list
(cons (first succ) (first current-node))
(second succ))
frontier)))

)

(if (is-goal (second current-node))
(reverse (first current-node))

#f)))

Stepping Through the Solution

(define (DFS maze)
(let ([start-node (list null maze)]
[frontier (make-stack)]
[visited-states (make-set)]
[current-node null])
(set! current-node start-node)
(set! frontier (push-stack start-node frontier))
(for ([i (in-naturals)]
#:break (or
(empty? frontier)
(is-goal (second current-node))))
(set!-values (current-node frontier) (pop-stack frontier))
(set! visited-states
(push-set
(second current-node)
visited-states))
(for ([succ Do not add
(get-succ)
(second current-node))] previously
#:unless (ismember? (second succ) visited-states)) '
(set! frontier visited Stat_es
(push-stack to the frontier
(list
(cons (first succ) (first current-node))
(second succ))
frontier)))
)
(if (is-goal (second current-node))
(reverse (first current-node))
#f)))

Stepping Through the Solution

(define (DFS maze)
(let ([start-node (list null maze)]

Astute students
will notice that if

[frontier (make-stack)]
[visited-states (make-set)]
[current-node null])
(set! current-node start-node)
(set! frontier (push-stack start-node frontier))
(for ([i (in-naturals)]
#:break (or
(empty? frontier)
(is-goal (second current-node))))
(set!-values (current-node frontier) (pop-stack frontier))
(set! visited-states
(push-set
(second current-node)
visited-states))
(for ([succ
(get-succ
(second current-node))]
#:unless (ismember? (second succ) visited-states))
(set! frontier
(push-stack
(list
(cons (first succ) (first current-node))
(second succ))
frontier)))
)
(if (is-goal (second current-node))
(reverse (first current-node))
#f)))

a state got added
to the frontier
twice before it
was expanded
we aren’t filtering
it.

This is not
enough of a
problem in
pacman to blow
up the frontier,
but a better
solution would
solve it. Perhaps
implement
visited-states as
a hash table

Stepping Through the Solution

(define (DFS maze)
(let ([start-node (list null maze)]

[frontier (make-stack)]
[visited-states (make-set)]
[current-node null])
(set! current-node start-node)
(set! frontier (push-stack start-node frontier))
(for ([i (in-naturals)]
#:break (or
(empty? frontier)
(is-goal (second current-node))))
(set!-values (current-node frontier) (pop-stack frontier))
(set! visited-states
(push-set
(second current-node)
visited-states))
(for ([succ
(get-succ
(second current-node))]
. 3 7 3 5 I
#:unless (ismember? (second succ) visited-states)) Push the

(set! frontier
(push-stack successor’s

(list g
(cons (first succ) (first current-node)) state plus it's

(second succ)) full path onto
frontier))) .
) the frontier

(if (is-goal (second current-node))
(reverse (first current-node))
#f)))

Stepping Through the Solution

(define (DFS maze)
(let ([start-node (list null maze)]
[frontier (make-stack)]
[visited-states (make-set)]
[current-node null])
(set! current-node start-node)
(set! frontier (push-stack start-node frontier))
(for ([i (in-naturals)]
#:break (or
(empty? frontier)
(is-goal (second current-node))))
(set!-values (current-node frontier) (pop-stack frontier)) The full path

(set! visited-states . .
(push-set is built by

(second current-node) adding the
visited-states))

(for ([succ action to get
(get-succ
(second current-node))] from the
#:unless (ismember? (second succ) visited-states)) current state
(set! frontier
(push-stack to the
(list successor to
(cons (first succ) (first current-node))
(second succ)) the path to get
frontier))) to the current

state

)
(if (is-goal (second current-node))
(reverse (first current-node))
#f)))

Stepping Through the Solution

(define (DFS maze)
(let ([start-node (list null maze)]
[frontier (make-stack)]
[visited-states (make-set)]
[current-node null])
(set! current-node start-node)
(set! frontier (push-stack start-node frontier))
(for ([i (in-naturals)]
#:break (or
(empty? frontier)
(is-goal (second current-node))))
(set!-values (current-node frontier) (pop-stack frontier))
(set! visited-states
(push-set
(second current-node)
visited-states))
(for ([succ
(get-succ
(second current-node))]
#:unless (ismember? (second succ) visited-states))
(set! frontier
(push-stack
(list
(cons (first succ) (first current-node))
(second succ))
frontier)))
)
(if (is-goal (second current-node))
(reverse (first current-node))
#f)))

In Racket, as
in many
functional
languages,
adding an
element to the
front of a list
may be easier
than adding it
to the back of
a list

Stepping Through the Solution

(define (DFS maze)
(let ([start-node (list null maze)]
[frontier (make-stack)]
[visited-states (make-set)]
[current-node null])
(set! current-node start-node)
(set! frontier (push-stack start-node frontier))
(for ([i (in-naturals)]
#:break (or
(empty? frontier)
(is-goal (second current-node))))
(set!-values (current-node frontier) (pop-stack frontier))
(set! visited-states

(push-set
(second current-node))
visited-states)) For this
(for ([succ .
et st reason, this
(second current-node))] solution adds
#:unless (ismember? (second succ) visited-states)) - :
(set! frontier the actions in
(F(’t{Sh-StaCk reversed
ist
(cons (first succ) (first current-node)) order, and
(second succ)) then reverses
frontier)))
) the path at the
(if (is-goal (second current-node)) end.

(reverse (first current-node))
#f)))

Stepping Through the Solution

(define (DFS maze)
(let ([start-node (list null maze)]

[frontier (make-stack)]
[visited-states (make-set)]
[current-node null])
(set! current-node start-node)
(set! frontier (push-stack start-node frontier))
(for ([i (in-naturals)]
#:break (or
(empty? frontier)
(is-goal (second current-node))))
(set!-values (current-node frontier) (pop-stack frontier))
(set! visited-states
(push-set
(second current-node)
visited-states))
(for ([succ
(get-succ
(second current-node))]
#:unless (ismember? (second succ) visited-states))
(set! frontier
(push-stack
(list
(cons (first succ) (first current-node)) Once the Ioop
(second succ)) is broken,
: frontier))) return the
(if (is-goal (second current-node)) appropriate

(reverse (first current-node))
#6))) output.

Stepping Through the Solution

(define (DFS maze)
(let ([start-node (list null maze)]
[frontier (make-stack)]
[visited-states (make-set)]
[current-node null])
(set! current-node start-node)
(set! frontier (push-stack start-node frontier))
(for ([i (in-naturals)]
#:break (or
(empty? frontier)
(is-goal (second current-node))))
(set!-values (current-node frontier) (pop-stack frontier))
(set! visited-states

(push-set
(second current-node)
visited-states))
(for ([succ N? mazes
(get-succ without
(second current-node))] luti
#:unless (ismember? (second succ) visited-states)) solutions
(set! frontier were given as
(push-stack
(list examples, so
(cons (first succ) (first current-node)) we will not
(second succ))
frontier))) test what you
) _ return if the

(if (is-goal (second cu .
(reverse, (fj urrent-node)) search fails.

BFS Version

(define (BFS maze)
(let ([start-node (list null maze)]
[frontier (make-queue)]
[visited-states (make-set)]
[current-node null])
(set! current-node start-node)
(set! frontier (push-queue start-node frontier))
(for ([i (in-naturals)]
#:break (or
(empty? frontier)
(is—goal (second current-node))))
(set!-values (current-node frontier) (pop—queue frontier))
(set! visited-states
(push-set
(second current-node)
visited-states))
(for ([succ
(get-succ
(second current-node))]
#:unless (ismember? (second succ) visited-states))
(set! frontier
(push—queue
(list
(cons (first succ) (first current-node))
(second succ))
frontier)))

)
(if (is—goal (second current-node))
(reverse (first current-node))
#f)))

A* Version

(define (A-star maze heuristic—fun)
(let ([start-node (list null maze)]
[frontier (make-priority—queue
(g—func heuristic—fun))]
[visited-states (make-set)]
[current-node null])
(set! current-node start-node)
(set! frontier (push-priority-queue start-node frontier))
(for ([i (in-naturals)]
#:break (or
(empty? frontier)
(is-goal (second current-node))))
(set!-values (current-node frontier) (pop-priority-queue frontier))
(set! visited-states
(push-set
(second current-node)
visited-states))
(for ([succ
(get-succ
(second current-node))]
#:unless (ismember? (second succ) visited-states))
(set! frontier
(push-priority-queue
(list
(cons (first succ) (first current-node))
(second succ))
frontier)))
)
(if (is-goal (second current-node))
(reverse (first current-node))
#f)))

A* Version

(define (A-star maze heuristic—fun)
(let ([start-node (list null maze)]
[frontier (make-priority—queue
(g—func heuristic—fun))]
[visited-states (make-set)]
[current-node null])
(set! current-node start-node)
(set! frontier (push-priority-queue start-node frontier))
(for ([i (in-naturals)]
#:break (or
(empty? frontier)
(is-goal (second current-node))))
(set!-values (current-node frontier) (pop-priority-queue frontier))
(set! visited-states
(push-set
(second current-node)
visited-states))
(for ([succ
(get-succ
(second current-node))]
#:unless (ismember? (second succ) visited-states))
(set! frontier
(push-priority-queue
(list
(cons (first succ) (first current-node))
(second succ))
frontier)))
)
(if (is-goal (second current-node))
(reverse (first current-node))
#f)))

Note that the function
used to prioritize
nodes in the priority
queue is not the
heuristic function, but
the heuristic function
plus the cost function
(this sum gives the f
function, which is
used by A*).

A note on state representations

The solution shown here uses the state representation given to the problem, which
is @ matrix representing the positions of everything in the maze.

Other representations can be used, but to solve the search for more than one food
and avoid loops a representation must be able to tell that:

