
Search Algorithms



Generic Search Covered in Class



DFS Version

This is a 
stack!



Racket Code



Same Thing Without the Comments



Side-by-side



Some Things not Addressed in the Pseudo Code
● Loops and tracking visited states

○ The pseudo code does not try to avoid loops, but exploring loops can easily blow up your 
frontier

● Separate action and state representations
○ In the racket code the frontier must store a representation of the final state in addition to paths 

so successors can be generated

● What is pushed to the frontier must be a deep copy of the path so far
○ The problem of mutability doesn’t come up much in functional languages like Racket, but this 

can cause a lot of bugs in languages with more mutability like C, Java and Python



Stepping Through the Solution
Define Local 
Variables



Stepping Through the Solution

Set Initial 
Values



Stepping Through the Solution

Loop through 
the frontier



Stepping Through the Solution We need to 
test both 
break 
conditions 
here since 
unlike the 
break 
statement in 
the 
pseudocode, 
we don’t have 
a mid-loop 
break 
statement



Stepping Through the Solution

Pop the next 
value off the 
frontier



Stepping Through the Solution

Push the 
expanded 
state onto the 
set of visited 
states



Stepping Through the Solution

A state is not 
the same as a 
frontier node 
which is a 
path + a state, 
so we only 
add the state 
to the visited 
states



Stepping Through the Solution

Loop through 
successors to 
add them to 
the frontier



Stepping Through the Solution

Do not add 
previously 
visited states 
to the frontier



Stepping Through the Solution Astute students 
will notice that if 
a state got added 
to the frontier 
twice before it 
was expanded 
we aren’t filtering 
it.
This is not 
enough of a 
problem in 
pacman to blow 
up the frontier, 
but a better 
solution would 
solve it. Perhaps 
implement 
visited-states as 
a hash table



Stepping Through the Solution

Push the 
successor’s 
state plus it’s 
full path onto 
the frontier



Stepping Through the Solution

The full path 
is built by 
adding the 
action to get 
from the 
current state 
to the 
successor to 
the path to get 
to the current 
state



Stepping Through the Solution

In Racket, as 
in many 
functional 
languages, 
adding an 
element to the 
front of a list 
may be easier 
than adding it 
to the back of 
a list



Stepping Through the Solution

For this 
reason, this 
solution adds 
the actions in 
reversed 
order, and 
then reverses 
the path at the 
end.



Stepping Through the Solution

Once the loop 
is broken, 
return the 
appropriate 
output.



Stepping Through the Solution

No mazes 
without 
solutions 
were given as 
examples, so 
we will not 
test what you 
return if the 
search fails.



BFS Version



A* Version



A* Version
Note that the function 
used to prioritize 
nodes in the priority 
queue is not the 
heuristic function, but 
the heuristic function 
plus the cost function 
(this sum gives the f 
function, which is 
used by A*).



A note on state representations
The solution shown here uses the state representation given to the problem, which 
is a matrix representing the positions of everything in the maze.

Other representations can be used, but to solve the search for more than one food 
and avoid loops a representation must be able to tell that:


