CS 4260 and CS 5260 Vanderbilt University

Lecture on First-Order Logic

This lecture assumes that you have

- Read Chapter 13, through 13.2 of ArtInt

ArtInt: Poole and Mackworth, Artificial Intelligence 2E at http://artint.info/2e/html/ArtInt2e.html

Recall Propositional Logic

- Propositions represent facts (declarative language)
- Propositional logic is compositional ($\wedge, \vee, \stackrel{\sim}{\sim}, \rightarrow)$
- Context-independent and unambiguous
- Rudimentary uncertainty (e.g., using disjunction)
- Well-defined inference (proof) procedures

But propositions are atomic (e.g., Bill_is_happy, Bill_is_in_love)

Douglas H. Fisher

First Order Logic (aka First Order Predicate Calculus)

Take best of propositional logic and natural language
Facts are not atomic, but are expressed as relations between objects
Objects (Constants): Mary, Bill, Hua, Ananya, Fido, Library, Restaurant, Class, Home
Relations (Predicate): Likes, At, Human, Mortal, ...

Knowledge Base:

- Likes(Mary, Ananya),
- Likes(Hua, Mary),
- Likes (Mary, Hua),
- Likes(Ananya, Bill),
- At(Mary, Library)
- Human(Mary)
- Human(Hua)
- Human(Bill)
- Human(Ananya)
- \sim Human(Fido)
- Mortal(Bill)

First Order Logic

Take best of propositional logic and natural language

Facts are not atomic, but are expressed as relations between objects

Objects (Constants): Mary, Bill, Hua, Ananya, Fido, Library, Restaurant, Class, Home

Relations (Predicate): Likes, At, Human, Mortal, ...

Knowledge Base:

- Likes(Mary, Ananya),
- Likes(Hua, Mary),
- Likes (Mary, Hua),
- Likes(Ananya, Bill),
- At(Mary, Library)
- Human(Mary)
- Human(Hua)
- Human(Bill)
- Human(Ananya)
- ~Human(Fido)
- Mortal(Bill)

Variables allow for general statements (which are true or false) implication
$\operatorname{Human}(\mathrm{X}) \rightarrow \operatorname{Mortal}(\mathrm{X})($ or $\operatorname{Mortal}(\mathrm{X}) \leftarrow \operatorname{Human}(\mathrm{X}))$
equivalent to
$\begin{array}{lll}\text { Human(Mary) } \rightarrow \text { Mortal(Mary) } & \wedge & \\ \text { Human(Bill) } \rightarrow \text { Mortal(Bill) } & \wedge & \\ \text { Human(Hua) } \rightarrow \text { Mortal(Hua) } & \wedge & \text { conjunction }\end{array}$
Human(Ananya) \rightarrow Mortal(Ananya) \wedge
Human(Fido) \rightarrow Mortal(Fido) \wedge
Human(Library) \rightarrow Mortal(Library) \wedge
Human(Restaurant) \rightarrow Mortal(Restaurant) \wedge
$\forall \mathrm{X}(\operatorname{Human}(\mathrm{X}) \rightarrow \operatorname{Mortal}(\mathrm{X})) \quad \operatorname{ForAll}_{\mathrm{X}}(\operatorname{Human}(\mathrm{X}) \rightarrow \operatorname{Mortal}(\mathrm{X}))$

First Order Logic

Take best of propositional logic and natural language

Facts are not atomic, but are expressed as relations between objects

Objects (Constants): Mary, Bill, Hua, Ananya, Fido, Library, Restaurant, Class, Home

Relations (Predicate): Likes, At, Human, Mortal, ...

Knowledge Base:

- Likes(Mary, Ananya),
- Likes(Hua, Mary),
- Likes (Mary, Hua),
- Likes(Ananya, Bill),
- At(Mary, Library)
- Human(Mary)
- Human(Hua)
- Human(Bill)
- Human(Ananya)
- ~Human(Fido)
- Mortal(Bill)

In propositional representation, each would have to be represented as an atomic proposition (e.g., buman-mary,
buman-bill, ... ~buman-restaurant...)

Variables allow for general statements (which are true or false)
Human(X)
$\forall \mathrm{X}(\operatorname{Human}(\mathrm{X}))$
$\operatorname{ForAll}_{\mathrm{X}}(\operatorname{Human}(\mathrm{X}))$
equivalent to
Human(Mary) \wedge
Human(Bill) \wedge
Human(Hua) \wedge
Human(Ananya) \wedge
Human(Fido) \wedge
Human(Library) \wedge
Human(Restaurant) \wedge

First Order Logic

Take best of propositional logic and natural language

Facts are not atomic, but are expressed as relations between objects

Objects (Constants): Mary, Bill, Hua, Ananya, Fido, Library, Restaurant, Class, Home

Relations (Predicate): Likes, At, Human, Mortal, ...

Knowledge Base:

- Likes(Mary, Ananya),
- Likes(Hua, Mary),
- Likes (Mary, Hua),
- Likes(Ananya, Bill),
- At(Mary, Library)
- Human(Mary)
- Human(Hua)
- Human(Bill)
- Human(Ananya)
- ~Human(Fido)
- Mortal(Bill)

Variables allow for general statements (which are true or false)
Human(X)
$\begin{array}{lc}\text { Human(Mary) } & \mathrm{V} \\ \text { Human(Bill) } & \mathrm{V} \\ \text { Human(Hua) } & \mathrm{V} \\ \text { Human(Ananya) } & \mathrm{V} \\ \text { Human(Fido) } & \mathrm{V} \\ \text { Human(Library) } & \mathrm{V} \\ \text { Human(Restaurant) } & \mathrm{V}\end{array}$
equivalent to
$\exists \mathrm{X}(\operatorname{Human}(\mathrm{X}))$

First Order Logic

Vocabularies can vary, and may seem arbitrary, but choices depend on needs of the AI and need to be consistent (?) within an application

Knowledge Base:

- Likes(Mary, Ananya), or Feeling(Mary, Ananya, Likes)
- Likes(Hua, Mary),
- Likes (Mary, Hua),
- Likes(Ananya),
- At(Mary, Library)
- Human(Mary) or Species(Mary, Human) or Species(Mary, HomoSapien)
- Human(Hua)
- Human(Bill)
- Human(Ananya)
- \sim Human(Fido)
- Mortal(Bill)

First Order Logic

Represent that Mary is a parent of Jim

- Parent(Mary, Jim)

Represent that Jim is a child of Mary

- Child(Jim, Mary)

Represent that if X is a parent of Y then Y is a child of X

First Order Logic

Represent that Mary is a parent of Jim

- Parent(Mary, Jim)

Represent that Jim is a child of Mary

- Child(Jim, Mary)

Represent that if X is a parent of Y then Y is a child of X

- ForAll $_{\mathrm{X}, \mathrm{Y}}(\operatorname{Parent}(\mathrm{X}, \mathrm{Y}) \rightarrow \operatorname{Child}(\mathrm{Y}, \mathrm{X}))$

First Order Logic

Represent that Mary is a parent of Jim

- Parent(Mary, Jim)

Represent that Jim is a child of Mary

- Child(Jim, Mary)

Represent that if X is a parent of Y then Y is a child of X , and vice versa

- $\operatorname{ForAll}_{\mathrm{X}, \mathrm{Y}}(\operatorname{Parent}(\mathrm{X}, \mathrm{Y}) \rightarrow \operatorname{Child}(\mathrm{Y}, \mathrm{X}))$
- $\left.\operatorname{ForAll}_{X, Y}(\operatorname{Parent}(\mathrm{X}, \mathrm{Y}) \leftarrow \operatorname{Child}(\mathrm{Y}, \mathrm{X}))\right]=\operatorname{ForAll}_{\mathrm{X}, \mathrm{Y}}(\operatorname{Parent}(\mathrm{X}, \mathrm{Y}) \leftrightarrow \operatorname{Child}(\mathrm{Y}, \mathrm{X}))$

First Order Logic

Represent that Mary is a parent of Jim

- Parent(Mary, Jim)

Represent that Jim is a child of Mary

- Child(Jim, Mary)

Represent that if X is a parent of Y then Y is a child of X , and vice versa

- $\quad \operatorname{ForAll}_{\mathrm{X}, \mathrm{Y}}(\operatorname{Parent}(\mathrm{X}, \mathrm{Y}) \rightarrow \operatorname{Child}(\mathrm{Y}, \mathrm{X}))$
- $\quad \operatorname{ForAll}_{\mathrm{X}, \mathrm{Y}}(\operatorname{Parent}(\mathrm{X}, \mathrm{Y}) \leftarrow \operatorname{Child}(\mathrm{Y}, \mathrm{X}))$

Represent that every X has a parent, Y

First Order Logic

Represent that Mary is a parent of Jim

- Parent(Mary, Jim)

Represent that Jim is a child of Mary

- Child(Jim, Mary)

Represent that if X is a parent of Y then Y is a child of X , and vice versa

- $\quad \operatorname{ForAll}_{\mathrm{X}, \mathrm{Y}}(\operatorname{Parent}(\mathrm{X}, \mathrm{Y}) \rightarrow \operatorname{Child}(\mathrm{Y}, \mathrm{X}))$
- $\quad \operatorname{ForAll}_{\mathrm{X}, \mathrm{Y}}(\operatorname{Parent}(\mathrm{X}, \mathrm{Y}) \leftarrow \operatorname{Child}(\mathrm{Y}, \mathrm{X}))$

Represent that every X has a parent, Y

- $\operatorname{ForAll}_{\mathrm{X}} \mathrm{Exists}_{\mathrm{Y}}(\operatorname{Parent}(\mathrm{Y}, \mathrm{X}))$ or $\mathrm{ForAll}_{\mathrm{X}} \mathrm{Exists}_{\mathrm{Y}}(\operatorname{Child}(\mathrm{X}, \mathrm{Y}))$ or ForAll $_{\mathrm{Y}}$ Exists $_{\mathrm{X}}(\operatorname{Parent}(\mathrm{X}, \mathrm{Y})$) or ForAll $_{\mathrm{Y}}$ Exists $_{\mathrm{X}}($ Child(Y, X))

Represent that every human X has a parent, Y

First Order Logic

Represent that Mary is a parent of Jim

- Parent(Mary, Jim)

Represent that Jim is a child of Mary

- Child(Jim, Mary)

Represent that if X is a parent of Y then Y is a child of X , and vice versa

- $\operatorname{ForAll}_{\mathrm{X}, \mathrm{Y}}(\operatorname{Parent}(\mathrm{X}, \mathrm{Y}) \rightarrow \operatorname{Child}(\mathrm{Y}, \mathrm{X}))$
- $\operatorname{ForAll}_{\mathrm{X}, \mathrm{Y}}(\operatorname{Parent}(\mathrm{X}, \mathrm{Y}) \leftarrow \operatorname{Child}(\mathrm{Y}, \mathrm{X}))$

Represent that every X has parent, Y

- ForAll ${ }_{X}$ Exists ${ }_{Y}$ (Parent(X, Y)

Represent that every human X has a parent, Y

- ForAll $_{\mathrm{X}}$ Exists $_{\mathrm{Y}}(\operatorname{Human}(\mathrm{X}) \rightarrow \operatorname{Parent}(\mathrm{Y}, \mathrm{X}))$ or \ldots

Represent that a grandparent is the parent of a parent

First Order Logic

Represent that Mary is a parent of Jim

- ParentOf(Mary, Jim)

Represent that Jim is a child of Mary

- ChildOf(Jim, Mary)

Represent that if X is a parent of Y then Y is a child of X , and vice versa

- $\quad \operatorname{ForAll}_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \rightarrow$ ChildOf(Y, X))
- $\operatorname{ForAll}_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \leftarrow \operatorname{ChildOf}(\mathrm{Y}, \mathrm{X}))$

Represent that every human X has a parent, Y

- ForAll $_{\mathrm{X}}$ Exists $_{\mathrm{Y}}(\operatorname{Human}(\mathrm{X}) \rightarrow \operatorname{ParentOf}(\mathrm{Y}, \mathrm{X}))$

Represent that a grandparent is the parent of a parent

- ForAll $_{\mathrm{X}}$ Exists $_{\mathrm{Y}}$ Exists $_{\mathrm{Z}}(\operatorname{Grandparent(\mathrm {X})} \rightarrow(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \wedge \operatorname{ParentOf(Y,Z)))}$

In the video, I don't show the consequent delineated by (), and I should have (bere and elsewhere). In general, we will clearly specify operator precedence with parentheses.

First Order Logic

- ParentOf(Mary, Jim)

Represent that Jim is a child of Mary

- ChildOf(Jim, Mary)

Represent that if X is a parent of Y then Y is a child of X , and vice versa

- $\quad \operatorname{ForAll}_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \rightarrow$ ChildOf(Y, X))
- $\quad \operatorname{ForAll}_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \leftarrow$ ChildOf(Y, X))

Represent that every human X has a parent, Y

- $\quad \operatorname{ForAll}_{\mathrm{X}}$ Exists $_{\mathrm{Y}}(\operatorname{Human}(\mathrm{X}) \rightarrow \operatorname{ParentOf}(\mathrm{Y}, \mathrm{X}))$

Represent that a grandparent is the parent of a parent, and vice versa

- ForAll $_{\mathrm{X}}$ Exists $_{\mathrm{Y}}$ Exists $_{\mathrm{Z}}(\operatorname{Grandparent(X)} \rightarrow(\operatorname{ParentOf(X,~Y)} \wedge \operatorname{ParentOf(Y,~Z)))}$
- $\operatorname{ForAll}_{\mathrm{X}} \mathrm{ForAll}_{\mathrm{Y}} \mathrm{ForAll}_{\mathrm{Z}}(\operatorname{Grandparent}(\mathrm{X}) \leftarrow(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \wedge \operatorname{ParentOf}(\mathrm{Y}, \mathrm{Z})))$

First Order Logic Inference

- ParentOf(Mary, Jim)
- ParentOf(Mary, Steve)
- ParentOf(Jim, Gene)
- ParentOf(Hua, Jia) Human(Steve)
- ChildOf(Jim, Mary)
- $\quad \operatorname{ForAll}_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \rightarrow \operatorname{ChildOf}(\mathrm{Y}, \mathrm{X}))$
- ForAll $_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \leftarrow \operatorname{ChildOf}(\mathrm{Y}, \mathrm{X}))$

Through inference (universal instantiation and modus ponens in this case)

```
ParentOf(Mary, Jim), ForAll }\mp@subsup{\mp@code{X,Y}}{(ParentOf(X, Y) }{\mathrm{ ( ChildOf(Y, X)) |- ChildOf(Jim, Mary)}
ParentOf(Mary, Steve), ForAll X,Y
ParentOf(Jim, Gene), ForAll}\mp@subsup{\textrm{X},\textrm{Y}}{(ParentOf(X, Y) }{\mathrm{ ( ChildOf(Y, X)) |- ChildOf(Gene, Jim)}
ParentOf(Hua, Jia), ForAll X,Y
```

- \quad ForAll $_{\mathrm{X}}$ Exists $_{\mathrm{Y}}(\operatorname{Human}(\mathrm{X}) \rightarrow$ ParentOf(Y, X))

Through inference (universal instantiation and modus ponens in this case)

Human(Steve), ForAll ${ }_{\mathrm{X}}$ Exists $_{\mathrm{Y}}(\operatorname{Human}(\mathrm{X}) \rightarrow$ ParentOf(Y, X) $) \mid-$ Exists $_{\mathrm{Y}}$ Parent(Y, Steve)

- ForAll $_{\mathrm{X}}$ Exists $_{\mathrm{Y}}$ Exists $_{\mathrm{Z}}($ Grandparent $(\mathrm{X}) \rightarrow(\operatorname{ParentOf(X,Y)} \wedge \operatorname{ParentOf(Y,Z)))}$
- $\operatorname{ForAll}_{\mathrm{X}} \mathrm{ForAll}_{\mathrm{Y}} \mathrm{ForAll}_{\mathrm{Z}}(\mathrm{Grandparent}(\mathrm{X}) \leftarrow(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \wedge \operatorname{ParentOf}(\mathrm{Y}, \mathrm{Z})))$

Through inference (universal and existential instantiation and modus ponens in this case)
ParentOf(Mary, Jim), ParentOf(Jim, Gene), ForAll $\mathrm{X}_{\mathrm{X}} \mathrm{ForAll}_{\mathrm{Y}} \mathrm{ForAll}_{\mathrm{Z}}(\operatorname{Grandparent}(\mathrm{X}) \leftarrow(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \wedge \operatorname{ParentOf}(\mathrm{Y}, \mathrm{Z}))) \mid-\operatorname{Grandparent(Mary)}$

Douglas H. Fisher

First Order Logic
 Inference

- ParentOf(Mary, Jim)
- ParentOf(Mary, Steve)
- ParentOf(Jim, Gene)
- ParentOf(Hua, Jia)
- ChildOf(Jim, Mary)
- Human(Steve)
- $\quad \operatorname{ForAll}_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \rightarrow \operatorname{ChildOf}(\mathrm{Y}, \mathrm{X}))$
- ForAll $_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \leftarrow \operatorname{ChildOf}(\mathrm{Y}, \mathrm{X}))$
- ForAll ${ }_{\mathrm{X}}$ Exists $_{\mathrm{Y}}(\operatorname{Human}(\mathrm{X}) \rightarrow$ ParentOf(Y, X))
- $\operatorname{ForAll}_{\mathrm{X}}$ Exists $_{\mathrm{Y}}$ Exists $_{\mathrm{Z}}(\operatorname{Grandparent}(\mathrm{X}) \leftrightarrow(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \wedge \operatorname{ParentOf}(\mathrm{Y}, \mathrm{Z})))$

Predicate names match
ParentOf(Mary, Jim), ForAll ${ }_{X, Y}(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \rightarrow \operatorname{ChildOf}(\mathrm{Y}, \mathrm{X}))$

First Order Logic
 Inference

- ParentOf(Mary, Jim)
- ParentOf(Mary, Steve)
- ParentOf(Jim, Gene)
- ParentOf(Hua, Jia)
- ChildOf(Jim, Mary)
- Human(Steve)
- $\quad \operatorname{ForAll}_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \rightarrow \operatorname{ChildOf}(\mathrm{Y}, \mathrm{X}))$
- ForAll $_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \leftarrow \operatorname{ChildOf}(\mathrm{Y}, \mathrm{X}))$
- ForAll ${ }_{\mathrm{X}}$ Exists $_{\mathrm{Y}}(\operatorname{Human}(\mathrm{X}) \rightarrow$ ParentOf(Y, X))
- ForAll $_{\mathrm{X}}$ Exists $_{\mathrm{Y}}$ Exists $_{\mathrm{Z}}(\operatorname{Grandparent}(\mathrm{X}) \longleftrightarrow(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \wedge \operatorname{ParentOf}(\mathrm{Y}, \mathrm{Z})))$

Predicate names match
ParentOf(Mary, Jim), ForAll $_{X, Y}(\operatorname{ParentOf(X,Y)} \rightarrow \operatorname{ChildOf(Y,~X))~}$

First Order Logic
 Inference

- ParentOf(Mary, Jim)
- ParentOf(Mary, Steve)
- ParentOf(Jim, Gene)
- ParentOf(Hua, Jia)
- ChildOf(Jim, Mary)
- Human(Steve)
- \quad ForAll $_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf(X,~Y)} \rightarrow \operatorname{ChildOf(Y,~X))}$
- ForAll $_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \leftarrow \operatorname{ChildOf}(\mathrm{Y}, \mathrm{X}))$
- ForAll $_{\mathrm{X}}$ Exists $_{\mathrm{Y}}(\operatorname{Human}(\mathrm{X}) \rightarrow$ ParentOf(Y, X))
- ForAll $_{\mathrm{X}}$ Exists $_{\mathrm{Y}}$ Exists $_{\mathrm{Z}}(\operatorname{Grandparent}(\mathrm{X}) \longleftrightarrow \rightarrow(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \wedge \operatorname{ParentOf}(\mathrm{Y}, \mathrm{Z})))$

First Order Logic
 Inference

- ParentOf(Mary, Jim)
- ParentOf(Mary, Steve)
- ParentOf(Jim, Gene)
- ParentOf(Hua, Jia)
- ChildOf(Jim, Mary)
- Human(Steve)
- \quad ForAll $_{X, Y}(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \rightarrow \operatorname{ChildOf}(\mathrm{Y}, \mathrm{X}))$
- ForAll $_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \leftarrow \operatorname{ChildOf}(\mathrm{Y}, \mathrm{X}))$
- ForAll ${ }_{\mathrm{X}}$ Exists $_{\mathrm{Y}}(\operatorname{Human}(\mathrm{X}) \rightarrow$ ParentOf(Y, X))
- ForAll $_{\mathrm{X}}$ Exists $_{\mathrm{Y}}$ Exists $_{\mathrm{Z}}($ Grandparent $(\mathrm{X}) \leftrightarrow \rightarrow(\operatorname{ParentOf(X,Y)} \wedge \operatorname{ParentOf(Y,~Z)}))$

Substitute variable values throughout

First Order Logic
 Inference

- ParentOf(Mary, Jim)
- ParentOf(Mary, Steve)
- ParentOf(Jim, Gene)
- ParentOf(Hua, Jia)
- ChildOf(Jim, Mary)
- Human(Steve)
- ForAll $_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf(X,~Y)} \rightarrow \operatorname{ChildOf(Y,~X))}$
- ForAll $_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf(X,~Y)} \leftarrow \operatorname{ChildOf(Y,~X))}$
- ForAll $_{\mathrm{X}} \operatorname{Exists}_{\mathrm{Y}}(\operatorname{Human}(\mathrm{X}) \rightarrow$ ParentOf(Y, X))
- ForAll $_{\mathrm{X}}$ Exists $_{\mathrm{Y}}$ Exists $_{\mathrm{Z}}(\mathrm{Grandparent}(\mathrm{X}) \leftrightarrow \rightarrow(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \wedge \operatorname{ParentOf(Y,Z)))}$

ParentOf(Mary, Jim), FotAll ${ }_{X, Y}$ (ParentOf(Mary, Jim) \rightarrow ChildOf(Jim, Mary))
Modus Ponens now applies

ParentOf(Mary, Jim), ForAll , (ParentOf(Mary, Jim) \rightarrow ChildOf(Jim, Mary)) |- ChildOf(Jim, Mary)

First Order Logic
 Inference

- ParentOf(Mary, Jim)
- ParentOf(Mary, Steve)
- ParentOf(Jim, Gene)
- ParentOf(Hua, Jia)
- ChildOf(Jim, Mary)
- Human(Steve)
- $\quad \operatorname{ForAll}_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \rightarrow \operatorname{ChildOf}(\mathrm{Y}, \mathrm{X}))$
- ForAll $_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \leftarrow \operatorname{ChildOf}(\mathrm{Y}, \mathrm{X}))$
- ForAll $_{\mathrm{X}}$ Exists $_{\mathrm{Y}}(\operatorname{Human}(\mathrm{X}) \rightarrow$ ParentOf(Y, X))
- ForAll $_{\mathrm{X}}$ Exists $_{\mathrm{Y}}$ Exists $_{\mathrm{Z}}(\operatorname{Grandparent}(\mathrm{X}) \longleftrightarrow(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \wedge \operatorname{ParentOf}(\mathrm{Y}, \mathrm{Z})))$

ParentOf(Mary, Jim), ForAll ${ }_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf(X,~Y)} \rightarrow$ ChildOf(Y, X)) $\mid-$ ChildOf(Jim, Mary)
Human(Steve), ForAll $_{\mathrm{X}}$ Exists $_{\mathrm{Y}}\left(\operatorname{Human}(\mathrm{X}) \rightarrow\right.$ ParentOf(Y, X) $\quad \mid-$ Exists $_{\mathrm{Y}}$ Parent(Y, Steve)

Douglas H. Fisher

First Order Logic
 Inference

- ParentOf(Mary, Jim)
- ParentOf(Mary, Steve)
- ParentOf(Jim, Gene)
- ParentOf(Hua, Jia)
- ChildOf(Jim, Mary)
- Human(Steve)
- \quad ForAll $_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf(X,~Y)} \rightarrow \operatorname{ChildOf}(\mathrm{Y}, \mathrm{X}))$
- ForAll $_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \leftarrow \operatorname{ChildOf}(\mathrm{Y}, \mathrm{X}))$
- ForAll ${ }_{\mathrm{X}}$ Exists $_{\mathrm{Y}}(\operatorname{Human}(\mathrm{X}) \rightarrow$ ParentOf(Y, X))
- ForAll $_{\mathrm{X}}$ Exists $_{\mathrm{Y}}$ Exists $_{\mathrm{Z}}($ Grandparent $(\mathrm{X}) \leftrightarrow \rightarrow(\operatorname{ParentOf(X,Y)} \wedge \operatorname{ParentOf(Y,~Z)))}$

ParentOf(Mary, Jim), ForAll ${ }_{X, Y}(\operatorname{ParentOf}(X, Y) \rightarrow \operatorname{ChildOf(Y,~X))} \mid-$ ChildOf(Jim, Mary)
Human(Steve), ForAll ${ }_{\mathrm{X}}$ Exists $_{\mathrm{Y}}(\operatorname{Human}(\mathrm{X}) \rightarrow \operatorname{ParentOf}(\mathrm{Y}, \mathrm{X})) \mid-$ Exists $_{\mathrm{Y}}$ Parent(Y, Steve)

ParentOf(Mary, Jim),

> Unify antecedents
> with $K B$ axioms

ParentOf(Jim, Gene),

First Order Logic
 Inference

- ParentOf(Mary, Jim)
- ParentOf(Mary, Steve)
- ParentOf(Jim, Gene)
- ParentOf(Hua, Jia)
- ChildOf(Jim, Mary)
- Human(Steve)
- \quad ForAll $_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf(X,~Y)} \rightarrow \operatorname{ChildOf}(\mathrm{Y}, \mathrm{X}))$
- ForAll $_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \leftarrow \operatorname{ChildOf}(\mathrm{Y}, \mathrm{X}))$
- ForAll ${ }_{\mathrm{X}}$ Exists $_{\mathrm{Y}}(\operatorname{Human}(\mathrm{X}) \rightarrow$ ParentOf(Y, X))
- ForAll $_{\mathrm{X}}$ Exists $_{\mathrm{Y}}$ Exists $_{\mathrm{Z}}($ Grandparent $(\mathrm{X}) \leftrightarrow \rightarrow(\operatorname{ParentOf(X,Y)} \wedge \operatorname{ParentOf(Y,~Z)))}$

ParentOf(Mary, Jim), ForAll ${ }_{X, Y}(\operatorname{ParentOf}(X, Y) \rightarrow$ ChildOf(Y, X)) |-ChildOf(Jim, Mary)
Human(Steve), ForAll ${ }_{\mathrm{X}}$ Exists $_{\mathrm{Y}}(\operatorname{Human}(\mathrm{X}) \rightarrow \operatorname{ParentOf}(\mathrm{Y}, \mathrm{X})) \mid-$ Exists $_{\mathrm{Y}}$ Parent(Y, Steve)

ParentOf(Mary, Jim),

> Unify antecedents
> with $K B$ axioms

ParentOf(Jim, Gene),

|- Grandparent(Mary)

Knowledge Base

- ParentOf(Mary, Jim)
- ParentOf(Mary, Steve)
- ParentOf(Jim, Gene)
- ParentOf(Hua, Jia)
- ChildOf(Jim, Mary)
- Human(Steve)
- ForAll $_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf(X,~Y)} \rightarrow$ ChildOf(Y, X))
- ForAll $_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf}(\mathrm{X}, \mathrm{Y}) \leftarrow \operatorname{ChildOf}(\mathrm{Y}, \mathrm{X}))$
- ForAll ${ }_{\mathrm{X}}$ Exists $_{\mathrm{Y}}(\operatorname{Human}(\mathrm{X}) \rightarrow$ ParentOf(Y, X))
- ForAll $_{\mathrm{X}}$ Exists $_{\mathrm{Y}}$ Exists $_{\mathrm{Z}}($ Grandparent $(\mathrm{X}) \leftrightarrow \rightarrow(\operatorname{ParentOf(X,Y)} \wedge \operatorname{ParentOf(Y,~Z)))}$

ParentOf(Mary, Jim), ForAll ${ }_{\mathrm{X}, \mathrm{Y}}(\operatorname{ParentOf(X,~Y)~} \rightarrow$ ChildOf(Y, X)) $\mid-$ ChildOf(Jim, Mary)
Human(Steve), ForAll ${ }_{\mathrm{X}}$ Exists $_{\mathrm{Y}}(\operatorname{Human}(\mathrm{X}) \rightarrow \operatorname{ParentOf}(\mathrm{Y}, \mathrm{X})) \mid-$ Exists $_{\mathrm{Y}}$ Parent(Y, Steve)

Inference is a search, and some paths lead to dead ends Douglas H . Fisher

Which of the choices below represent valid interpretations of
"Every martian can fool some of the people all of the time (and these can be different subsets of people for each martian)"

Circle all valid interpretations.
a) Forall(x) $[\operatorname{Martian}(\mathrm{x}) \rightarrow \operatorname{Exists}(\mathrm{y})[\operatorname{Person}(\mathrm{y}) \operatorname{AND} \operatorname{ForAll(t)}[\operatorname{Time}(\mathrm{t}) \rightarrow \operatorname{Fools}(\mathrm{x}, \mathrm{y}, \mathrm{t})]]]$
b) Forall(x) $[\operatorname{Martian}(\mathrm{x})$ AND Exists(y) $\operatorname{Person}(\mathrm{y})$ AND ForAll(t$)[\operatorname{Time}(\mathrm{t}) \rightarrow \operatorname{Fools}(\mathrm{x}, \mathrm{y}, \mathrm{t})]]]$
c) $\operatorname{Exists}(\mathrm{y})[\operatorname{Person}(\mathrm{y}) \operatorname{AND} \operatorname{ForAll}(\mathrm{x})[\operatorname{Martian}(\mathrm{x}) \rightarrow \operatorname{ForAll}(\mathrm{t})[\operatorname{Time}(\mathrm{t}) \rightarrow \operatorname{Fools}(\mathrm{x}, \mathrm{y}, \mathrm{t})]]]$
d) Exists(y) ForAll(x) ForAll(t) $[\operatorname{Person}(\mathrm{y})$ AND $(\operatorname{Martian}(\mathrm{x}) \rightarrow(\operatorname{Time}(\mathrm{t}) \rightarrow \operatorname{Fools}(\mathrm{x}, \mathrm{y}, \mathrm{t})))]$
e) $\operatorname{ForAll}(\mathrm{x}) \operatorname{Exists}(\mathrm{y}) \operatorname{ForAll}(\mathrm{t})[\operatorname{Martian}(\mathrm{x}) \rightarrow(\operatorname{Person}(\mathrm{y})$ AND $(\operatorname{Time}(\mathrm{t}) \rightarrow \operatorname{Fools}(\mathrm{x}, \mathrm{y}, \mathrm{t}))]$
f) None of the above

Circle the subsets of the choices above (a-e) that have the same meaning (i.e. are equivalence sets):
i) a, b
ii) c, d
iii) a,b,e
iv) $b, \mathrm{c}, \mathrm{d}$
v) d, e
vi) None of these

Which of the choices below may represent valid interpretations of
"Every martian can fool some of the people all of the time (and these can be different subsets of people for each martian)"

Circle all valid interpretations.
(C\&D are valid if it's the same people who are fooled by each martian)
a) $\operatorname{Orall}(\mathrm{x})[\operatorname{Martian}(\mathrm{x}) \rightarrow \operatorname{Exists}(\mathrm{y})[\operatorname{Person}(\mathrm{y})$ AND ForAll(t$)[\operatorname{Time}(\mathrm{t}) \rightarrow \operatorname{Fools}(\mathrm{x}, \mathrm{y}, \mathrm{t})]]]$
b) Forall(x) $[\operatorname{Martian}(\mathrm{x})$ AND Exists(y)[Person(y) AND ForAll(t$)[\operatorname{Time}(\mathrm{t}) \rightarrow \operatorname{Fools}(\mathrm{x}, \mathrm{y}, \mathrm{t})]]]$
(c) Exists(y) $[\operatorname{Person}(\mathrm{y})$ AND ForAll(x$)[\operatorname{Martian}(\mathrm{x}) \rightarrow \operatorname{ForAll}(\mathrm{t})[\operatorname{Time}(\mathrm{t}) \rightarrow \operatorname{Fools}(\mathrm{x}, \mathrm{y}, \mathrm{t})]]]$
d) $\operatorname{Exists}(\mathrm{y}) \operatorname{ForAll}(\mathrm{x}) \operatorname{ForAll}(\mathrm{t})[\operatorname{Person}(\mathrm{y})$ AND $(\operatorname{Martian}(\mathrm{x}) \rightarrow(\operatorname{Time}(\mathrm{t}) \rightarrow \operatorname{Fools}(\mathrm{x}, \mathrm{y}, \mathrm{t})))]$
(e) $\operatorname{iorAll}(\mathrm{x}) \operatorname{Exists}(\mathrm{y}) \operatorname{ForAll}(\mathrm{t})[\operatorname{Martian}(\mathrm{x}) \rightarrow(\operatorname{Person}(\mathrm{y})$ AND (Time(t) $\rightarrow \operatorname{Fools}(\mathrm{x}, \mathrm{y}, \mathrm{t}))]$
f) None of the above
a and e are equivalent, but not with b
Circle the subsets of the choices above (a-e) that have the same meaning (i.e. are equivalence sets):
i) a, b
(ii) d
iii) a,b,e
iv) $\mathrm{b}, \mathrm{c}, \mathrm{d}$
v) d, e
vi) None of these

Exercise: Represent the following objects and relationships in first-order predicate calculus

- Students are people
- Instructors are people too
- Students take courses
- CS4260 is a course
- Courses have 0 or more prerequisites, which are also courses
- CS3250 and CS3251 are prerequisites of CS4260
- If a student takes a course, they must already have taken its prerequisites

