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Abstract
Psychologists commonly apply regression mixture models in single-level (i.e., unclustered) and multilevel (i.e.,
clustered) data analysis contexts. Though researchers applying nonmixture regression models typically report
R-squared measures of explained variance, there has been no general treatment of R-squared measures for
single-level and multilevel regression mixtures. Consequently, it is common for researchers to summarize results of
a fitted regression mixture by simply reporting class-specific regression coefficients and their associated p values,
rather than considering measures of effect size. In this article, we fill this gap by providing an integrative framework
of R-squared measures for single-level regression mixture models and multilevel regression mixture models (with
classes at Level-2 or both levels). Specifically, we describe 11 R-squared measures that are distinguished based on
what the researcher chooses to consider as outcome variance and what sources the researcher chooses to contribute
to predicted variance. We relate these measures analytically and through simulated graphical illustrations. Further,
we demonstrate how these R-squared measures can be decomposed in novel ways into substantively meaningful
sources of explained variance. We describe and demonstrate new software tools to allow researchers to compute
these R-squared measures and decompositions in practice. Using 2 empirical examples, we show how researchers
can answer distinct substantive questions with each measure and can gain insights by interpreting the set of measures
in juxtaposition to each other.

Translational Abstract
Regression mixture models allow regression coefficients (intercepts and slopes) to vary by unobserved group, or
latent class. Psychologists commonly apply such models in single-level (i.e., unclustered) and multilevel (i.e.,
clustered, such as students nested within schools) data analysis contexts. Though researchers applying nonmixture
regression models typically report an R-squared (defined as the proportion of variance that is explained by the
model), there has been no general treatment of R-squared measures for single-level and multilevel regression
mixtures. Consequently, it is common for researchers to summarize results of a fitted regression mixture by simply
reporting class-specific regression coefficients and their associated p values, rather than considering measures of
effect size. In this article, we fill this gap by providing an integrative framework of R-squared measures for
single-level regression mixture models and multilevel regression mixture models (with classes at Level-2 or both
levels). Specifically, we describe 11 R-squared measures that are distinguished based on what the researcher chooses
to consider as outcome variance and what sources the researcher chooses to contribute to predicted variance. We
relate these measures analytically and through simulated graphical illustrations. Further, we demonstrate how these
R-squared measures can be decomposed in novel ways into substantively meaningful sources of explained variance.
We describe and demonstrate new software tools to allow researchers to compute these R-squared measures and
decompositions in practice. Using 2 empirical examples, we show how researchers can answer distinct substantive
questions with each measure and can gain insights by interpreting the set of measures in juxtaposition to each other.
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Psychologists commonly apply regression mixture models in
single-level (i.e., unclustered) data analysis contexts (e.g., Ding, 2006;
Dyer, Pleck, & McBride, 2012; Fagan, Van Horn, Hawkins, & Jaki,
2013; George et al., 2013; Kliegel & Zimprich, 2005; Montgomery,
Vaughn, Thompson, & Howard, 2013) and increasingly in multilevel

(i.e., clustered) contexts (e.g., Karakos, 2015; Muthén & Asparouhov,
2009; Rights & Sterba, 2016; Van Horn et al., 2016; Vermunt, 2010;
Vermunt & Magidson, 2005). Whereas traditional single-level regres-
sion analysis assumes that a set of regression coefficients characterize
a homogeneous population, single-level regression mixtures allow
these coefficients (intercepts and slopes) to vary by unobserved group,
or latent class (DeSarbo & Cron, 1988; Wedel & DeSarbo, 1994).
Relatedly, whereas traditional multilevel regression analysis assumes
that a set of regression coefficients are continuously distributed across
clusters, multilevel regression mixtures can, for instance, allow these
coefficients to vary discretely across cluster-level (Level-2) latent classes
(e.g., Nagin, 2005; Vermunt & Van Dijk, 2001) or across combina-
tions of both observation-level (Level-1) and cluster-level latent
classes (e.g., Muthén & Asparouhov, 2009; Rights & Sterba, 2016;
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Vermunt & Magidson, 2005). These latent classes are often thought to
represent distinct subpopulations of individuals, in which case across-
class heterogeneity in regression coefficients would reflect substan-
tively meaningful group differences (McLachlan & Peel, 2000).

When reporting results of nonmixture single-level regression anal-
yses and nonmixture multilevel regression analyses, researchers com-
monly provide a total R-squared (R2) measure (e.g., Cohen, Cohen,
West, & Aiken, 2003; Draper & Smith, 1998; LaHuis, Hartman,
Hakoyama, & Clark, 2014; O’Grady, 1982; Orelien & Edwards,
2008; Vonesh & Chinchilli, 1997). R2 measures indicate the propor-
tion of total outcome variance that is explained by the model, often
computed as the variance of the predicted scores1 divided by the total
variance of the outcome variable. R2’s are useful effect size measures
because: (a) they let a researcher know how well a given model’s
predictions match the observed data; (b) they have an easily interpre-
table metric (proportion) with meaningful bounds (0 and 1); and (c)
they can be compared across studies2 (e.g., Gelman & Hill, 2007; Xu,
2003). As summarized by Magee (1990),

There is a natural appeal for a number that can be computed for a
fitted model, lies between 0 and 1, is invariant to units of measure-
ment, and becomes larger as the model ‘fits better’ [in the sense of
correspondence between observed and predicted values] (p. 250).

However, despite single-level regression mixtures being used
for several decades and multilevel regression mixtures being used
for over a decade, there has been no general treatment of R2

measures for these contexts. Consequently, it is typical for re-
searchers to summarize results of a fitted regression mixture by
simply reporting class-specific regression coefficients and their
associated p values, along with qualitative class-labels (e.g., De-
Sarbo et al., 2001; Dyer et al., 2012; Fagan et al., 2013; Grewal et
al., 2013; Manchia et al., 2010; Nowrouzi et al., 2013; Schmiege
et al., 2009). In contrast, there are general and widespread meth-
odological recommendations to look beyond statistical signifi-
cance to also examine practical significance in terms of effect size
indices, such as R2 (e.g., American Psychological Association,
2009; Cumming, 2012; Harlow, Muliak, & Steiger, 1997; Kelley
& Preacher, 2012; Panter & Sterba, 2011; Wilkinson, 1999).

In this article, we fill this gap by providing an integrative
framework of R2 measures for single-level regression mixture
models as well as multilevel regression mixture models (with
classes at Level-2, or at both levels). Specifically, we provide 11
different R2 measures that can be distinguished based on what the
researcher chooses to consider as outcome variance (total vs.
class-specific variance, delineated in the columns of Tables 1 and
2) and based on what sources3 the researcher chooses to consider
as contributing to predicted variance (three options, delineated in
the rows of Tables 1 and 2). In this article, the R2 measures listed
in Tables 1 and 2 will be given detailed definitions and will be
related both analytically and through graphical illustrations. We
will contrast the respective substantive interpretations of these R2

measures, explain what research question is answered by each
measure, and explain what insights can be gained by interpreting
the entire suite of R2 measures for a given model, in juxtaposition
to each other, rather than simply reporting one. Furthermore, we
show how each R2 measure can be analytically decomposed into
distinct, substantively meaningful sources of explained variance.

Though analogues to a few of these 11 measures have been incor-
porated into existing commercial software (Latent GOLD, Vermunt
& Magidson, 2016; and Mplus, Muthén & Muthén, 1998–2016, as
described later in our Software Implementation section), the majority
of these measures are newly proposed here, and the entire suite is not
available in existing software. Moreover, R2’s for regression mixtures
in general (whether with classes at a single level, at Level-2 only, or
at both levels) have not been systematically described nor interrelated
in the literature. In this article, we provide a matrix-based approach for
calculating the suite of R2 measures; formulas are provided in the
manuscript text whereas derivations are deferred to Appendices. We
implement this approach in an R function which allows researchers to
quickly obtain a set of R2 measures for their fitted model, along with
associated graphics and analytic decompositions of explained vari-
ance. In doing so, we hope to encourage researchers not only to utilize
these measures, but also to consult the framework provided and
demonstrated here to understand precisely what each R2 is measuring.

The remainder of the article proceeds as follows. We first review
data models for a single-level regression mixture and a multilevel
regression mixture with latent classes only at Level-2. Next, we
describe the four different R2 measures from Table 1 for these models
(the computations are the same for both). We then show how these
R2’s are related using simulated graphical demonstrations and explain
how each can be analytically decomposed into distinct, meaningful
sources of explained variance. We next review the data model for a
more general multilevel regression mixture with latent classes at both
Level-1 and Level-2. We then describe the seven R2 measures from
Table 2 for this model, and also discuss and graphically illustrate how
these can be related to one another and analytically decomposed. We

1 Note that, in multilevel contexts, there are different ways of defining
the variance of the predicted scores (e.g., conditional on random effects or
not; see Vonesh & Chinchilli, 1997; Vonesh, Chinchilli, & Pu, 1996).

2 See Nakagawa and Schielzeth (2013) for a more in-depth discussion of
the latter point.

3 In nonmixture modeling contexts, researchers have similarly already
expressed interest in substantively determining which sources they want to
contribute to explained variance in R2’s (e.g., Nakagawa & Schielzeth,
2013; Vonesh & Chinchilli, 1997). For instance, total R2’s for nonmixture
multilevel regression are increasingly distinguished by whether they consider
outcome variance attributable to random effect variance to be explained
variance, termed conditional R2’s, versus whether they consider it to be
unexplained variance, termed marginal R2’s (e.g., Edwards, Muller, Wolfinger,
Qaqish, & Schabenberger, 2008; Nakagawa & Schielzeth, 2013; Orelien &
Edwards, 2008; Vonesh et al., 1996; Wang & Schaalje, 2009); these distinc-
tions have conceptual parallels to distinctions among our total R2’s.

Table 1
Measures for Single-Level Regression Mixtures or Multilevel
Regression Mixtures With Classes at Level-2

Source of explained variance

Outcome variance

Total Class specific

• By predictors via marginal slopes
R2(fvm)• By predictors via class variation in slopes

• By means via class variation

• By predictors via marginal slopes
R2(fv)

• By predictors via class variation in slopes

• By predictors via marginal slopes R2(f) Rk
2(f)
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present two empirical examples wherein we compute all relevant R2

measures and discuss their substantive interpretations. Tables 1 and 2 can
be used as a taxonomy and a reference for the R2’s that are more
thoroughly defined and explained throughout the article. We conclude by
describing software implementation, limitations, and future directions.

Before continuing, a few clarifications about the scope of our
article should be noted. First, we are proposing that our R2 measures
be used as an assessment tool after researchers have already defined
a set of p predictors of substantive interest and after they have already
selected the number of latent classes. In regression mixture applica-
tions in psychology, the p predictors are typically chosen based on
substantive theory (Ding, 2006; Dyer et al., 2012; Fagan et al., 2013;
Karakos, 2015; Montgomery et al., 2013; Muthén & Asparouhov,
2009; Schmiege et al., 2009; Van Horn et al., 2009, 2016; Vermunt,
2010; Vermunt & Magidson, 2005; Wong & Maffini, 2011; Wong,
Owen, & Shea, 2012). In such applications, the number of classes is
chosen by fitting the regression mixture model with p predictors using
alternative numbers of classes and selecting the best-fitting model
using, for instance, information criteria. In contrast, when there is no
theoretical basis for choosing a set of p predictors (e.g., exploratory
data mining) there are data-driven algorithms under development in
other disciplines that perform automated iterative searches for select-
ing predictor variables simultaneously with selecting the number of
classes in regression mixtures (e.g., Khalili & Chen, 2012; Raftery &
Dean, 2006). In this latter context where such algorithms are em-
ployed, our R2 measures can still be used after a final model is
selected in order to assess the overall proportion of variance ex-
plained.

As a second clarification, our R2 measures provide meaningful
information about a regression mixture model even when predic-
tion is not the primary objective of the analysis. Though mixture
models are increasingly being used for individual prediction (e.g.,
Cole & Bauer, 2016; Cudeck & Henly, 2003; de Kort, Dolan,
Lubke, & Molenaar, in press; Sterba & Bauer, 2014) it is still more
common for analysts’ primary objective to involve description
and/or explanation of theorized data-generating processes. In the
latter context, our R2’s serve as relatable, quantitative effect size
measures that aid substantive interpretation, which has heretofore
usually been qualitative and informal in mixture contexts. It is also
important to underscore that—just as in nonmixture regression
contexts—a high R2 does not imply that a regression mixture

model is necessarily useful or accurately reflects reality; con-
versely, a low R2 does not imply that a regression mixture model
is useless or incorrect (for further discussion, see King, 1986 or
Cohen, Cohen, West, & Aiken, 2003). Hence, we propose that our
measures supplement, but not replace, existing procedures for
model selection and overall model evaluation for mixtures.

As a third clarification, R2 measures provided in this article are
for the objective of assessing the correspondence between pre-
dicted scores on an outcome variable and observed scores on an
outcome variable. Other R2’s, called entropy-based R2’s, have
been developed in mixture contexts for the different objective of
quantifying how well class memberships are predicted from ob-
served responses (e.g., Lukočienė, Varriale, & Vermunt, 2010;
Wedel & Kamakura, 1998), which is not our focus here.

As a fourth clarification, in this article all predictors are exog-
enous, which is definitional of regression mixtures more generally
(see Sterba, 2014 for a detailed discussion of this point) and is the
software default employed in empirical applications. Departing
from a mixture regression approach by using endogenous predic-
tors whose distributions depend on class is possible (e.g., Ingras-
sia, Minotti, & Vittadini, 2012; Lamont, Vermunt, & Van Horn,
2016) but implies a different generating process (Sterba, 2014).
Our R2 measures could be extended to apply to the latter situation
but this is not addressed in the scope of the present article.

As a final clarification, we do not address R2 measures for
hybrid multilevel mixtures that combine latent classes with ran-
dom effects that are continuously distributed across clusters (see,
e.g., Muthén & Asparouhov, 2009). In other words, all models
considered in this article have residuals only at Level-1. This is a
popular approach that can greatly save in computational time (e.g.,
Vermunt, 2004, 2008, 2010) and allows cluster-level dependencies
to be accommodated by discrete class-variation in regression co-
efficients (for details see Nagin, 2005; Rights & Sterba, 2016;
Vermunt, 2010). R2 measures for hybrid multilevel mixtures that
include continuously distributed random effects, however, are an
extension for future research. Such hybrid multilevel mixtures
allow inclusion of continuous random effects in conjunction with
classes at one level (i.e., at Level-1 or Level-2) or in conjunction
with classes at multiple levels. In such models, random effect
distributions can be specific to a given class or class-combination,
or can be constrained equal across classes.

Data Model for a Single-Level Regression Mixture

To begin, we consider a regression mixture model for single-
level (unclustered) data (e.g., Ding, 2006; Dyer et al., 2012; Wedel
& DeSarbo, 1994). With i denoting observation (i � 1 . . . N) and
ci denoting latent class membership for observation i (with classes
ranging from k � 1 to K), we can model a univariate outcome yi

conditional on class k membership, as follows:

yi�ci�k � x�i �
k
� εi

εi � N(0, �k)

p(ci � k) � �k � exp(�k)

�
k�1

K

exp(�k)

(1)

Here, xi= denotes a row vector consisting of 1 and all p predictors
for observation i (i.e., x1i, . . . , xpi). This vector is multiplied by the

Table 2
Measures for Multilevel Regression Mixtures With Classes at
Both Level-1 and Level-2

Source of explained variance

Outcome variance

Total
L2 class
specific

L1L2 class
specific

• By predictors via marginal slopes

RT
2(fvm) Rh

2(fvm)• By predictors via class variation
in slopes

• By means via class variation

• By predictors via marginal slopes
RT

2(fv) Rh
2(fv)• By predictors via class variation

in slopes

• By predictors via marginal slopes RT
2(f) Rh

2(f) Rkh
2(f)

Note. L1 � Level-1; L2 � Level-2.
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column vector �k containing all regression coefficients specific to
class k (i.e., �0

k, �1
k, . . . , �p

k), with �0
k denoting the class-specific

intercept and each of �1
k, . . . , �p

k denoting class-specific slopes. The
residual, εi, is normally distributed with a class-specific variance,
�k. Note that in the current article we focus on within-class models
which are linear with normally distributed within-class residuals;
such normal mixtures are the most common kind of empirical
mixture applied (e.g., Sterba, Baldasaro, & Bauer, 2012). The
probability of membership in class k, p(ci � k), is denoted �k and
is modeled with class-specific multinomial intercepts, �1 . . . �K,
with �K constrained to 0 for identification. This model in Equation
(1) can be useful in modeling heterogeneity of regression coeffi-
cients across latent classes in single-level contexts (e.g., differing
effects of parental sensitivity on child social competence across
latent classes; Van Horn et al., 2015).

Data Model for a Multilevel Regression Mixture
With Classes Only at Level-2

Next, we consider a regression mixture for multilevel (clus-
tered) data which involves classes only at Level-2 (cluster-
level; e.g., Nagin, 2005; Vermunt & van Dijk, 2001). In this
model, the across-cluster distributions of slopes and intercepts
are not assumed to be normal (as in traditional multilevel
models); rather, they are distributed discretely across Level-2
classes.

Let i denote an observation within cluster j (where i � 1 . . . Nj and
j � 1 . . . J). Let dj denote the Level-2 (i.e., cluster-level) latent class
membership for cluster j, with classes ranging from h � 1 to H. We
can then model a univariate yij conditional on Level-2 latent class h
membership as follows:

yij�dj�h � xij
′ �

h
� εij

εij � N(0, �h)

p(dj � h) � �h � exp(�h)

�
h�1

H

exp(�h)

(2)

Note that this model expression differs from Equation (1) in
only two ways: there is now a j subscript denoting cluster, and
Level-2 classes are now denoted by h. Here, xij= denotes a row
vector consisting of 1 and all predictors for observation i within
cluster j. This vector is multiplied by the column vector �h

containing all regression coefficients specific to Level-2 class
h. The residual, εij, is normally distributed with a Level-2-class-
specific variance, �h. The probability of a cluster belonging to
class h, p(dj � h), is denoted �h and is modeled by a Level-2
class specific multinomial intercept, �h. For identification,
�H � 0.

Equation (2) can be useful in modeling heterogeneity of
regression coefficients across Level-2 latent classes (e.g.,
school-level latent classes, in an analysis where students are
nested within schools). This model is also widely applied by
psychologists in longitudinal contexts where the Level-1 unit is
time and the Level-2 unit is person (e.g., Broidy et al., 2003;
Mulvey et al., 2010). In this context, psychologists are inter-
ested in variation in growth trajectory coefficients across dis-
crete classes of persons.

R-Squared Measures for Regression Mixtures With
Classes at Only One Level

Having defined two kinds of regression mixtures with classes at
only one level (Equations 1 and 2), we now proceed to motivate
and then delineate R2 measures from Table 1 that apply to either
of these model specifications. That is, even though classes in
Equation (1) have very different substantive meanings than classes
in Equation (2), the same R2 measures from this section can be
applied in both modeling contexts. For simplicity, in this section
we will express and discuss these measures with reference to the
single-level regression mixture (i.e., Equation 1), but the formulas
can be modified for the context of only Level-2 classes by chang-
ing all k subscripts/superscripts to h subscripts/superscripts.

Total R-Squared Measures

First we consider: “Why would researchers be interested in a
total R2 for a regression mixture?” A total R2 is useful because it
provides a measure of the overall practical significance of a model.
When directly interpreting classes—wherein latent classes are
thought to represent distinct subpopulations (Titterington, Smith,
& Makov, 1985)—it may seem intuitive that only class-specific
R2’s would be of interest; however, it is still important to compute
a total R2 to obtain an omnibus understanding of how much
variance as a whole (i.e., across all latent classes) can be explained
by the model. Furthermore, when directly interpreting classes it
can also be useful to compare a total R2 with class-specific R2’s
(discussed later). For example, even if a model explains a large
proportion of variance for a given class, this does not imply that
the model explains a large proportion of the total variance. A total
R2 would naturally also be useful for researchers who are indi-
rectly interpreting latent classes. With an indirect interpretation,
classes are thought not to represent literal subpopulations; rather,
taken together, they are used to approximate some underlying
continuous distribution of effects (Titterington et al., 1985). In this
case, each class in isolation is not substantively meaningful and
thus a class-specific R2 may not be useful. Lastly, total R2’s can be
useful for comparison across studies with similar predictor sets,
even when the number of classes differs across studies. Comparing
class-specific R2’s would be more difficult in that this would
require the same class structure across studies.

Next we consider: “What are potential sources of explained
variance for a total R2 for a regression mixture?” Substantively,
researchers fitting mixtures often informally characterize results in
terms of one or more of three potential sources of explained
variance, but they describe these sources only heuristically and
qualitatively, not quantitatively (e.g., Halliday-Boykins, Heng-
geler, Rowland, & Delucia, 2004; Morin & Marsh, 2015; Sher,
Jackson, & Steinley, 2011; Sterba & Bauer, 2014). These three
potential sources of explained variance (given in Table 1) are:
variance explained (a) by predictors via their marginal (i.e.,
weighted across-class average) slopes; (b) by predictors via class
variation in slopes; and (c) by outcome means via class variation.
To better understand these three sources of explained variance,
consider a regression mixture analysis in which our outcome is
children’s social competence (e.g., Van Horn et al., 2015) and, for
ease of graphical representation, suppose we have only one cova-
riate, parental sensitivity. Now consider three hypothetical sets of
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results shown in Figure 1 Panels A–C. In each of these, explained
variance stems primarily from only one out of the three potential
sources. This is, of course, an overly simplistic situation, but
nevertheless is useful in conceptualizing and visualizing these
three potential sources of explained variance. In the first hypothet-
ical set of results, shown in Figure 1 Panel A, classes have virtually
identical intercepts and slopes; here, outcome variance can be
explained primarily by parental sensitivity via the marginal slope.
Substantively, one might infer there to be an overall positive effect
of parental sensitivity, with little heterogeneity across class. In the
second hypothetical set of results, in Figure 1 Panel B, the marginal
slope is near-zero and across-class outcome mean variation is near-
zero; here, outcome variance can be explained primarily by parental
sensitivity via across-class slope variation. One might now infer that
the effect of parental sensitivity depends heavily on class member-
ship. In contrast to both of these, in Figure 1 Panel C, the marginal
slope is near-zero and across-class slope variation is near-zero; here,
explained variance can be attributable primarily to across-class mean
variation4 in social competence. In this situation, one might conclude
there is no effect of parental sensitivity for any of the classes, but that
classes differ on the degree of child social competence. Comparing
these three conditions, each situation corresponds with a unique
interpretation, reflecting the fact that each source represents some-
thing substantively unique. Lastly, consider a more nuanced and
realistic situation, depicted in Figure 1 Panel D. Here, explained
variance can be attributable in part to all three of the aforementioned
components.

Now having understood these potential sources of explained vari-
ance, we can use this information to choose a total R2 measure for a
given study. In particular, an appropriate total R2 measure would only
count as explained variance those sources which the researcher deems
to be substantively meaningful. In realistic situations, all three sources
will likely be nonzero (as in Figure 1 Panel D) but, importantly, a
researcher can choose whether to count all or some of them as
explained variance. The following total R2 measures will be distin-
guished by whether three, two, or one of these sources are counted
toward explained variance, as shown in Table 1.

Total R2(fvm) measure. Suppose a researcher wanted to an-
swer the question: “What proportion of variance is explained by
predictors via their marginal slopes, by predictors via across-class
slope variation, and by variation in class means of the outcome?”
In other words, here all three sources depicted in Figure 1 would
be considered to explain variance. To address this research ques-
tion, we can compute R2(fvm) as:5

R2(fvm)
�

s�� � 2p�� � �.� ��.
s�� � 2p�� � �.� ��. � �. (3)

The denominator is an expression for the model-implied total
variance of yi (i.e., computed as a function of model parameter
estimates).6 A derivation for this denominator expression from the
data model is given in Appendix A.7 Each symbol in this denominator
expression is defined individually in Table 3. Here, a brief summary
of the terms in the denominator expression is provided. The first term
in the denominator, s=�, reflects outcome variance attributable to xi

via coefficient variation across class; 2p=� reflects outcome variance
attributable to xi via coefficient covariation across class; and �.=��.
represents outcome variance attributable to xi via marginal regression
coefficients.8 These marginalized regression coefficients, in �., are
averages of the class-specific coefficients, �k, each weighted by

class-probability �k (i.e., �k�1
K �k�k). The term �. reflects marginal-

ized residual variance (a weighted average of the class-specific resid-
ual variances). The numerator contains only s=�, 2p=�, and �.=��.,
leaving the marginalized residual variance as the unexplained portion
of variance.

Total R2(fv) measure. Suppose instead that a researcher wanted
to answer the question: “What proportion of variance is explained by
predictors via their marginal slopes and across-class slope variation?”
In other words, here only the first two sources depicted in Figure 1
(Panels A and B) would be considered to explain variance. Recall that
the R2(fvm) would consider mean outcome variation across classes to
be meaningful, explained variance. The difference between, for in-
stance, a low-mean class and a high-mean class could thus make the
R2(fvm) fairly large. To answer the above research question, however,
this mean variation needs to be partialed out, thus isolating the
influence of predictors via their slopes. To do so, we compute R2(fv) by
subtracting from R2(fvm) the proportion of variance explained by class
mean separation alone:

R2(fv)
�

s�� � 2p�� � �.� ��.
s�� � 2p�� � �.� ��. � �. 	

var�E�x�i �
k
� εi | ci � k��

s�� � 2p�� � �.� ��. � �.
�

v�� � 2r�� � �.� ��.
s�� � 2p�� � �.� ��. � �.

(4)

The numerator of the proportion of variance that is subtracted in
Equation (4) is equal to the variance of model-implied class means
from the fitted model. A detailed derivation of the numerator
expression in Equation (4) is given in Appendix B.9 The denom-
inator of Equation (4) is the model-implied total variance of yi,
unchanged from the calculation for R2(fvm) in Equation (3). In other
words, the proportion of variance that is subtracted in Equation (4)
is an analytically derived R2 for an intercept-only regression mix-
ture with class-varying intercepts fixed to the model-implied
means of each class in the fitted model. This subtraction results in
an equation with several new terms: v= is a row vector of variances
of each element of xi= across observations and r= is a row vector of
pairwise covariances of all nonredundant elements of xi= across
observations.10 Thus, the R2(fv) expression is similar to R2(fvm),
only replacing s= with v= and replacing p= with r=.

4 If all predictors are centered (grand mean centered for Level-1 or
Level-2 predictors, or cluster-mean centered for Level-1 predictors) what
we are referring to as across-class mean separation on the outcome can also
be interpreted as across-class intercept separation on the outcome.

5 In the superscript of R2(fvm), “m” reflects across-class mean variation, “v”
reflects across-class slope variation, and “f” reflects marginal slopes (which is
somewhat similar conceptually to a fixed component of the slopes).

6 In other modeling contexts there is a precedent for computing R2

measures using a model-implied total outcome variance in the denominator
(e.g., Lahuis et al., 2014; Snijders & Bosker, 2012).

7 The Appendix A derivation is provided in the context of a more general
regression mixture model that allows classes at both Level-1 and Level-2,
presented later in Equation (7). The present model is a constrained special case.

8 For details about how these definitions apply to the first element in xi,
see examples in Table 3.

9 The Appendix B derivation is provided in the context of a more general
regression mixture model (allowing classes at both Level-1 and Level-2),
presented later in Equation (7). The present model is a constrained special case.

10
For instance, if x i� � �1 x1i x2i � then v� � �0 var�x1i� var�x2i�� and

r� � �0 0 cov�x1i, x2i��.
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Total R2(f) measure. Now suppose a researcher wanted to
answer the question: “What proportion of variance is explained by
predictors via their marginal slopes?” In other words, here only the
first source depicted in Figure 1 (Panel A) would be considered to
explain variance. To address this research question, we compute
R2(f). It could be the case, for instance, that on average (i.e.,
pooling across-class), the predictors have a large impact, leading to
a large R2(f). Alternatively, a low R2(f) may indicate that meaning-
ful relationships between the outcome and the predictors are ap-
parent only when considering heterogeneity in the regression co-
efficients. We represent R2(f) as:

R2(f)
� �.� ��.

s�� � 2p�� � �.� ��. � �. (5)

The numerator of Equation (5) indicates that only the variance
explained via the marginalized regression coefficients counts to-
ward predicted variance. This R2(f) is akin to the proportion of
variance that would be explained had a traditional (nonmixture)
linear regression model been fit.

Class-Specific R-Squared Measure

In addition to these total R2’s, we next consider: “Why would
researchers be interested in a class-specific R2 for a regression
mixture?” A class-specific R2 could be particularly useful when

directly interpreting classes. With a class-specific R2, one can
determine the proportion of variance explained for each sub-
population, and differences between these class-specific R2

measures may reflect substantively meaningful group differ-
ences. Note that, unlike for a total R2, there is no option to
choose among alternate sources of explained variance for a
class-specific R2 (given that there is no across-class heteroge-
neity in either means or slopes within a single class). Instead,
for a class-specific R2, there is only one source of explained
variance, as described below.

Class-specific Rk
2(f) measure. Suppose a researcher wanted to

answer the question: “What proportion of variance in class k is
explained by the predictors?” To address this research question, we
compute Rk

2(f). Differences in Rk
2(f)’s across k � 1 . . . K could

provide evidence to support the idea that the predictors better
explain the outcome in some classes compared to others. Rk

2(f) is
given as:

Rk
2(f) � 
k���

k


k���
k
� �

k (6)

The denominator of Equation (6) is an expression for the model-
implied total variance of yi within class k. Because the denomina-
tor expression is specific to class k, there are no terms reflecting
across-class variation (in means or in slopes). As mentioned

Figure 1. Hypothetical regression mixture wherein parental sensitivity predicts child social competence:
Illustrating potential sources of explained variance. Each panel depicts a hypothetical set of results from a
three-class regression mixture model with equal class proportions. Outcome variance is explained primarily by
the following sources: by parental sensitivity via the marginal slope (Panel A), by parental sensitivity via
across-class slope variance (Panel B), by social competence means via across-class variation (Panel C), and by
the combination thereof (Panel D).
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earlier, �k is a vector of regression coefficients specific to class
k, and �k is the residual variance in class k. The � matrix retains
the same definition from Table 3 because, as in nonmixture
regression models, predictors are by-definition exogenous in
mixture regression models (see Sterba, 2014 for a detailed
review); hence their distributions are not class-specific. Finally,
the numerator of Equation (6) is the variance in class k ex-
plained by predictors, thus excluding the unexplained, residual
variance in class k, �k.

Simulated Demonstrations of Relationships Among
R-Squareds for Regression Mixtures With

Classes at Only One Level

With these R2’s now delineated, we graphically demonstrate
some key points regarding how parameter values differentially
influence each measure. For simplicity of visualization, these
illustrations involves a single-level regression mixture with one
centered predictor (xi) with unit variance, K � 2 latent classes, and
unit class-specific residual variances. In Figures 2, 3, and 4, each
panel shows two class-specific regression lines, with class labels
beside each line.

Manipulating the three potential sources of explained
variance. We first illustrate how increasing the marginal slope
influences the suite of R2 measures. Going from Figure 2 Panel A
to Panel B, the marginal slope is increased (by increasing each

class-specific slope by the same amount, holding all else constant).
This increased marginal slope leads to an increase for all of the
total R2 measures: R2(fvm), R2(fv), and R2(f). This reflects the prop-
erty that variance explained by the predictor via the marginal slope
is considered explained variance in each of the three measures.

We next illustrate how increasing across-class slope variation
influences the suite of R2’s. Going from Figure 2 Panel A to Panel
C, the across-class slope variance increases, with all else held
constant. Because across-class slope variation is considered ex-
plained variance in both R2(fvm) and R2(fv), these values increase
from Panel A to C. However, because across-class slope variation
is considered residual variance in R2(f), this value decreases.

Lastly, we illustrate how increasing across-class mean outcome
variation influences the suite of R2’s. Going from Figure 2 Panels
A to D, the across-class mean separation increases while all else is
held constant. Because class mean variation is considered ex-
plained variance in R2(fvm) but residual variance in R2(fv) and R2(f),
this increased class mean variation leads to an increased R2(fvm) but
a decreased R2(fv) and R2(f).

Relating class-specific R-squareds to total R-squareds.
Next, we consider the relationship between the total R2’s and
the class-specific R2’s. It is important to understand that if a
researcher knows only the class-specific R2 values, Rk�1

2 and
Rk�2

2 , there is not a way to know what the total R2 values
(R2(fvm), R2(fv), and R2(f)) are; hence, it is useful to consider the

Table 3
Definitions of Terms in Expression for Model-Implied Total Outcome Variance

s= Definition: Row vector of means of squares of each element of xi=.
Example: if x i

′ � �1 x1i x2i� then s� � �1 x1i
2� x2i

2� �
� Definition: Column vector of weighted variances (across class) of regression coefficients.

Example: if �k � �

0

k


1
k


2
k 	 then � � �

vark�
0
k�

vark�
1
k�

vark�
2
k�
	 � �

�
k�1

K

�k�
0
k�2 	 
�

k�1

K

�k
0
k�2

�
k�1

K

�k�
1
k�2 	 
�

k�1

K

�k
1
k�2

�
k�1

K

�k�
2
k�2 	 
�

k�1

K

�k
2
k�2	

p= Definition: Row vector of means of pairwise products of all nonredundant elements of xi=.
Example: if x i

′ � �1 x1i x2i � then p� � �x1i� x2i� x1ix2i
� �

� Definition: Column vector of weighted covariances (across class) of regression coefficients corresponding to the elements in p=.

Example: if �k � �
0
k


1
k


2
k 	 then � � �covk�
0

k, 
1
k�

covk�
0
k, 
2

k�
covk�
1

k, 
2
k� 	 � �

�
k�1

K

�k
0
k
1

k 	 �
k�1

K

�k
0
k �

k�1

K

�k
1
k

�
k�1

K

�k
0
k
2

k 	 �
k�1

K

�k
0
k �

k�1

K

�k
2
k

�
k�1

K

�k
1
k
2

k 	 �
k�1

K

�k
1
k �

k�1

K

�k
2
k
	

�. Definition: Marginalized residual variance (weighted average of class-specific residual variances).

Example: �
.

� �
k�1

K

�k�
k

�. Definition: Marginalized regression coefficients (weighted average of class-specific coefficients).

Example: �
.

� �
k�1

K

�k�k

� Definition: Covariance matrix of all elements of xi= across observations i.

Example: if x i
′ � �1 x1i x2i � then � � �0

0 vari�x1i�

0 covi�x1i, x2i� vari�x2i�



Note. Examples are written specifically for a single-level mixture. However, definitions also apply to a multilevel mixture with classes
only at Level-2 if xij= is substituted for xi=. Definitions apply to a multilevel mixture with classes at both levels if xij=, �.., and �.. are
substituted for xi=, �., and �..
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set of R2’s together. We provide demonstrations of several
points related to this concept.

A first point is that all total R2’s can differ even when the
class-specific R2’s are the same; this point is illustrated by com-
paring Figure 2 Panels A and D. A second point is that an
increased class-specific R2 need not imply that every kind of total
R2 is also larger. This point is illustrated in Figure 3, wherein
increasing Rk�1

2 (by increasing the absolute value of the slope in
Class 1, holding all else equal), can either increase R2(f) (compar-
ing Figure 3 Panel A vs. B) or decrease R2(f) (comparing Figure 3
Panel A vs. C). The Rk�2

2 remains constant, however, because
manipulating the model-implied variance of predicted scores or
model-implied total variance within k � 1 does not affect those
quantities for k � 2.

Different patterns of class-specific parameters can yield
identical total R-squareds. A final, important point is illus-
trated in Figure 4: that substantively different patterns of class-

specific parameters can yield the same total R2. In Figure 4, Panels
A and B yield the same R2(fvm), whereas Panels A and C yield the
same R2(f). This is despite the fact that the conditions in Figure 4
Panels B or C correspond with very different substantive interpre-
tations of class-specific parameters than Figure 4 Panel A. In Panel
A, for instance, an interpretation of class specific parameters might
be that “there is heterogeneity across classes in terms of the slope
of yi on xi, but no heterogeneity in means of yi across class.” In
contrast, Panel B would yield an interpretation of “there is no
heterogeneity in the effect of xi, but there is heterogeneity in the
means of yi.” Looking at only a single total R2, it would not be
possible to distinguish these interpretations. For this reason, we
encourage researchers to consider the entire suite of R2 mea-
sures together. Furthermore, to have a more precise understand-
ing of the sources of variance, a researcher can examine the
decompositions of explained variance, described in the next
section.

Figure 2. Simulated demonstration: Consequences for total R2’s of manipulating the three sources of explained
variance in a regression mixture with classes at only one level. Compare Panel A with each of Panels B–D. Each
line denotes a class-specific regression line for a K � 2 single-level regression mixture. Comparing Panel A with
Panels B, C, and D demonstrates, respectively, the effects of increased marginal slope, increased across-class
slope variance, and increased across-class mean outcome variance on the total R2(fvm), R2(fv), R2(f). (green � R2

increased, red � R2 decreased, compared with Panel A). Note that for simplicity class proportions are held equal
(here and in Figures 3, 4, 5, and 7), but the same patterns would hold regardless. See the online article for the
color version of this figure.
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Decomposing Explained Variance in R-Squareds for
Regression Mixtures With Classes at Only One Level

In this section we more explicitly consider how the three total
R2’s are related by showing how they can be analytically decom-
posed into one, two, or three components of explained variance (all

of which were depicted in Figure 1). Researchers can use these
relations to inform what they wish to interpret as substantively
meaningful explained variance, and thus decide which R2 to im-
plement. Furthermore, each distinct component may have its own
useful substantive interpretation.

Figure 3. Simulated demonstration: Relating class-specific R2’s to total R2’s in a regression mixture with
classes at only one level. Compare Panel A with each of Panels B and C. Each line denotes a class-specific
regression line for a K � 2 single-level regression mixture. Bold R2 results are compared and discussed in the
article. See the online article for the color version of this figure.

Figure 4. Simulated demonstration: Substantively different patterns of class-specific regression equations can yield
the same total R2 in a regression mixture with classes at only one level. Compare Panel A with each of Panels B and
C. Each line denotes a class-specific regression line for a K � 2 single-level regression mixture. Bold R2 results are
compared and discussed in the article. See the online article for the color version of this figure.
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First consider R2(fvm). Table 4 shows how it can be decomposed
into three distinct components: (a) the contribution of predictors
via their marginal slopes; (b) contribution of predictors via across-
class variation in slopes,11 and (c) the contribution of outcome
means via across-class variation. In contrast, Table 4 shows that
R2(fv) can be decomposed into only the first two of these compo-
nents—reflecting the fact that R2(fv) involves partialing out the
contribution of across-class variation in means. Finally, Table 4
shows that R2(f) consists of only the first component because it
involves partialing out both across-class variation in means and
across-class variation in slopes. Note that a decomposition is not
relevant for the class-specific R2, Rk

2, because there is no across-
class variation to partial out, leaving only marginal slopes to
consider (similar to the R2(f)).

Table 4 shows how the components of each R2 can be separately
obtained from manipulations of the formulas described earlier. Our
R (R Core Team, 2016) software function (described later) com-
putes these quantities and produces bar charts that allow a visual
illustration of these decompositions. These bar charts are provided
for an empirical example in the next section, in which we dem-
onstrate the practical utility of obtaining such a decomposition.

Empirical Example 1

Here we present an empirical example involving a single-level
regression mixture predicting average professor salary for private
colleges in the United States (i.e., each datapoint is a college). Our
data set consists of N � 693 private colleges compiled for the 1995
Data Analysis Exposition of the American Statistical Associa-
tion.12 In this regression mixture model, we are substantively
interested in exploring the heterogeneity of effects of three pre-
dictors that have been related to faculty compensation in prior
nonmixture modeling studies (e.g., Fairweather, 1996; Langton &
Pfeffer, 1994). These predictors are: the number of students ac-
cepted divided by the number of applications received (admit),
student-to-faculty ratio (sfratio), and percentage of faculty with a
Ph.D. (perPhD). We allowed all slopes and intercepts to vary by
latent class and, for parsimony, constrained the residual variances
equal.

Using Mplus to estimate the model and the Bayesian Informa-
tion Criterion (BIC) to select the number of classes (see, e.g.,
Nylund, Asparouhov, & Muthén, 2007), we found evidence for
K � 3 latent classes as best fitting. Parameter estimates and
standard errors for the K � 3 solution are provided in online

supplemental Appendix A and patterns of significant results are
summarized here. The first class (25% of colleges) consisted of
schools with low mean salaries wherein admit and sfratio posi-
tively predicted salary. The second class (60% of colleges) con-
sisted of schools with medium mean salary wherein admit and
sfratio negatively predicted salary and perPhD positively predicted
salary. The third class (15% of schools) consisted of schools with
high mean salaries wherein admit negatively predicted salary and
perPhD positively predicted salary. Comparing the three classes,
k � 1 might reflect schools with limited endowments (thus lower
average salary) which allocate more funds toward professor salary
as more money is obtained via increasing admissions and class
size. Regional colleges (e.g., Albertus Magnus College) often had
highest posterior probabilities of assignment to class k � 1. In
contrast, national liberal arts colleges (e.g., Swarthmore College)
often had highest posterior probabilities of assignment to class k �
2. Class k � 2 might reflect schools that strongly value teaching
quality and compensate commensurate with teaching. Schools in
this class that have better teaching atmospheres (via smaller class
sizes, more educated professors, and a more selective student
body) compensate their professors accordingly. R1 research uni-
versities (e.g., California Institute of Technology) had highest
posterior probabilities of assignment to the final class, k � 3. Class
k � 3 schools may similarly value quality teaching, but may have
less focus on teaching atmosphere and compensate professors
commensurate with say, research output. Though not hypothesized
a priori, these classes might be conceptually labeled: regional,
liberal arts, and research institution classes.

Researchers often summarize the “distinctness” of classes using
qualitative descriptions of heterogeneity, such as “there is some
across-class heterogeneity in the effects of the predictors,” and
“there is some across-class heterogeneity in means of salary.”

11 Note that, in the context of uncentered predictors, across-class slope
variation can influence model-implied across-class mean variation. Hence
the need to clarify that this second component, class-specific slope varia-
tion, accounts for explained variance due to variation in class-specific
slopes above and beyond the effect that this slope variation has on model-
implied mean variation.

12 This data set was compiled using information from the 1995 U.S.
News & World Report’s Guide to America’s Best Colleges and the
American Association of University Professors (AAUP) annual faculty
salary survey of American colleges and universities. For more detail see
https://ww2.amstat.org/publications/jse/datasets/usnews.txt.

Table 4
Decomposing Variance Explained in Total R2 for Single-Level Regression Mixtures or Multilevel
Regression Mixtures With Classes Only at Level-2

R
2�fvm�

� �contribution of predictors
via marginal slopes � � �contribution of predictors

via class variation in slopes � � �contribution of means
via class variation �

� � Equation�5� � � � Eq�4� 	 Eq�5� � � � Eq�3� 	 Eq�4� �

R
2�fv�

� �contribution of predictors
via marginal slopes � � �contribution of predictors

via class variation in slopes �
� � Equation�5� � � � Eq�4� 	 Eq�5� �

R
2�f�

� �contribution of predictors
via marginal slopes �

� { Equation(5) }
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However, these descriptions are not too informative in the absence
of a quantitative indication of how much variance in salary can be
explained by each source. Inputting the estimates obtained from
Mplus into our R function regMixR2 (described in the Discussion
section) yields all relevant R2 measures and decompositions. These
decompositions (see Table 4) supplement the qualitative descrip-
tions by quantifying the proportion of variance explained by each
distinct component. Hence, we can more precisely state that the
smallest proportion of the total variance in college-provided salary
is attributable to predictors via between-class differences in their
slopes (15%), followed by that attributable to between-class dif-
ferences in the means of salary (21%); the largest proportion
(47%) is explained by the predictors via their marginal slopes. This
quantitative decomposition is illustrated in a bar chart in Figure 5,
which communicates the importance of considering heterogeneity
across subpopulations of schools when assessing effects on faculty
salary.

Researchers interested in all three components of explained
variance may report R2(fvm) � .83 as their primary summary
measure. However, if they are more interested in the first and third
components, they may report R2(fv) � .62. If they are, instead,
solely interested in the third component, across-class average
effects, they could report R2(f) � .47.

Lastly, we consider the class-specific R2s. For the three classes,
these values are Rk�1

2(f) � .26, Rk�2
2(f) � .82, and Rk�3

2(f) � .86. These
measures provide evidence that the three predictors are more impor-
tant sources of explained variance for the liberal arts college class and
the research university class, as compared with the regional college
class.

Data Model for Multilevel Regression Mixture With
Classes at Both Level-1 and Level-2

We now consider a more general multilevel regression mixture
that allows latent classes at both Level-1 and Level-2 (e.g., Ver-
munt, 2010; Vermunt & Magidson, 2005). Let dj denote Level-2
(i.e., cluster-level) latent class membership for cluster j, and let cij

denote Level-1 latent class membership for observation i in cluster
j. Level-2 classes range from h � 1 to h � H, whereas Level-1
classes range from k � 1 to k � K. This yields class-combinations
ranging from kh � 11 to kh � KH. Each class-combination can be
seen as a Level-1 class that is nested within a given Level-2
class.13 We can then model a univariate yij conditional on class-
combination membership.

yij�cij�k,dj�h � xij
′ �

kh
� εij

εij � N(0, �kh)

p(dj � h) � �h �
exp(�h)

�
h�1

H

exp(�h)

p(cij � k | dj � h) � �k�h �
exp(�k � �kh)

�
k�1

K

exp(�k � �kh)

(7)

Here, xij= denotes a row vector consisting of 1 and all predictors
for observation ij. This vector is multiplied by the column vector
�kh containing all regression coefficients specific to class-
combination kh. The residual, εij, is normally distributed with a
class-combination-specific variance, �kh. The probability of cluster
j belonging to Level-2 class h, p(dj � h), is denoted �h and is
modeled by a Level-2 class-specific multinomial intercept, �h.
The conditional probability of observation i in cluster j belonging
to Level-1 class k, given that their cluster is a member of Level-2
class h, is denoted �k|h and is modeled by a multinomial intercept,
�k, and multinomial slope, �kh. The following are constrained to 0
for identification: �H, �K, �kH for all k, and �Kh for all h.

Note that, in this general specification, a given k need not be
comparable across Level-2 class (e.g., kh � 11 may not be similar
to kh � 12). It is, however, possible to place constraints on the
model to make each k comparable (i.e., have equal parameter
estimates) across h (i.e., �q

k1 � . . . � �q
kH and �k1 � . . . � �kH for

each k and q; see, e.g., Lukočienė et al., 2010). In this more
constrained specification, Level-2 classes are distinguished solely
by varying Level-1 class proportions within Level-2 class. Addi-
tionally, it is possible to constrain particular Level-1 class param-
eters equal within a given Level-2 class (i.e., �q

1h � . . . � �q
Kh). The

computation of R2 measures we describe in subsequent sections
applies to any of these constrained or unconstrained specifications.
Though for more constrained specifications computations could be
slightly simplified (e.g., computing weighted averages across
Level-2 classes rather than across all class-combinations), we
continue to reference the Equation (7) specification for generality.

13 Notation used here corresponds to the common specification wherein
each Level-2 class has the same number of Level-1 classes nested within
it. If this is not the case, K would be replaced by Kh. Note that our software
tool allows for the latter scenario where K differs across h.

Figure 5. Empirical Example 1 results: Decompositions of total R2’s for
a fitted single-level regression mixture. Equations corresponding to these
decompositions are given in Table 4. See the online article for the color
version of this figure.
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R-Squared Measures for Multilevel Regression
Mixtures With Classes at Both Level-1 and Level-2

We now proceed to delineate seven R2 measures that apply to
the model in Equation (7) with classes at both Level-1 and Level-2.
An overview of these measures is given in Table 2. Note that some
measures in Table 2—the total R2’s and class-combination R2’s—
have analogues in the earlier-presented Table 1 for simpler mix-
tures, but, as we will show, both require modified computation
and, furthermore, the total R2’s can now be decomposed in new
ways. The other kind of measure in Table 2—Level-2 class-
specific R2’s—have no exact analog in Table 1.

Total R-Squared Measures

For the multilevel regression mixture with classes at both levels,
the expressions for total R2’s parallel the earlier-presented Equa-
tions (3), (4), and (5) for simpler regression mixtures with classes
at only one level—with two exceptions. These exceptions are that
marginalized regression coefficients are now denoted �

.. and the
marginalized residual variance is now denoted �... These are both
weighted averages across all K 	 H class-combinations. For
instance, �

..
� �h�1

H �k�1
K �kh�

kh, where �kh � �k|h�h (i.e.,
class-combination probability). Other terms in Equations (8), (9),
and (10) retain the same definitions as in Table 3. As before, the
following total R2’s are distinguished by the sources in Table 2.

Total RT
2(fvm) measure. To answer the question: “What pro-

portion of variance is explained by class-combination variation in
outcome means as well as by predictors via their marginal slopes
and their across-class-combination variation in slopes?” a re-
searcher could compute RT

2(fvm):

RT
2(fvm) �

s�� � 2p�� � �..� ��..
s�� � 2p�� � �..� ��.. � �.. (8)

Note that, comparing Equations (8) and (3), the difference is that
Equation (8) contains double-dot superscripts rather than single-
dot superscripts, reflecting the fact that Equation (8) involves
marginalization across both Level-1 and Level-2 class. The full
derivation of the total model-implied variance in the denominator
of Equation (8) is given in Appendix A.

Total RT
2(fv) measure. To instead answer the question: “What

proportion of variance is explained by predictors via their marginal
slopes and their across-class-combination variation in slopes?” a
researcher could compute RT

2(fv):

RT
2(fv) �

s�� � 2p�� � �..� ��..
s�� � 2p�� � �..� ��.. � �..

	
var�E�xij

′ �kh � εij | cij � k, dj � h��
s�� � 2p�� � �..� ��.. � �..

�
v�� � 2r�� � �..� ��..

s�� � 2p�� � �..� ��.. � �..

(9)

RT
2(fv) is obtained analogously to Equation (4). A full derivation of

the numerator of this Equation (9) expression is provided in
Appendix B.

Total RT
2(f) measure. A researcher now posing the question:

“What proportion of variance is explained by predictors via their
marginal slopes?” could compute RT

2(f):

RT
2(f) �

�..� ��..
s�� � 2p�� � �..� ��.. � �.. (10)

Level-2 Class-Specific R-Squared Measures

A researcher can ask the three research questions described
above but isolate the proportion of variance within a given Level-2
class h. To do so, the researcher would compute three separate R2

measures for a given Level-2 class h; these measures differ in what
types of heterogeneity across the K Level-1 classes nested within
h are considered explained variance. The expressions for these
three Level-2 class-specific R2’s, in Equations (11)–(13) below,
parallel the earlier-presented total R2’s in Equations (8)–(10)—
with three exceptions. A first exception is that the denominator of
Equations (11)–(13) now contains the model-implied total vari-
ance of yij within Level-2 class h. A second exception is that the
new superscript ·h indicates marginalized across all Level-1

classes within h. As such, the �·h vector in Equations (11)–(13) con-
tains marginal Level-2 class regression coefficients (i.e., �·h �

�k�1
K �k|h�

kh) and �·h denotes the marginal Level-2 class residual
variance. A final exception is that the �h vector contains variances
of all regression coefficients across k within h, whereas �h con-
tains their covariances across k within h. Other terms in Equations
(11)–(13) retain the same definitions as in Table 3.

Level-2 class-specific Rh
2(fvm) measure. Suppose a researcher

asked: “For Level-2 class h, what proportion of variance is explained
by across-k variation in outcome means as well as by predictors via
their marginal h-class slopes and their across-k variation in slopes?”
This research question is addressed by computing Rh

2(fvm), defined as
the proportion of variance explained within Level-2 class h, without
partialing out any Level-1 class mean or slope variation within class
h. In Equation (11), Rh

2(fvm) is computed as:

Rh
2(fvm) �

s��h
� 2p��

h
� �·h���·h

s��h
� 2p��

h
� �·h���·h � �·h

(11)

Level-2 class-specific Rh
2(fv) measure. A researcher may also

want to know: “For Level-2 class h, what proportion of variance is
explained by predictors via their marginal h-class slopes and their
across-k variation in slopes?” To address this research question, we
compute Rh

2(fv), which, unlike the Rh
2(fvm) described above, does not

allow for mean variation across Level-1 class within Level-2 class
to contribute to explained variance. Similar to Equation (9), we
subtract from Rh

2(fvm) the variance of model-implied means of each
class-combination nested within h, divided by the total model-
implied variance of yij within class h.14

Rh
2(fv) �

s��h
� 2p��

h
� �·h���·h

s��h
� 2p��

h
� �·h���·h � �·h

	
vark�h�E�xij

′ �
kh

� εij | cij � k, dj � h��
s��h

� 2p��
h

� �·h���·h � �·h

�
v��

h
� 2r��

h
� �·h���·h

s��h
� 2p��

h
� �·h���·h � �·h (12)

14 The notation vark|h indicates taking the variance across Level-1 classes
within Level-2 class h.

445REGRESSION MIXTURE R-SQUARED MEASURES



Level-2 class specific Rh
2(f) measure. To address the question:

“For Level-2 class h, what proportion of variance is explained by
predictors via the marginal h-class slopes?” one can compute Rh

2(f).
This Rh

2(f) measures the proportion of variance explained within
Level-2 class h, partialing out all mean and slope variation across
Level-1 classes within class h.

Rh
2(f) �

�·h���·h

s��h � 2p��h � �·h���·h � �·h
(13)

Class-Combination-Specific R-Squared Measure

Earlier, in Equation (6), we presented a class-specific R2 for a
mixture with classes at a single level. Its analog, when classes exist
at two levels and each Level-2 class has a distinct set of Level-1
classes nested within it, is a class-combination-specific R2. If, as
mentioned previously, researchers want to constrain all within-
Level-1 class coefficients equal across Level-2 classes (for parsi-
mony or to ensure comparability of interpretation across Level-2
classes) the class-combination-specific R2 would instead be a
Level-1 class-specific R2 and would be interpreted in the manner of
Equation (6). Note that with this more constrained specification,
the interpretation of the total R2’s and the Level-2 class-specific
R2’s would be unchanged.

Lastly, a researcher might pose the question: “For a particular
class-combination kh, what proportion of variance is explained by
predictors?” To address this, we compute Rkh

2(f). Its computation in-
volves dividing the model-implied variance of predicted scores within
a given kh by the model-implied total variance of yij within kh.

Rkh
2(f) � 
kh���

kh


kh���
kh

� �kh
(14)

This Rkh
2(f) can be useful to assess how the proportion of variance

explained by the predictors differs across the latent class combi-
nations.

Simulated Demonstrations of Relationships Among
R-Squareds for Multilevel Regression Mixtures

With Classes at Level-1 and Level-2

We have now covered seven R2 measures that are applicable to
multilevel regression mixtures with classes at both levels. It is
important to understand the relationships among these R2’s, rather
than simply understanding the meaning of each in isolation. We
now illustrate these relationships by showing how they are affected
by different patterns of parameter values, as we similarly demon-
strated for single-level regression mixtures. For simplicity of vi-
sualization, these illustrations involve a multilevel regression mix-
ture with one (grand or cluster-mean) centered predictor, xij, and
K � 2 Level-1 latent classes and H � 2 Level-2 latent classes. As
before, all class-combination residual variances are equal to 1. In
Figures 6–7, each panel shows K 	 H � 4 class-combination-
specific regression lines, with class-combination labels beside each
line.

Manipulating potential sources of explained variance. In
Figure 6 we manipulate each of the components, one at a time, that
could contribute to a total R2; the consequences for the suite of R2

measures are illustrated by comparing Panel A to each of Panels
B–F. We first consider how increasing the marginal slope influ-

ences the suite of R2 measures. Comparing Figure 6 Panel A to
Panel B, we increased the marginal slope by increasing each
class-combination slope by the same amount, holding all else
constant. Each total R2 increases because variance attributable to
predictors via marginal slopes is explained variance in all mea-
sures.

We next consider the effect of increasing across-class-combination
slope variance. There are now two ways of accomplishing this.
First, as shown in Figure 6 Panel C, we can increase between
Level-2 class slope variance, holding within Level-2 class slope
variance constant. In other words, when comparing Figure 6 Pan-
els A and C, we changed the heterogeneity between only Level-2
classes—differences between Level-1 classes within each Level-2
class remain the same. Alternatively, as shown when comparing
Figure 6 Panels A and D, we can increase within Level-2 class
slope variance (for simplicity, just done for h � 2) holding
between Level-2 class slope variance constant. Either manipula-
tion has the same effect of increasing RT

2(fvm) and RT
2(fv) while

decreasing RT
2(f)—reflecting the fact that this source is explained

variance in the former two measures and residual variance in the
latter measure.

Lastly, we consider the effect of increasing across-class-
combination mean outcome variation. There are now two ways of
increasing mean variation. We can increase between Level-2 class
mean variance holding all else constant, as demonstrated by com-
paring Figure 6 Panels A and E. We can instead increase within
Level-2 class mean variance (here, only in h � 1), as demonstrated
by comparing Figure 6 Panels A and F. Either manipulation serves
to increase the RT

2(fvm) but decrease RT
2(fv) and RT

2(f), reflecting the
property that this source is explained variance in RT

2(fvm) but resid-
ual variance in RT

2(fv) and RT
2(f).

Different patterns of class-combination parameters can
yield identical total (or Level-2) R-squareds. As a separate
demonstration, in Figure 7, we show how very different patterns of
class-specific parameters can still yield the same total R2. We
provide this demonstration for one total R2, RT

2(fvm), but this prin-
ciple could also be demonstrated for RT

2(fv) or RT
2(f). In Figure 7,

Panels A–C have the exact same total RT
2(fvm) but their regression

coefficients correspond to different substantive interpretations. For
instance, Figure 7 Panel A corresponds to an interpretation of
“heterogeneity of the effect of xij across class-combinations, but no
heterogeneity in means of yij.” In contrast, Panel B corresponds to
an interpretation of “no heterogeneity of the effect of xij across
class-combinations, but heterogeneity in means of yij.” A more
complex situation is illustrated in Panel C, wherein within h � 1
there is heterogeneity in means only, but within h � 2 there is
heterogeneity in slopes only.

Likewise, it is also the case that substantively different patterns
of Level-1 parameters within a given Level-2 class can yield the
same Level-2 class-specific R2. We demonstrate this for one
Level-2 class-specific R2, Rh�1

2(fvm), but note that it could be demon-
strated for the Rh�1

2(fv) and Rh�1
2(f) . Figure 7 Panels A versus C have the

same Rh�1
2(fvm) for Level-2 class h � 1 (despite heterogeneity in

slopes but not means in Panel A and heterogeneity in means but
not slopes in Panel C).

Overall, Figure 7 illustrates that a total R2 and a Level-2 class-
specific R2 are omnibus statistics that can reflect many different
patterns of class-combination effects. Thus, it is our recommen-
dation that researchers examine all types of R2’s in juxtaposition to
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each other to understand what type of variance one’s model
explains. Furthermore, researchers can again compute and report a
decomposition of explained variance—described in the next sec-
tion—to get a more precise understanding of the sources of ex-
plained variance.

Decomposing Explained Variance in R-Squareds for
Multilevel Regression Mixtures With Classes

at Level-1 and Level-2

Earlier, for regression mixtures with classes at only one level,
we analytically decomposed total R2’s into three meaningful com-
ponents that were separately interpreted and portrayed using bar
charts. Now, in the context of mixtures with classes at both levels,
we extend these developments in two new ways: We decompose
both Level-2 class-specific R2’s as well as total R2’s and, further-
more, we decompose total R2’s into five components of explained
variance.

The Level-2 class R2’s can be decomposed into three, two, or
one distinct components of explained variance. This decomposi-
tion distinguishes the R2’s based on what specific factors constitute
explained variance versus residual variance. Table 5 shows how
the Rh

2(fvm) is decomposed into three distinct components: (a) con-
tribution of predictors via their marginal Level-2 slopes; (b) con-

tribution of predictors via variation in Level-1 class slopes within
Level-2 class h; and (c) the variation in Level-1 class means within
Level-2 class h. Table 5 shows how the Rh

2(fv) can be decomposed
into the first two of these components, and how Rh

2(f) consists of
only the first component. Furthermore, Table 5 shows how these
components can be obtained from earlier-presented formulas. Ta-
ble 5 clarifies that, for instance, any variation in Level-1 class
means within Level-2 class h contributes to explained variance in
Rh

2(fvm) but contributes to unexplained, residual variance in Rh
2(fv)

and Rh
2(f). Table 5 also clarifies that variation in Level-1 class slopes

within Level-2 class h contributes to explained variance in Rh
2(fvm)

and Rh
2(fv) but not Rh

2(f). As was the case for single-level regression
mixtures, the following relationship will always hold: Rh

2(f) �

Rh
2(fv) � Rh

2(fvm).
The total R2’s for the multilevel mixture with classes at both

levels can also be decomposed, but into five distinct components.
Unlike previous decompositions, we can now consider both within
Level-2 class mean and slope variance as well as between Level-2
class mean and slope variance, as demonstrated in the previous
section. Specifically, Table 6 shows how RT

2(fvm) can be decom-
posed into the: (a) contribution of predictors via marginal slopes;
(b) contribution of predictors via between-h slope variance (i.e.,
variance in marginal Level-2 class slopes); (c) contribution of

Figure 6. Simulated demonstration: Consequences for total R2’s of manipulating the five sources of explained
variance for multilevel regression mixture with classes at both levels. Compare Panel A with each of Panels B–F.
Each line denotes a class-combination-specific regression line; the two dark lines are for Level-2 Class 1 and the
two light lines are for Level-2 Class 2. (green � R2 increased, red � R2 decreased, compared with Panel A; L2 �
Level 2). See the online article for the color version of this figure.
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predictors via within-h slope variance (i.e., variance in Level-1
class slopes within Level-2 class); (d) contribution of outcome
means via between-h variation; and (e) contribution of outcome
means via within-h variation. In contrast, Table 6 shows that RT

2(fv)

can be decomposed into only the first three of these components,
whereas RT

2(f) consists only of the first component.
As shown in Table 6, these components can be obtained using

formulas described earlier, together with the following two
additional formulas. These two additional formulas are needed
to distinguish within Level-2 class variation from between
Level-2 class variation. Specifically, the Table 6 decomposi-
tions require knowing the proportion of variance explained
when using marginal Level-2 class regression coefficients to
compute predicted scores, which can be denoted using previ-
ously defined terms as:

s�
� 	 �
h�1

H

�h�·h�� 2p�
� 	 �
h�1

H

�h�·h�� �..� ��
..

s�� � 2p�� � �..� ��
..

� �..
(15)

The Table 6 decompositions also require knowing the proportion
of variance explained when using marginal Level-2 class regres-
sion slopes to compute predicted scores, partialing out marginal
Level-2 class mean separation:

v�
� 	 �
h�1

H

�h�·h�� 2r�
� 	 �
h�1

H

�h�·h�� �..� ��
..

s�� � 2p�� � �..� ��
..

� �..
(16)

Table 5
Decomposing Variance Explained in Level-2-Class-Specific R2’s for Multilevel Regression
Mixtures With Classes at Level-1 and Level-2

Rh
2�fvm� ��contribution of predictors

via marginal L2 class
slopes for h

� ��contribution of predictors
via variation in L1 class
slopes within L2 class h

� ��contribution of means
via variation in L1 class
means within L2 class h

�
� � Equation�13� � � � Eqn�12� 	 Eqn�13� � � � Eq�11� 	 Eq�12� �

Rh
2�fv� ��contribution of predictors

via marginal L2 class
slopes for h

� ��contribution of predictors
via variation in L1 class
slopes within L2 class h

�
� � Equation�13� � � � Eq�12� 	 Eq�13� �

Rh
2�f� ��contribution of predictors

via marginal L2 class
slopes for h

�
� � Equation�13� �

Figure 7. Simulated demonstration: Substantively different patterns of class-combination-specific regression equa-
tions can yield the same total R2 (and/or same Level-2 class-specific R2) in a regression mixture with classes at both
levels. Compare Panel A with each of Panels B and C. Each line denotes a class-combination-specific regression line.
The two dark lines are for Level-2 Class 1 and the two light lines are for Level-2 Class 2. Bold R2 results are compared
and discussed in the article. See the online article for the color version of this figure.
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Our R program (described later) automatically computes the quan-
tities in Tables 5 and 6 and produces bar charts that allow a visual
illustration of these decompositions. Such bar charts are utilized in the
presentation of the empirical example results in the next section.

Empirical Example 2

In this section we consider another empirical example involving
a multilevel regression mixture application of the Equation (7)
model using a subset of the High School and Beyond dataset
(National Center for Educational Statistics, 1986)15 with N �
2,640 high school teachers nested within J � 100 high schools. In
our model, we predict teacher satisfaction from teacher-reported
control over curriculum (control), teacher-reported quality of prin-
cipal’s leadership (leadership), and principal-reported school-level
delinquency (delinquency). Though all three variables had been
found predictive of teacher satisfaction in prior nonmixture studies
(Bogler, 2001; LeBlanc, Swisher, Vitaro, & Tremblay, 2007; Pear-
son & Moomaw, 2005), our interest was in exploring how deter-
minants of satisfaction could have differing effects across types of
teachers and schools. Control and leadership were cluster-mean-
centered whereas delinquency was grand-mean-centered. All in-
tercepts and slopes were allowed to vary across class-combina-
tions; for parsimony, we constrained residual variances equal.

Using Mplus to estimate the models and BIC as a selection
criterion, we compared the fit of all combinations of K � 1 with
6 and H � 1 with 6. BIC preferred three teacher-level classes
nested within each of two school-level classes (i.e., K � 3, H � 2).
The parameter estimates and standard errors for this best-fitting
solution are shown in online supplemental Appendix B and pat-
terns of significant effects are summarized here. The two school-
level classes (i.e., the two sets of three Level-1 classes nested
within each h) were distinguished by both mean levels of teacher
satisfaction and the effect of delinquency. Class h � 1 reflects
schools with more-satisfied teachers where there is no effect of
delinquency, whereas h � 2 reflects schools with dissatisfied teachers
who are even less satisfied as delinquency increases. Above and

beyond these Level-2 class differences, the pattern of teacher-level
(Level-1) classes was quite consistent within each of these Level-2
classes. Class k � 1 was most populous and reflects highly satisfied
teachers, regardless of levels of the predictors. Class k � 2 reflects
less satisfied teachers, whose satisfaction improves with better prin-
cipal leadership and more personal control. Class k � 3 was least
populous and reflects less satisfied teachers, whose satisfaction im-
proves with better leadership (but not personal control).

These summary descriptions indicate that there is some het-
erogeneity across and within school-level class in terms of the
effects of the predictors and in terms of the mean of job
satisfaction. Using the decomposition obtained from regMixR2
(see Table 6), we can now supplement these descriptions by
clarifying that the total variance in job satisfaction can primar-
ily be explained by two things: (a) the predictors via their
marginal slopes (18%); and (b) the heterogeneity in means
between (7%) and within (44%) Level-2 class. As shown in the
bar chart in Figure 8, comparatively little total variance was
attributable to predictors via slope differences— either between
Level-2 class (1%) or within Level-2 class (3%). Thus, we may
conclude that the across-school-level class differences in the
predictors’ effects are, in fact, not practically significant,
whereas there might be some substantively meaningful differ-
ences in means. Such a conclusion would have been less clear
from just examining class-specific regression coefficients. Fur-
thermore, for this example, it could be misleading to report
RT

2(fvm) (.73) as a summary measure if one were primarily inter-
ested in the potential effects of predictors and not in outcome
mean differences across class. In this case, it would be more
useful to report RT

2(fv) (.22) or RT
2(f) (.18).

Results for the Level-2 R2’s and decompositions are shown in
the bar charts of Figure 9. These results were consistent for the two

15 For more information see: https://www.icpsr.umich.edu/icpsrweb/
ICPSR/series/106.

Table 6
Decomposing Variance Explained in Total R2’s for Multilevel Regression Mixtures With Classes at Level-1 and Level-2

RT
2�fvm� ��contribution of

predictors via
marginal slopes

� � �
contribution of
predictors via
variation in
L2 class slopes

� � �
contribution of
predictors via
variation in
L1 class slopes
within L2 class

� � �
contribution of
means via
variation in
L2 class means

� � �
contribution of
means via
variation in
L1 class means
within L2 class

�
� � Equation�10� � � �Eq�16� 	 Eq�10�� � �Eq�9� 	 Eq�16� � � �Eq�15� 	 Eq�16�� � �Eq�8� 	 Eq�9�	

Eq�15� � Eq�16� �

RT
2�fv� ��contribution of

predictors via
marginal slopes

� � �
contribution of
predictors via
variation in
L2 class slopes

� � �
contribution of
predictors via
variation in
L1 class slopes
within L2 class

�
� � Equation�10� � � �Eq�16� 	 Eq�10�� � �Eq�9� 	 Eq�16� �

RT
2�f� ��contribution of

predictors via
marginal slopes

�
� � Equation�10� �
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Level-2 latent classes and mirrored the general patterns found for
the total R2’s; thus, they are not discussed further here.

Lastly, we consider the class-combination R2’s. From our above
qualitative description of the teacher-level latent classes, we would
expect that the “high-satisfaction regardless of predictors” teacher-
level classes would have less variance explained in satisfaction com-
pared to the other two teacher-level classes. This is confirmed and
quantified by comparing the two high-satisfaction class-combination

R2’s (Rk�1,h�1
2(f) � .15 and Rk�1,h�2

2(f) � .13) to the other four class-
combination R2’s (Rk�2,h�1

2(f) � .52 and Rk�2,h�2
2(f) � .59 for k � 2;

Rk�3,h�1
2(f) � .45 and Rk�3,h�2

2(f) � .59 for k � 3); the predictors better
explain teacher satisfaction within the latter four class-combinations.

Discussion

Regression mixture models are often applied in single-level (i.e.,
unclustered) and multilevel (i.e., clustered) data analysis contexts
in the social sciences. Though researchers applying nonmixture
regression models widely report R2 measures of explained vari-
ance as effect sizes, there has been no general treatment of R2

measures for regression mixtures with classes at one or two
levels. Consequently, it is common for applied researchers to
summarize results of a fitted regression mixture by simply
reporting significant class-specific regression coefficients and
providing qualitative class-label interpretations, rather than
considering measures of effect size. In this article, we have
filled this gap by providing an integrative framework of R2

measures for single-level regression mixture models and mul-
tilevel regression mixture models (with classes at Level-2 or
both levels). Specifically, we described 11 R2 measures, most of
which were newly developed here. Using two empirical exam-
ples, we showed how each measure can help researchers answer
distinct substantive questions. We related these measures ana-
lytically and through graphical illustrations. Further, we newly
demonstrated how these R2’s can be decomposed into substan-
tively meaningful sources of explained variance. In the remain-
der of the Discussion, we address software implementation,
limitations, and future directions.

Software Implementation

To aid researchers in utilizing the R2 measures in practice, we
developed an R function, regMixR2, that computes all 11 R2

measures delineated in our framework. This function is found in
online supplemental Appendix C and is briefly described here.

Figure 8. Empirical Example 2 results: Decompositions of total R2’s for
a fitted multilevel regression mixture with classes at Level-1 and Level-2.
Equations corresponding to these decompositions are given in Table 6. See
the online article for the color version of this figure.

Figure 9. Empirical Example 2 results: Decompositions of Level-2 class-specific R2’s for a fitted multilevel
regression mixture with classes at Level-1 and Level-2. Equations corresponding to these decompositions are
given in Table 5. See the online article for the color version of this figure.
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With this function, a user inputs raw data, the number of Level-1
and/or Level-2 classes from their regression mixture model, and
the parameter estimates from their regression mixture model. The
function then outputs the following: (a) all relevant R2 measures
for that fitted model; (b) all relevant decompositions of explained
variance; and (c) bar chart illustrations of these decompositions (as
shown in Figures 5, 8, and 9). Note that obtained estimates from any
mixture modeling software package can serve as input to our function
so long as all of the relevant estimates (detailed in online supplemen-
tal Appendix C) are provided. Though we used Mplus for the empir-
ical examples in this article (see online supplemental Appendix D for
illustrative Mplus syntax), other software can fit single-level regres-
sion mixtures (e.g., FlexMix, Leisch, 2004; Latent GOLD, Vermunt &
Magidson, 2016) as well as multilevel regression mixtures (e.g.,
Latent GOLD).

As mentioned in the introduction, two commercial software
programs, Mplus (Muthén & Muthén, 1998–2016) and Latent
GOLD (Vermunt & Magidson, 2016), output certain R2 measures
for regression mixtures, but with some limitations. Specifically,
Mplus does not provide quantities analogous to our total or
Level-2 class-specific R2’s (R2(fvm), R2(fv), R2(f), RT

2(fvm), RT
2(fv), RT

2(f),
Rh

2(fvm), Rh
2(fv), Rh

2(f)) nor does it provide decompositions as in Tables
4–6. Mplus does provide the option of outputting class-specific
R2’s that are analogous to Rk

2(f) (when fitting Equations 1 or 2) and
Rkh

2(f) (when fitting Equation 7). Nonetheless, as discussed earlier,
just reporting a class-specific R2 provides an incomplete picture
because it can be large even when the total R2 is small, and vice
versa. Additionally, note that, when fitting Equation (2) or (7) in
long-format in Mplus (but not in wide-format), Mplus’ class-
specific or class-combination-specific measure is more restrictive
than ours (or Latent GOLD’s; see below). Specifically, in this
situation their measures allow only Level-1 but not Level-2 cova-
riates to contribute to explained variance.16

Latent GOLD does not provide quantities analogous to our
R2(fv), R2(f), RT

2(fv), RT
2(f), Rh

2(fvm), Rh
2(fv), Rh

2(f), nor does it provide
decompositions as in Tables 4–6. Latent GOLD does provide
measures analogous to the class-specific R2’s, Rk

2(f) and Rkh
2(f), as

well as measures analogous to one kind of total R2: R2(fvm) and
RT

2(fvm). However, a key contrast is that Latent GOLD’s total R2’s
are computed in a different manner that does not lead to their
decomposition into distinct components of explained variance, as
we did in Tables 4 and 6 and Figures 5 and 8. Researchers
reporting only a single number RT

2(fvm) would not be able to identify
where the explained variance is coming from—rather, it would be
a blend of the components we have described throughout this
article. For instance, without these decompositions, we would not
know that the R2(fvm) from empirical example 1 was dominated by
the contribution via the marginal component of slopes (see Figure
5) but that the RT

2(fvm) from empirical example 2 was dominated by
the contribution via variation in Level-1 class means within
Level-2 class (see Figure 8). Moreover, as we mentioned in the
introduction, the R2’s implemented in existing software and the
R2’s newly developed here had not before been systematically
described or interrelated in the literature.

Limitations and Future Directions

Several limitations of this article can be noted to serve as future
research directions. First, in our two empirical examples we fo-

cused on the utility of our measures with regards to the direct
interpretation of classes (Titterington et al., 1985), wherein classes
are thought to represent distinct subpopulations. Nonetheless, un-
der an indirect interpretation (wherein classes are instead thought
to approximate underlying continua) our measures—particularly
the total R2’s and decompositions thereof—would still provide useful
information in terms of variance explained. Future research can dem-
onstrate the application of the R2 measures in this research context.
Second, our empirical examples focused on cross-sectional data. Our
measures could also prove useful in longitudinal mixture modeling
contexts. Third, for the multilevel regression mixture specifications,
we focused on two-level models. The general R2 framework could in
theory be extended to models with any number of levels, though
current software options limit what models can be specified. Fourth,
we have not discussed predictor-specific contributions to explained
variance, such as a semipartial R2 (see, e.g., Edwards et al., 2008 or
Jaeger, Edwards, Das, & Sen, 2016 in a nonmixture modeling con-
text). This would be a useful extension that could help further de-
compose the explained variance into meaningful sources.

Lastly, for the Equation (7) regression mixture with classes at
both levels, we combined a set of five distinct sources of explained
variance from Table 6 in creating three total R2 measures that
yielded substantively meaningful interpretations. As an extension,
a researcher could combine our decompositions of explained vari-
ance from Table 6 in a different way to compute still other effect
size measures. For instance, for this regression mixture, one might
be interested in the proportion of outcome variance explained by
predictors via exclusively within Level-2 class slope and mean
heterogeneity, or might be interested in the outcome variance
explained by predictors via exclusively between Level-2 class slope
and mean heterogeneity. An applied researcher can use quantities
in Table 6 to quickly create such novel measures and, further,
could compare their magnitudes. In sum, in future work research-
ers can combine our decompositions in different ways to cater to
their analytic goals.

Conclusions

In light of widespread recommendations to report effect size
measures to convey practical significance (e.g., American Psycho-
logical Association, 2009; Harlow et al., 1997; Panter & Sterba,
2011; Wilkinson, 1999) we suggest that researchers consult our
framework to understand options for quantifying the proportion of
variance explained for a given regression mixture. Importantly,
researchers are advised to consider all R2 measures simultane-
ously, as well as their decompositions, to fully understand what
sources of variance are being explained and for whom. It is our
hope that these quantitative effect size measures will be substan-
tively useful complements to qualitative interpretations of latent
classes.

16 This restriction is not imposed in our Equation (14) because a Level-2
predictor is not constant for members of the same class-combination (even
though by definition it is constant for a given cluster). Members of a given
class-combination can belong to different clusters, each having different
values of the Level-2 predictor. As such, a Level-2 predictor can explain
variance within a class-combination (relatedly, see Rights & Sterba, 2016).
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Appendix A

Derivation of Model-Implied Total Outcome Variance

Appendix A provides the derivation for the denominator expres-
sion of article Equations (8), (9), and (10), i.e., the model-implied
total variance of yij using the general mixture model in Equation
(7). Slight modifications of this derivation yield the denominator
expression in Equations (3), (4), and (5), i.e., the model-implied
total variance of yi using the simpler special case mixture model in
Equation (1). Specifically, the below derivation also applies to the
Equations (3), (4), and (5) expressions after the following replace-
ments are made: replace all ij subscripts with i, replace all kh
superscripts with k, replace all ·· superscripts with ·, and remove
dj � h from all operations.

As defined in the article: i � individual, j � cluster, cij �
Level-1 latent classification variable with classes k � 1 . . . K, dj �
Level-2 latent classification variable with classes h � 1 . . . H,
xij= � a vector of 1 and exogenous predictors, and �kh � a vector
of regression coefficients (intercepts and slopes) specific to class-
combination kh. We denote the total model-implied variance of yij

as varij(yij). In taking the variance across ij, as in varij(.), we are
equivalently taking the variance across all kh, (i.e., varkh(.)) be-
cause each individual i within cluster j is a member of a class-
combination kh. We will use the ij subscript throughout the deri-
vation for simplicity. Relatedly, let Eij(.) denote the expectation
across i and j.

To begin, using an extended application of the law of total
variance (see, e.g., Bowsher & Swain, 2012’s Equation 13)
varij(yij) can be expressed as Equation (A.1):

varij(yij) � Eij�varij�yij | xij
′ , (cij � k, dj � h)��

� Eij�varij�Eij�yij | xij
′ , (cij � k, dj � h)� | xij

′ ��
� varij�Eij�yij | xij

′ ��
(A.1)

First we will show how Equation (A.1) can be written as a
function of quantities in the data model of manuscript Equation
(7), yielding Equation (A.2):

varij(yij) � Eij�xij
′ Eij[(�

kh
	 �

..)(�kh
	 �

..)�]xij� � Eij��xij
′ �

..�2�
	 Eij�xij

′ �
..�2

� �.. (A.2)

Subsequently we will show how Equation (A.2) can be re-expressed
as the denominator of Equations (8)–(10), i.e., Equation (A.3).

varij(yij) � s�� � 2p�� � �
..

� ��
..

� �... (A.3)

Steps involved in re-expressing Equation (A.1) as Equation
(A.2) are as follows:

The first term, Eij[varij(yij | xij=, (cij � k, dj � h))], is simply the
expected value of the residual variance.

Eij�varij�yij | xij
′ , (cij � k, dj � h)��

�Eij[�
kh]

��..
The second term, Eij[varij (Eij[yij | xij=, (cij � k, dj � h)] | xij=)],

simplifies as follows:

Eij[varij(Eij[yij | xij
′ , (cij � k, dj � h)] | xij

′ )]

� Eij[varij(xij
′ �kh | xij

′ )]

� Eij[xij
′ varij(�

kh)xij]

� Eij[xij
′ Eij[(�

kh
	 �

..)(�kh
	 �

..)�]xij]
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The third term, varij(Eij[yij | xij=]), simplifies as follows:

varij�Eij�yij | xij
′ �� � varij�Eij�xij

′ �
kh

� εij | xij
′ ��

� varij�Eij�xij
′ �

kh | xij
′ � � Eij�εij�xij

′ ��
� varij�Eij[xij

′ �
kh | xij

′ ]�
� varij�xij

′ Eij[�
kh]�

� varij�xij
′ �

..�
� Eij��xij

′ �
..�2� 	 Eij�xij

′ �
..�2

Note that, above, the exogenous xij= is a constant with respect to
the conditional expectation but not with respect to the variance.
Thus, the total variance of yij can be expressed as Equation (A.2),
i.e.:

varij(yij) � Eij�xij
′ Eij[(�

kh
	 �

..)(�kh
	 �

..)�]xij� � Eij��xij
′ �

..�2�
	 Eij�xij

′ �
..�2

� �..
In the remainder of Appendix A we show how this Equation

(A.2) is equal to the denominator of Equations (8)–(10) (i.e.,
s�� � 2p�� � �

..
���

..
� �.. from Equation A.3 above).

We first show that Eij��xij
′ �

..�2� 	 Eij�xij
′ �

..�2 � �
..

���
.., as

follows:

Eij��xij
′ �

..�2� 	 Eij�xij
′ �

..�2 � varij�xij
′ �

..�
� varij(�

..
� xij)

� �
..

� varij(xij)�
..

� �
..

� ��
..

We next show that Eij�xij
′ Eij���

kh
	 �

..���kh
	 �

..���xij� �
s�� � 2p�� as follows:

Eij�xij
′ Eij[(�

kh
	 �

..)(�kh
	 �

..)�]xij� � Eij�xij
′ varij(�

kh)xij�
� Eij[xij

′ (V � C)
Ç

V � diag matrix of 
kh variances

C � cov matrix of �kh; 0s on diag

xij]

� Eij�xij
′ Vxij � xij

′ Cxij�
� Eij�xij

′ Vxij�Ç
see below: #1

� Eij�xij
′ Cxij�Ç

see below: #2

#1

Eij�xij
′ Vxij� � Eij�tr�xij

′ Vxij��
� Eij�tr�xijxij

′ V��
� Eij�tr��xijxij

′ �DV � �xijxij
′ �ODV��

Where xijxij= is equal to its diagonal elements, (xijxij=)D, plus its off
diagonal elements, (xijxij=)OD. Note that the term (xijxij=)OD V can-
cels because V is diagonal.

� Eij�tr��xijxij
′ �DV)�

� tr�Eij��xijxij
′ �D�V�

� �
t

�Eij��xijxij
′ �D��tt[V]tt

� �
t

[s�]t[�]t

� s��

That is, because both Eij[(xijxij=)D] and V are diagonal, the sum
of products of diagonal elements is the same as the inner product
of two vectors. Thus, s= is a row vector of means of squared
elements of xij and � is a column vector containing diagonal
elements of V.

#2

Eij�xij
′ Cxij� � Eij�tr�xij

′ Cxij��
� Eij�tr�xijxij

′ C��
� Eij�tr��xijxij

′ �DC � �xijxij
′ �ODC)�

Note that (xijxij=)DC cancels because C has 0’s on diagonal.

� Eij�tr��xijxij
′ �ODC��

� tr�Eij��xijxij
′ �ODC��

� �
t,u

�Eij��xijxij
′ �OD��tu,t
u[C]ut,t
u

Because the diagonals of C are 0, it follows that only off-
diagonal elements of xijxij= and C need to be considered (i.e.,
u 
 t).

��
t,u

�Eij��xijxij
′ �OD��tu,t
u[C]tu,t
u

Because C is symmetric, it follows that [C]ut � [C]tu.

�2�
t,u

�Eij��xijxij
′ �OD��tu,u�t[C]tu,u�t

Because xijxij= and C are both symmetric, only the lower-triangular
elements of xijxij= and C need to be considered (u � t), twice.

� 2�
g

[p�]g[�]g

� 2p��

That is, we are renaming the typical lower-triangular elements of
matrix Eij[(xijxij=)OD] and of matrix C to be typical elements of vector
p= and of vector �, respectively. Thus, p= is a row vector of means for
the pairwise products of all nonredundant elements of xij and � is a
column vector of lower-triangular elements of C.
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Appendix B

Derivation of Equation 9 Numerator

Appendix B provides the derivation for the numerator of article
Equation (9), i.e., v�� � 2r�� � �

..
���

... Slight modifications of
this derivation yield the numerator of article Equation (4), as a
special case. Specifically, the below derivation also applies to
Equation (4) after the following replacements are made: replace all
ij subscripts with i, replace all kh superscripts with k, replace all ··
superscripts with ·, and remove dj � h from all operations.

Please see Appendix A for definitions of these terms: i, j, cij, k,
dj, h, xij=, �kh, s��, 2p��, �

..
���

.., and �··. Note that varij(.)
indicates taking the variance across ij, or equivalently across all kh,
(i.e., varkh(.)) because each individual i within cluster j is a mem-
ber of a class-combination kh. We will use the ij subscript through-
out the derivation for simplicity. Relatedly, let Eij(.) denote the
expectation across i and j.

The numerator of RT
2(fv) (from Equation 9), is here newly denoted

varij�ŷT
fv�. As stated in the manuscript, it involves subtracting the

variance of the model-implied class-combination means of yij from
the explained portion of variance from RT

2(fvm).17

varij�ŷT
fv� � s�� � 2p�� � �

..
� ��

..

	 varij�Eij�xij
′ �

kh
� εij | (cij � k, dj � h)��

(B.1)

First we will show that equation (B.1) can be expressed as
equation (B.2):

varij�ŷT
fv� � s�� � 2p�� � �

..
� ��

..
	 (a�� � 2q��) (B.2)

Then we will show that Equation (B.2) can be re-expressed as
Equation (B.3), which is the numerator of article Equation (9).

varij�ŷT
fv� � v�� � 2r�� � �

..
� ��

.. (B.3)

To begin, we show how varij(Eij[xij= �kh � εij | (cij � k, dj � h)])
from Equation (B.1) � a=� � 2q=� from Equation (B.2). The
former can be simplified as follows:

varij(Eij[xij
′ �

kh
� εij | (cij � k, dj � h)])

� varij�Eij�xij
′ �

kh | (cij � k, dj � h)� � Eij[εij | (cij � k, dj � h)]�
� varij�Eij�xij

′ �
kh | (cij � k, dj � h)��

� varij�Eij�xij
′ ��

kh�

Note that, above, �kh is a constant with respect to the conditional
expectation but not with respect to the variance. Now designate m
as a vector of means of the exogenous xij, i.e., m � Eij[xij=].

� m�varij(�
kh)m

� m� (V � C)
Ç

V � diag matrix of �kh variances

C � cov matrix of �kh; 0s on diag

m

� m�Vm
Ç

see below: #1

� m�Cm
Ç

see below: #2

#1

m�Vm � tr(m�Vm)
� tr(mm�V)
� tr((mm�)DV � (mm�)ODV)

Where mm= is equal to its diagonal elements, (mm=)D, plus its off
diagonal elements, (mm=)OD. Note that the term (mm=)OD V
cancels because V is diagonal.

� tr((mm�)DV)

� �
t

[(mm�)D]tt[V]tt

� �
t

[a�]t[�]t

� a��

That is, because both (mm=)D and V are diagonal, the sum of
products of diagonal elements is the same as the inner product of
two vectors. Thus, a= is a row vector of squared means of xij and
� is a column vector containing diagonal elements of V.

#2

m�Cm � tr(m�Cm)
� tr(mm�C)
� tr((mm�)DC � (mm�)ODC)

Note that (mm=)D C cancels because C has 0’s on diagonal.

� tr((mm�)ODC)

� �
t,u

[(mm�)OD]tu,t
u[C]ut,t
u

17 This is analytically derived but is akin to literally fitting a null model
with the same number of classes and with intercepts fixed to model-implied
means from the full model, and subtracting its explained variance from the
explained portion of variance from RT

2(fvm) (i.e., Equation 8).
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Because the diagonals of C are 0, it follows that only off-diagonal
elements of mm= and C need to be considered (i.e.,
u 
 t).

� �
t,u

[(mm�)OD]tu,t
u[C]tu,t
u

Because C is symmetric, it follows that [C]ut � [C]tu.

�2�
t,u

[(mm�)OD]tu,u�t[C]tu,u�t

Because mm= and C are both symmetric, only the lower-triangular
elements of mm= and C need to be considered (u � t), twice.

� 2�
g

[q�]g[�]g

� 2q��

That is, we are renaming the typical lower-triangular elements
of matrix (mm=)OD and of matrix C to be typical elements of
vector q= and of vector �, respectively. Thus, q= is a row vector of
the pairwise products of means of all nonredundant elements of xij

and � is a column vector of lower-triangular elements of C.
Next we show how Equation (B.2) can be re-expressed as

Equation (B.3), which is the numerator of article Equation (9).
Rearranging terms yields:

varij�ŷT
fv� � s�� � 2p�� � �

..′
��

..
	 (a�� � 2q��)

� (s� 	 a�)� � 2(p� 	 q�)� � �
..′

���
..

Because, as mentioned above,
s � vector of means (across i and j) of squared elements of xij

a � vector of squared means (across i and j) of xij

p � vector of means (across i and j) of the pairwise products of
all nonredundant elements of xij

q � vector of pairwise products of means (across i and j) of all
nonredundant elements of xij

We can substitute
v= � (s= 
 a=) which are variances (across i and j) of xij

r= � (p= 
 q=) which are covariances (across i and j) of all
nonredundant elements of xij

thus yielding the numerator of article Equation (9):

varij(ŷT
fv) � v�� � 2r�� � �

..′
��

...
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