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Abstract
Researchers often mention the utility and need for R-squared measures of explained variance for
multilevel models (MLMs). Although this topic has been addressed by methodologists, the MLM
R-squared literature suffers from several shortcomings: (a) analytic relationships among existing mea-
sures have not been established so measures equivalent in the population have been redeveloped 2 or 3
times; (b) a completely full partitioning of variance has not been used to create measures, leading to gaps
in the availability of measures to address key substantive questions; (c) a unifying approach to
interpreting and choosing among measures has not been provided, leading to researchers’ difficulty with
implementation; and (d) software has inconsistently and infrequently incorporated available measures.
We address these issues with the following contributions. We develop an integrative framework of
R-squared measures for MLMs with random intercepts and/or slopes based on a completely full
decomposition of variance. We analytically relate 10 existing measures from different disciplines as
special cases of 5 measures from our framework. We show how our framework fills gaps by supplying
additional total and level-specific measures that answer new substantive research questions. To facilitate
interpretation, we provide a novel and integrative graphical representation of all the measures in the
framework; we use it to demonstrate limitations of current reporting practices for MLM R-squareds, as
well as benefits of considering multiple measures from the framework in juxtaposition. We supply and
empirically illustrate an R function, r2MLM, that computes all measures in our framework to help
researchers in considering effect size and conveying practical significance.

Translational Abstract
R-squared measures are useful indications of effect size that are ubiquitously reported for single-level
regression models. For multilevel models (MLMs), wherein observations are nested within clusters (e.g.,
students nested within schools), researchers likewise often mention the utility and necessity of R-squared
measures; however, they find it difficult to relate, interpret, and choose among alternative existing
measures, especially in the context of random slopes. Though methodologists have addressed this topic,
the MLM R-squared literature suffers from several shortcomings: (a) the relationships among existing
measures have not been established, leading to certain measures being redeveloped multiple times; (b)
previous sets of measures have not considered all of the different ways that variance can be explained in
MLMs, leading to gaps in the availability of measures to address key substantive questions; (c) a unifying
approach to interpreting and choosing among measures has not been provided; and (d) existing software
rarely incorporates available measures. In this article, we develop an integrative framework of R-squared
measures for MLMs with random intercepts and/or slopes that addresses each of these shortcomings. We
show that 10 existing measures are special cases of those from our framework, and show how our
framework fills gaps by also supplying novel total and level-specific measures that answer important
research questions. To facilitate interpretation, we introduce a unified graphical representation of all of
the measures in our framework. We also demonstrate limitations of current R-squared reporting practices,
and explain how considering our full framework overcomes these. We supply and illustrate new software
that computes all of our measures to help researchers in considering effect size in MLM applications.
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modeling, hierarchical linear modeling
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Multilevel models (MLMs; also known as linear mixed effects
models and hierarchical linear models) are commonly used to
analyze nested data structures. Such data are particularly prevalent
in social science, educational, and medical research wherein, for
instance, students are nested within schools, patients are nested
within clinicians, and repeated measures are nested within indi-
viduals. MLMs accommodate this nesting by allowing regression
coefficients (intercept and/or slopes) to vary by cluster (e.g.,
school, clinician, individual).

For researchers applying MLMs, there is widely perceived to be
a utility and need for R-squared (R2) measures (Bickel, 2007;
Edwards, Muller, Wolfinger, Qaqish, & Schabenberger, 2008;
Jaeger et al., 2017; Johnson, 2014; Kramer, 2005; LaHuis, Hart-
man, Hakoyama, & Clark, 2014; Nakagawa & Schielzeth, 2013;
Orelien & Edwards, 2008; Recchia, 2010; Roberts, Monaco,
Stovall, & Foster, 2011; Wang & Schaalje, 2009; Xu, 2003;
Zheng, 2000). For instance, LaHuis et al. (2014) emphasize that
“explained variance measures provide a useful summary of the
magnitude of effects and may be particularly useful in multilevel
studies where unstandardized coefficients are reported often” (p.
446). In general, R2’s indicate the proportion of variance explained
by the model and, as such, are considered measures of effect size1

that (a) describe the correspondence between a model’s predictions
and the observed data (such that higher values of an R2 measure
mean predicted outcomes are more similar to the actual outcomes);
(b) have an intuitive metric with well-defined endpoints (0 and 1);
and (c) can be compared across studies with similar designs (e.g.,
Gelman & Hill, 2007; Kvålseth, 1985; Rights & Sterba, 2017; Xu,
2003). As summarized by Roberts et al. (2011) “With the further
encouragement from editors to begin reporting effect sizes in all
research, it is becoming more necessary for researchers using
MLM to be able to explain their results in a way that is common
with other statistical methods” (p. 229). Although several R2

measures for MLMs have been separately developed (e.g., Bryk &
Raudenbush, 1992; Hox, 2002; Johnson, 2014; Kreft & de Leeuw,
1998; Nakagawa & Schielzeth, 2013; Snijders & Bosker, 1994,
1999; Vonesh & Chinchilli, 1997; Xu, 2003), the MLM R2 liter-
ature currently suffers from several shortcomings.

Shortcomings of the MLM R2 Literature

Issue 1: Unknown Analytic Relationships
Among Measures

Although lists of existing MLM R2 measures proposed by
different authors have been compiled (e.g., Jaeger et al., 2017;
LaHuis et al., 2014; Orelien & Edwards, 2008; Roberts et al.,
2011; Wang & Schaalje, 2009), general analytic relationships and
equivalencies among these measures in the population have not
been established. As we will see later, this has led to multiple
instances wherein measures unknowingly equivalent in the popu-
lation have been redeveloped two or three times.

Issue 2: Gaps in the Availability of Measures

Several authors (Johnson, 2014; Nakagawa & Schielzeth, 2013;
Snijders & Bosker, 1999, 2012) had been thought to provide
measures that “consider the full partitioning of variance for mul-
tilevel models” (LaHuis et al., 2014, p. 437). However, their

approaches did not in fact use a full partitioning.2 Their use of a
limited partitioning led to fewer options and less flexibility in
defining measures, which in turn has led to gaps in the availability
of measures to address key substantive research questions.

Issue 3: Lack of a Unifying Approach to Interpreting
Measures

R2 measures for MLM are inherently more complicated to
interpret than for single-level regression because of the potential
for unexplained variance at each level of the hierarchy. Applied
researchers have not been provided with a unifying approach to the
interpretation of MLM R2 measures in the context of random
intercepts and slopes. As such, they have been found to be dis-
couraged by the prospect of reconciling multiple definitions of
MLM R2’s (Jaeger et al., 2017; Kreft & de Leeuw, 1998; Naka-
gawa & Schielzeth, 2013; Recchia, 2010), and have resorted to
reporting typically only one R2 measure, if any at all (LaHuis et al.,
2014). The single reported measure has tended to be discipline-
specific, likely because applied researchers have been unfamiliar
with interpretation of measures developed outside of their disci-
pline. This is because methodologists in the social sciences tend to
recommend and use measures developed in their field (e.g., Bickel,
2007; Hox, 2010; McCoach & Black, 2008; Raudenbush & Bryk,
2002; Snijders & Bosker, 2012) whereas biostatisticians tend to
recommend and use measures developed in their field (e.g., Ed-
wards et al., 2008; Jaeger et al., 2017; Orelien & Edwards, 2008;
Vonesh & Chinchilli, 1997; Xu, 2003).

Issue 4: Inconsistent and Incomplete Software
Implementation of Measures

Researchers note that existing MLM R2 measures are infre-
quently and inconsistently available in software (Bickel, 2007;
Demidenko, Sargent, & Onega, 2012; Edwards et al., 2008; Jaeger
et al., 2017; Kramer, 2005). This may be a byproduct of Issue 1
and 3, wherein the lack of understanding of how existing measures

1 We employ Kelley and Preacher’s (2012) definition of a measure of
effect size as a “quantitative reflection of the magnitude of some phenom-
enon” that can help “inform a judgement about practical significance” (pp.
139–140).

2 Specifically, previous measures constructed by partitioning model im-
plied variance from a researcher’s fitted model (Johnson, 2014; Nakagawa
& Schielzeth, 2013; Snijders & Bosker, 1999, 2012) have not considered
(a) partitioning outcome variance into each of total, within-cluster, and
between-cluster variance; (b) creation of model-implied expressions for
level-specific measures (which have the advantage of never being negative
when existing level-specific measures such as those from Raudenbush &
Bryk, 2002 can be); (c) partitioning explained total variance due to pre-
dictors at level-1 versus level-2 via fixed effects (which is facilitated by
cluster-mean-centering); (d) explaining variance by predictors via random
slope variation (in isolation or combination with another source); and (e)
explaining variance by cluster-specific outcome means via random inter-
cept variation (in isolation or combination with another source). These
concepts will be defined later in the article, as will the motivation for (d)
and (e) (see Vonesh & Chinchilli, 1997). Furthermore, note that Nakagawa
and Schielzeth’s (2013) partitioning does not allow random slopes, and
Johnson’s (2014) extension does not separately partition random intercept
and slope variance. In contrast, features (a–e) are possible using the full
partitioning used in our framework, and their utility will be explained later
in the article.
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relate and lack of consensus on which measure to use for what
purpose both serve as obstacles for their incorporation into stan-
dard MLM software (Jaeger et al., 2017; Kramer, 2005). Com-
pounding the inconvenience of software limitations, researchers
state that MLM R2 measures accommodating random slopes are
complex and tedious to compute by hand (LaHuis et al., 2014;
McCoach & Black, 2008; Nakagawa & Schielzeth, 2013; Snijders
& Bosker, 2012). According to Edwards et al. (2008), MLM R2

measures “that do exist have not become widely known. Even
worse in terms of practical effect, most popular software does not
provide easy access. Hence, the development, dissemination, and
provision of easily accessible software . . . seems of the highest
priority for linear mixed models” (p. 6150).

Contribution of Article

This article addresses the aforementioned four issues in the
following manner. We begin by developing a general framework
for defining and creating R2 measures for MLMs with random
intercepts and/or slopes. We comprehensively decompose model-
implied variance from a researcher’s fitted MLM into component
parts and use these to construct a full set of 12 MLM R2 measures.
This approach and these measures are described in the section
entitled Overview of an Integrative Framework of MLM R2. Ben-
efits of this general framework are: inclusion of existing measures,
provision of substantively compelling new measures, convenience
of having to fit only one model, and measures that cannot be
negative.3

To address Issue 1 (Unknown Analytic Relationships Among
Measures), we derive analytic equivalencies among 10 previously
published MLM R2 measures in the population, showing them to
be special cases of five measures from our general framework.
Proofs of these population equivalencies are provided in Appen-
dixes B1–B10. In the section entitled Analytically Relating Pre-
Existing MLM R2’s to the Current Framework these equivalencies
are explained and a simulation illustration of their finite-sample
correspondence is provided. The 10 previously published MLM R2

measures that we analytically relate stem from across the social
sciences and biostatistics fields, were developed independently
using distinct mathematical approaches, and the set had not before
been related analytically. Prior research had related existing mea-
sures by only listing them, discussing them conceptually, and/or
comparing them empirically—while failing to acknowledge and/or
demonstrate that many reflect the same population quantity (Jaeger
et al., 2017; LaHuis et al., 2014; Orelien & Edwards, 2008;
Roberts et al., 2011; Wang & Schaalje, 2009).

To address Issue 2 (Gaps in the Availability of Measures), our
framework includes additional MLM R2 measures obtained by
reformulating individual components of existing measures in order
to fulfill unmet substantive interpretational needs. Specifically,
seven of the 12 measures in our framework are newly developed
here in the sense that (a) they have not been used or proposed
before in methodological or empirical work and (b) they answer
novel and distinct substantive questions. Substantive motivation
for these measures is provided in the section entitled Rationales for
Newly-Developed Measures in the Framework and includes the
need for measures representing a compromise between so-called
“conditional” and “marginal” perspectives on explained variance
(defined subsequently), the need for measures representing each

source of explained variance individually, and the need for having
“parallel” total versus level-specific measures (defined subse-
quently).

To address Issue 3 (Lack of a Unifying Approach to Interpreting
Measures), we introduce a novel graphical representation of MLM
R2 measures depicting the component parts of each measure. This
makes it straightforward to interpret a pattern of results across
multiple MLM R2 measures stemming from a single fitted model.
This simple and integrated graphical approach to visualizing R2

measures simultaneously increases accessibility and comprehen-
sion of not only measures from our framework but also other
existing measures that correspond to those in our framework.
Practical guidance for how to consult the framework’s suite of R2

measures in juxtaposition in order to obtain a comprehensive set of
complementary information is provided in the section entitled
Recommendations for Using MLM R2 Framework in Practice.

To further address Issue 3, in the section entitled Limitations of
the Common Practice of Reporting a Single MLM R2 we describe
and graphically illustrate how researchers can be potentially mis-
led in four different ways about the interpretation of their results if
they adhere to the current practice of reporting a single existing
MLM R2 measure in isolation. These illustrations also conversely
demonstrate the utility of considering a suite of MLM R2 measures
in juxtaposition. The limitations of common practice that are
illustrated in this section had not been previously noted in the
methodological literature, yet they apply to empirical MLM appli-
cations that have reported R2 to date. Hence, a key contribution of
our article is to identify these limitations and show how to address
them in concrete ways that are immediately relevant to applied
practice.

Finally, to address Issue 4 (Inconsistent and Incomplete Soft-
ware Implementation), we provide an R function, r2MLM, to aid
researchers in computing all of the measures in our framework.
This software computes all the measures from the output of a fitted
MLM and automatically produces the graphical representation of
the results. This software is described in the Software Implemen-
tation section. Subsequently, in the Empirical Examples section it
is used to demonstrate our approach with three examples, each
based on a prior analysis from a popular MLM textbook.

Scope of Article

Before continuing, it is important to clarify the scope of the
present article in several respects. First, we will focus on two-level
multilevel linear models with normal outcomes and homoscedastic
residual variances at both level-1 and level-2, as this specification
is most commonly employed in practice (Raudenbush & Bryk,
2002; Snijders & Bosker, 2012). Second, in order to avoid spec-
ifying level-1 predictors’ effects that are conflated, “uninterpre-
table blend[s]” (Cronbach, 1976) of level-specific (i.e., within- and
between-cluster) effects and to facilitate partitioning variance into
level-specific components, here we will assume that level-1 pre-
dictors are cluster-mean-centered, as has been widely recom-

3 Researchers have previously been concerned about the potential for
some MLM R2 measures to be negative (Hox, 2010; Jaeger et al., 2017;
Kreft & de Leeuw, 1998; LaHuis et al., 2014; McCoach & Black, 2008;
Nakagawa & Schielzeth, 2013; Recchia, 2010; Roberts et al., 2011; Wang
et al., 2011).
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mended (e.g., Hedeker & Gibbons, 2006; Kreft & de Leeuw, 1998;
Preacher, Zyphur, & Zhang, 2010; Raudenbush & Bryk, 2002;
Snijders & Bosker, 2012). Thus, if researchers are interested in a
purely within-effect of a level-1 variable they could include a slope
of the cluster-mean-centered level-1 variable. If they are also
interested in a between-effect of that level-1 variable they should
simultaneously include a slope of the cluster means of that level-1
variable. If a researcher wishes to fit a non-cluster-mean-centered
MLM for a particular substantive reason (for instance, as described
by Enders and Tofighi [2007], to examine level-2 effects while
simply controlling for level-1 covariates), in the Discussion section
we describe and provide modified formulae to compute a subset of
our measures in the absence of cluster-mean-centering.

Third, we focus on R2 measures for a single hypothesized model
at a time (paralleling the focus of most methodological literature
on MLM R2 to date; Gelman & Pardoe, 2006), rather than on the
use of R2 in the context of model comparison. Fourth, the measures
in our framework all afford the flexibility of accommodating
random slopes, as random slopes are often used in practice. Con-
sequently, we chose 10 previously published MLM R2 measures to
analytically relate to our framework that are themselves similarly
general in accommodating random slopes. We did not focus on
other measures that have particular kinds of restrictions (e.g.,
measures requiring fitting models with fixed slopes [e.g., Snijders
& Bosker, 2012; p. 112, Equation 7.3]) as described further in the
Discussion section.

As a final caveat, we emphasize that R2 measures in our frame-
work supplement rather than replace existing indicators of MLM
model quality. Just as in single-level regression modeling, in MLM
a high R2 does not indicate that a model accurately reflects the
data-generating process in the population; conversely, a low R2

does not preclude a model from being informative for theory
testing (see, e.g., Cohen, Cohen, West, & Aiken, 2003; King,
1986). MLM R2 measures in our framework serve as intuitive
measures of effect size, the use of which are increasingly recom-
mended as focus shifts from overreliance on statistical significance
(e.g., APA, 2009; Harlow, Mulaik, & Steiger, 1997; Kelley &
Preacher, 2012; Panter & Sterba, 2011; Wilkinson & APA Task
Force on Statistical Inference, 1999).

Multilevel Linear Model

To begin, we review the two-level MLM as background for the
methodological developments in subsequent sections. Here, we are
modeling some continuous outcome yij for observation i (level-1
unit) nested within cluster j (level-2 unit) with i � 1 . . . Nj and j �
1 . . . J. We first present the level-1 regression model:

yij � �0j � �
p�1

P

�pjvpij � eij

eij ~ N(0, �2)
(1)

The intercept, �0j, and the slopes, �pj’s, of each of P level-1
predictors (vpij’s) can both be cluster-specific, and the level-1
residual, eij, is normally distributed with variance �2. The level-2
regression equations that define the cluster-specific intercept and
slopes are given as:

�0j � �00 � �
q�1

Q

�0qzqj � u0j

�pj � �p0 � �
q�1

Q

�pqzqj � upj

uj ~ MVN(0, �) (2)

Each cluster-specific intercept, �0j, can be composed of a fixed
component, �00, plus the sum of all Q level-2 predictors of the �0j

(i.e., zqj’s) multiplied by their slopes (�0q’s), and the cluster-
specific intercept deviation or residual, u0j. The pth cluster-specific
slope, �pj, is similarly composed of a fixed component, �p0, plus
the sum of all Q level-2 predictors of �pj multiplied by their slopes
(�pq’s), and the cluster-specific slope deviation or residual, upj.
Note that any �pq denotes a cross-level interaction, that is, an
interaction between zqj and vpij. Note also that any level-2 predictor
not being used to model �0j or �pj would be given a coefficient of
0. The level-2 residuals in uj (a (P � 1) � 1 vector containing u0j

and P upj’s) are multivariate normally distributed with covariance
matrix T. To obtain a fixed intercept or fixed slope, the corre-
sponding level-2 deviation in uj would be set to 0 as would
elements in T corresponding to its variance and covariance(s).

Representing this model in reduced form with the fixed com-
ponents (the �’s) separated from the random components (the u’s)
makes it clear that an MLM can be conceptualized simply as a sum
of fixed and random components (hence the common term “mixed
effects model”) like so:

yij � ��00 � �
q�1

Q

�0qzqj � �
p�1

P

�p0vpij � �
p�1

P

vpij�
q�1

Q

�pqzqj�
� �u0j � �

p�1

P

vpijupj�� eij (3)

This can be further simplified into a vector-based form, as in
Equation (4):

yij � xij� � � wij� uj � eij (4)

The (1 � Q � P � QP) � 1 vector4 � contains all fixed
components (i.e., all �’s in Equation [3]), with vector xij now
consisting of 1 (for the intercept) and all predictors (i.e., level-1,
level-2, and cross-level interactions). The (1 � P) � 1 vector wij

consists of 1 (for the intercept) and all level-1 predictors (level-1
predictors without random slopes have 0 elements in uj so corre-
sponding terms in wij=uj are 0).

For reasons mentioned above, in the current article we focus on
the specification wherein all level-1 predictors are cluster-mean-
centered, following common recommendations (e.g., Hedeker &
Gibbons, 2006; Kreft & de Leeuw, 1998; Preacher et al., 2010;
Raudenbush & Bryk, 2002; Snijders & Bosker, 2012). We can thus
expand the xij=� term from Equation (4) to yield:

yij � xij
w� �w � xj

b� �b � wij� uj � eij (5)

wherein xij
w denotes a vector of all cluster-mean-centered level-1

predictors and xj
b denotes a vector of 1 (for the intercept) and all

4 Dimensions of these vectors can be reduced when excluding coeffi-
cients that are set to 0—for instance for cross-level interactions that are not
included in the model.
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level-2 predictors (which could include cluster means of level-1
predictors). The vector �w denotes all level-1 fixed effects and �b

denotes all level-2 fixed effects. This expansion in Equation (5)
will facilitate description and presentation of the measures to
follow. Note that cross-level interactions are included in xij

w=�w

when cluster-mean-centering; this is because such cross-level in-
teraction terms (e.g., vpijzqj) have no variability across clusters,
given that each cluster-specific mean of vpijzqj will be equal to 0.5

Overview of an Integrative Framework of MLM R2’s

Generically, an R2 can be defined in the population as

R2 � 1 � unexplained variance
outcome variance (6)

or, equivalently,

R2 � explained variance
outcome variance (7)

Estimating this proportion in a sample, then, involves estimating
the outcome variance as well as either the unexplained or the
explained variance.

One popular existing approach for estimating some MLM R2

measures involves fitting two models: a null model (to estimate the
outcome variance) and a full model (the researcher’s model of
substantive interest). This allows estimation of the population
quantity:

R2 � 1 � unexplained variance from full model
unexplained variance from null model (8)

(Bryk & Raudenbush, 1992; Hox, 2002, 2010; Kreft & de Leeuw,
1998; Raudenbush & Bryk, 2002). Their null model consists of a
fixed-intercept-only model or random-intercept-only model, de-
pending on the measure. This two-model-fitting approach, how-
ever, has been criticized for the potential to yield negative esti-
mates for certain MLM R2 when implemented in a sample—which
can occur, for instance, simply due to chance fluctuation in sample
estimates from the two models (Hox, 2010; Jaeger et al., 2017;
Kreft & de Leeuw, 1998; LaHuis et al., 2014; McCoach & Black,
2008; Nakagawa & Schielzeth, 2013; Recchia, 2010; Roberts et
al., 2011; Wang, Xie, & Fisher, 2011). Hox (2010) has called this
“unfortunate, to say the least” (p. 72).

Our approach, however, conveniently requires fitting only one
model (the model of substantive interest from Equation [5]) and
uses the reexpression in Equation (9) to estimate the population
quantity:

R2 � explained variance from full model
outcome variance from full model (9)

Our approach uses model-implied variances from the researcher’s
single fitted model for both the denominator and numerator. Con-
sequently, our measures will not be negative (provided a proper
solution is obtained). Though others have previously also used
model-implied variances from a researcher’s single fitted model in
the denominator and numerator of MLM total R2’s (Johnson, 2014;
Nakagawa & Schielzeth, 2013; Snijders & Bosker, 1999, 2012)
their partitioning of the outcome variance was more limited than
ours (as described in Footnote 2 and in the next subsection), which
led to them having fewer possibilities and less flexibility in defin-
ing measures (as shown later in Table 3). In the next subsection we

extend their approach to allow a fuller partitioning of the outcome
variance, which in turn, facilitates the construction of a complete
suite of substantively interpretable R2 measures.

Full Partitioning of Variance

The model-implied total outcome variance can be represented
by Equation (10) (see Appendix A Section A1 for a detailed
derivation of this equation):

model-implied total outcome variance

� var �xij
w��w � xj

b� �b � wij� uj � eij�

� �w� �w�w � �b� �b�b � tr(��) � �00 � �2 (10)

Here, �w and �b denote the covariance matrix of xij
w and the

covariance matrix of xij
b, respectively.6 � denotes the covariance

matrix of all elements of wij. The penultimate term, �00, denotes
the random intercept variance. This model-implied variance ex-
pression is useful in that it clarifies which specific components
comprise the total outcome variance. Specifically, in Equation
(10), each term represents variance attributable to one of five
specific sources:

�w� 	w�w � variance attributable to level-1 predictors via

fixed slopes (shorthand: variance attributable to “ f1 ”)

(11)

�b� �b�b � variance attributable to level-2 predictors via

fixed slopes (shorthand: variance attributable to “f2 ”)

(12)

tr(T�) � variance attributable to level-1 predictors via random

slope variation/covariation (shorthand: variance

attributable to “v ” ) (13)

�00 � variance attributable to cluster - specific outcome

means via random intercept variation (shorthand:

variance attributable to “m” ) (14)

�2 � variance attributable to level-1 residuals (15)

Three components in Equation (10) reflect purely within-cluster
variance–namely, Equations (11), (13), and (15). Thus,

model-implied within-cluster outcome variance

� �w� �w�w � tr(��) � �2 (16)

Hence, of the sources defined above, there can only be variance
attributable to f1 (Equation [11]) and/or v (Equation [13]) within a
cluster beyond that attributable to level-1 residuals.

5 With Nj denoting the number of level-1 units in cluster j, the mean
for each of the J clusters is given as ��i�1

Nj vpijzqj� ⁄ Nj � �zqj ⁄ Nj�
��i�1

Nj vpij� � 0.
6 As noted by Snijders and Bosker (2012) in a similar context, it is

atypical to think of exogenous predictors in terms of a population distri-
bution; nonetheless, the predictors themselves contribute to the outcome
variance, and thus the model-implied outcome variance must incorporate
aspects of the distributions of the predictors.

313R-SQUARED MEASURES FOR MULTILEVEL MODELS



Two components from Equation (10) reflect purely between-
cluster variance—namely, Equations (12) and (14). Thus:

model-implied between-cluster outcome variance

� �b� �b�b � �00 (17)

Hence, of the sources defined above, there can only be variance
attributable to f2 (Equation [12]) and/or m (Equation [14]) between
clusters.

Previous partitionings used in creating MLM R2’s did not de-
compose outcome variance into each of total, within-cluster, and
between-cluster variance (Johnson, 2014; Nakagawa & Schielzeth,
2013; Snijders & Bosker, 2012) which precluded them from cre-
ating model-implied expressions for level-specific measures. Pre-
vious partitionings also did not distinguish variance attributable to
level-1 versus level-2 predictors via fixed effects (i.e., “f1” vs. “f2”;
Johnson, 2014; Nakagawa & Schielzeth, 2013; Snijders & Bosker,
2012)7 nor distinguish between random intercept and random
slope variation (i.e., “v” vs. “m”; Johnson, 2014), or simply ex-
cluded random slope variation (i.e., “v”; Nakagawa & Schielzeth,
2013). Note that the reason our variance partitioning expands upon
previous partitionings used for MLM R2’s does not simply amount
to the fact that we assumed cluster-mean-centering, unlike previ-
ous partitionings. As one example, total variance attributable to
“v” and “m” can be partitioned whether or not cluster-mean-
centering is assumed (though their interpretation would differ
when not cluster-mean-centering; see Discussion section). Further-
more, the use of cluster-mean-centering itself does not automati-
cally split total variance attributable to predictors via fixed effects
(f) into within-cluster (f1) and between-cluster (f2) components, but
rather the formulae we provide allows for this. Consequently,
previous partitioning used in creating total R2 measures by John-
son (2014), Nakagawa and Schielzeth (2013), and Snijders and
Bosker (2012) would still be incomplete even if cluster-mean-
centering were assumed; for instance, their proportion of total
variance explained by predictors via fixed effects would then
implicitly combine that explained via within-cluster (f1) and
between-cluster (f2) effects.8 Taken together, omissions from pre-
vious partitionings serve to restrict possibilities for constructing
measures as will be seen later in Table 3. Our fuller partitioning
will yield more informative results and a more complete set of
options for defining MLM R2 measures.

Using Equations (10–17), further defining an R2 measure in
the context of the researcher’s fitted MLM thus involves two
considerations: (a) what outcome variance is of interest (total,
within-cluster, or between-cluster), which determines the de-
nominator; and (b) which sources contribute to explained vari-
ance, which determines the numerator. Total R2 measures in-
corporate all outcome variance (i.e., both within-cluster and
between-cluster) in the denominator of Equation (9) and they
quantify variance explained in an omnibus sense. They help one
to ascertain how much outcome variance—as a whole— can be
explained or understood by a given model. In contrast, within-
cluster R2 measures incorporate only within-cluster variance in
the denominator of Equation (9) and they help researchers
understand the degree to which within-cluster variance can be
explained by a given model. For instance, with students nested
within classrooms, a researcher may want to know the degree to
which a given model can explain why students—within the

same classroom— differ on the outcome of interest. Conversely,
between-cluster R2’s can be useful for researchers interested
specifically in the degree to which between-cluster variance can
be explained by a given model; they incorporate only between-
cluster variance in the denominator of Equation (9). For in-
stance, with students nested within classrooms, a researcher
may be interested in the degree to which a model can explain
outcome differences between classrooms. Details follow on
constructing total, within, and between measures and choosing
the sources of explained variance for each.

Overview of Total R2 Measures in the Framework

Having fully partitioned the model-implied outcome variance,
we can transform each of the five components in Equations (11–
15) into the proportion metric of R2 by dividing by the total
model-implied outcome variance. This transformation of the first
four components—dividing each Equation (11) to (15) by Equa-
tion (10)—is shown in the first four rows of Table 1. Table 1 also
provides a definition and symbol for each of these four proportions
in the population (Rt

2�f1�, Rt
2�f2�, Rt

2(m), Rt
2(v)). Each symbol’s super-

script denotes the source contributing to explained variance:
“f1” � level-1 predictors via fixed slopes, “f2” � level-2 predictors
via fixed slopes; “v” � predictors via slope variation/covariation;
“m” � cluster-specific outcome means via intercept variation.9 To
conserve space, we hereafter rely on this shorthand “f1”, “f2”, “f”,
“v”, and “m” to refer to these sources of explained variance
(wherein “f” � the combination of f1 and f2). Each symbol’s
subscript denotes the outcome variance (here, “t” � total). For
instance, the proportion of total outcome variance attributable to
level-1 predictors via fixed slopes can be obtained by dividing
�w=�w�w by Equation (10), which is denoted Rt

2�f1� in Table 1.
Thus, the total variance can be decomposed into five separate
components with corresponding proportions that sum to 1. It is
pedagogically useful to visualize this decomposition graphically;
hence, we introduce a graphical depiction, given in the Figure 1
bar chart. The leftmost column in the Figure 1 bar chart shows a

7 Although Snijders and Bosker (2012, p. 117) said that a partitioning of
variance attributable to f1 and f2 separately could be done, they did not
provide specific formula to utilize this in their R2 computation, and thus
researchers computing their measure while cluster-mean-centering would
be unable to separately consider the two components.

8 Moreover, this splitting of f is not fully dependent on cluster-mean-
centering, as described in the Discussion section. Of course, when choosing
not to cluster-mean-center, researchers would need to ensure that the often
more-restrictive assumptions of their fitted MLM are upheld or risk pa-
rameter bias.

9 Given that random effect variance in MLM is generally termed residual
variance at level-2, it may seem unintuitive that such variance could
potentially count as “explained” variance in some measures. However,
several existing MLM R2 measures stemming from biostatistics—termed
“conditional” measures—already do consider such random effect variation
to be explained variance (e.g., Vonesh & Chinchilli, 1997), for reasons
discussed in our later section entitled There is substantive need for mea-
sures representing a compromise between so-called “conditional” and
“marginal” perspectives. Additionally, similar to the suggestion by Sni-
jders and Bosker (1994), rather than just thinking of such measures in terms
of explained variance, researchers may prefer the more neutral conceptu-
alization of modeled variance.
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breakdown of the total outcome variance for a hypothetical exam-
ple into the five distinct proportions. From this leftmost bar chart,
we could say, for instance, that “20% of the total outcome variance
is attributable to level-1 predictors via fixed slopes,” as depicted by
Rt

2�f1�.
The proportions Rt

2�f1�, Rt
2�f2�, Rt

2(m), Rt
2(v) can be used individually

or in combination to define total R2 measures. The suite of total R2

measures focused on in our framework includes these measures
tapping individual sources of explained variance (Rt

2�f1�, Rt
2�f2�,

Rt
2(m), Rt

2(v)) as well as the following three measures that combine
multiple sources of explained variance, as defined in Table 1: Rt

2(f)

(combining sources f1 and f2), Rt
2(fv) (combining sources f and v),

and Rt
2(fvm) (combining sources f, v, and m). Although other

combined-source measures could be created from within the
framework, we focus on this subset because (a) it includes previ-
ously published measures (as shown in the upcoming Analytic
Relations section); and (b) it fills compelling substantive needs (as
shown in the upcoming Rationales section).

Overview of Within-Cluster R2 Measures
in the Framework

Restricting focus to within-cluster outcome variance in Equation
(16), we can again transform each component into a proportion.
Figure 1 (middle bar chart) graphically illustrates the decomposi-
tion of scaled within-cluster variance into three separate propor-

Table 1
Definitions of Multilevel Model (MLM) R2 Measures in Integrative Framework

Measure Definition (Interpretation)

Total MLM R2 measures

Rt
2�f1� �

�w��w�w

�w��w�
w

� �b��b�
b

� tr���� � �00 � �2

Proportion of total outcome variance explained by level-1 predictors via fixed slopes

Rt
2�f2� �

�b��b�
b

�w��w�
w

� �b��b�
b

� tr���� � �00 � �2

Proportion of total outcome variance explained by level-2 predictors via fixed slopes

Rt
2�f� �

�w��w�
w

� �b��b�
b

�w��w�
w

� �b��b�
b

� tr���� � �00��2

Proportion of total outcome variance explained by all predictors via fixed slopes

Rt
2�v� �

tr����
�w��w�

w
� �b��b�

b
� tr���� � �00 � �2

Proportion of total outcome variance explained by level-1 predictors via random slope
variation/covariation

Rt
2�m� �

�00

�w��w�
w

� �b��b�
b

� tr���� � �00 � �2

Proportion of total outcome variance explained by cluster-specific outcome means via
random intercept variation

Rt
2�fv� �

�w��w�
w

� �b��b�
b

� tr����
�w��w�

w
� �b��b�

b
� tr���� � �00 � �2

Proportion of total outcome variance explained by predictors via fixed slopes and
random slope variation/covariation

Rt
2�fvm� �

�w��w�
w

� �b��b�
b

� tr���� � �00

�w��w�
w

� �b��b�
b

� tr���� � �00 � �2

Proportion of total outcome variance explained by predictors via fixed slopes and
random slope variation/covariation and by cluster-specific outcome means via random
intercept variation

Within-cluster MLM R2 measures

Rw
2�f1� �

�w��w�
w

�w��w�
w

� tr���� � �2

Proportion of within-cluster outcome variance explained by level-1 predictors via fixed
slopes

Rw
2�v� �

tr����
�w��w�

w
� tr���� � �2

Proportion of within-cluster outcome variance explained by level-1 predictors via
random slope variation/covariation

Rw
2�f1v� �

�w��w�
w

� tr����
�w��w�

w
� tr���� � �2

Proportion of within-cluster outcome variance explained by level-1 predictors via fixed
slopes and random slope variation/covariation

Between-cluster MLM R2 measures

Rb
2�f2� �

�b��b�
b

�b��b�
b

� �00

Proportion of between-cluster outcome variance explained by level-2 predictors via fixed
slopes

Rb
2�m� �

�00

�b��b�
b

� �00

Proportion of between-cluster outcome variance explained by cluster-specific outcome
means via random intercept variation

Note. These measures were developed and defined under the assumption that the fitted MLM used cluster-mean-centering.
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tions for a hypothetical example. Thus, the three within-cluster
components in the middle bar chart of Figure 1 display the pro-
portion of variance relative to all within-cluster variance (e.g., 33%
of within-cluster variance is attributable to level-1 predictors via
fixed slopes). The transformation of the first two components into
proportions—dividing Equations (11) and (13) by (16)—is shown
in Table 1, alongside definitions and symbols for these proportions
in the population (Rw

2�f1�, Rw
2(v)). For instance, the proportion of

within-cluster outcome variance attributable to level-1 predictors
via fixed slopes, denoted Rw

2�f1� in Table 1, is obtained by dividing
�w=�w�w by Equation (16).10 The “w” subscript on these propor-
tions indicate the outcome variance is within-cluster and the su-
perscripts indicate that, of the potential sources of explained
variance defined earlier, only f1 and/or v can explain variance
within a cluster beyond that attributable to level-1 residuals.
Hence, in the remainder of this paper we use Rw

2�f1�, Rw
2(v) and their

combination Rw
2�f1v� (also defined in Table 1) as the within-cluster

R2 measures in our framework.

Overview of Between-Cluster R2 Measures
in the Framework

Now restricting focus to between-cluster outcome variance in
Equation (17), we again transform each component into a proportion
by dividing Equations (12) and (14) by (17). The decomposition of
scaled between-cluster variance into two proportions is illustrated in
Figure 1 (rightmost bar chart) for a hypothetical example. Thus, the
two between-cluster components in the rightmost bar chart of Figure
1 display the proportion of variance relative to all between-cluster
variance (e.g., 50% of between-cluster variance is attributable to

10 These level-specific measures are conceptually similar to a partial R2

familiar from single-level multiple regression analyses. Whereas a partial R2 in
multiple regression defines the outcome variance (i.e., the R2 denominator) as
the variance that is not accounted for by a set of predictors, the within-cluster
R2 in our framework defines the outcome variance as the variance that is not
accounted for by between-cluster sources, and vice versa.

Figure 1. Decomposition of scaled outcome variance into proportions to construct R2 measures in the
framework: Bar chart graphic for a hypothetical example. In the bar chart, the symbol for each measure (from
Table 1) is superimposed on its corresponding proportion of variance. The first column of the bar chart
decomposes scaled total variance into proportions; the second column decomposes scaled within-cluster variance
into proportions; and the third column decomposes scaled between-cluster variance into proportions. A given
shade (e.g., horizontal stripe) refers to a source of explained variance, and when this same shade appears in
multiple columns (e.g., total column and within column) it means that same source is counted as explained
variance (in the numerator of the R2) in measures with different outcome variances (in the denominator of the
R2). The white space in the first and second columns refers to the level-1 residual variance divided by either the
total or within variance, respectively. To the right of the figure, measures in our framework are listed, some of
which combine proportions from the figure. More detailed definitions of each measure were given in Table 1.
See the online article for the color version of this figure.
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level-2 predictors via fixed slopes). Table 1 provides definitions and
symbols for each proportion measure in the population (denoted Rb

2�f2�,
Rb

2(m)). For instance, the proportion of between-cluster outcome vari-
ance attributable to level-2 predictors via fixed slopes, denoted Rb

2�f2�

in Table 1, is obtained by dividing �b=�b�b by Equation (17). The “b”
subscript on these proportions indicates that the outcome variance is
between-cluster and the superscripts indicate that, of the potential
sources of explained variance defined earlier, only f2 and m can
explain variance between clusters. In contrast to the total MLM R2’s
and within-cluster MLM R2’s, wherein level-1 residuals were consid-
ered to always contribute to unexplained variance, in between-cluster
MLM R2’s, there is no source that need always contribute to unex-
plained variance. Consequently, in contrast to the total MLM R2’s,
there is no need to create a between-cluster MLM R2 measure treating
both sources f2 and m together, as this would necessarily equal 1.
Hence the suite of two between-cluster measures in our framework
considers sources f2 and m individually (i.e., Rb

2�f2�, Rb
2(m)).

Summary

Table 2 provides a summary of the MLM R2 measures in our
framework. Table 2 has three columns denoting choices of outcome
variance (total, within-cluster, between-cluster) and rows denoting
choices of which sources contribute to explained variance. Each
MLM R2 measure is defined by what is in the subscript (choice of
outcome variance: t, w, b) and in the superscript (sources contributing
to explained variance: f1, f2, f, v, m, and combinations thereof).

Recommendations for Using MLM R2

Framework in Practice

In reporting MLM R2 measures, the sheer number of options may
initially feel overwhelming, but these can be organized and stream-
lined. As a straightforward approach, researchers can report the mea-
sures that contain only a single source of explained variance at a time
in the numerator, that is, the total measures Rt

2�f1�, Rt
2�f2�, Rt

2(v), and Rt
2(m)

and their level-specific counterparts Rw
2�f1�, Rb

2�f2�, Rw
2(v), and Rb

2(m). All of
these can simultaneously be visualized and reported in a bar chart
such as that in Figure 1 (software provided for doing so is discussed
later). Each of these can be reported as a quantitative effect size to
supplement qualitative interpretation. For example, a statement such
as “there is heterogeneity in the effects of the predictors” can be made
more informative with statements such as “specifically, 15% of the
total outcome variance is attributable to the predictors via slope
variation,” corresponding to an Rt

2(v) estimate of .15.
If a summary measure that combines sources of explained variance

is also desired, researchers can substantively justify what outcome
variance is of interest, which combination of sources should contrib-
ute to explained variance, and then use the appropriate R2 measure
from Table 1. However, there is no single, one-size-fits-all measure
that will address every research question. Hence, we do not recom-
mend reporting just one combined-source measure in isolation (for
reasons illustrated graphically in a later section, entitled Limitations of
the Common Practice of Only Reporting a Single MLM R2). Rather,
we encourage researchers to interpret a given measure in juxtaposition
to other measures within the context of the full decomposition (relat-
edly, see Rights & Sterba, 2017).

Analytically Relating Pre-Existing MLM R2’s to the
Current Framework

Of the 12 MLM R2 measures in the integrative framework, from
Table 2, there are seven which have not previously been proposed
(Rt

2�f1�, Rt
2�f2�, Rt

2(fv), Rt
2(m), Rw

2�f1�, Rw
2(v), Rb

2(m)) and five which corre-
spond to the same population quantities as previous authors’
measures (Rt

2(fvm), Rt
2(f), Rt

2(v), Rw
2�f1v�, Rb

2�f2�). Appendix B sections B1
through B10 provide analytic derivations showing how the latter
five measures from the framework represent the same population
quantities as published measures from other authors, despite their
differences in computation (Aguinis & Culpepper, 2015; Bryk &
Raudenbush, 1992; Hox, 2002, 2010; Johnson, 2014; Kreft & de
Leeuw, 1998; Raudenbush & Bryk, 2002; Snijders & Bosker,
1999, 2012; Vonesh & Chinchilli, 1997; Xu, 2003). Appendix B
shows these equivalencies with or without the assumption of
cluster-mean-centering, for total measures, and with the assump-
tion of cluster-mean-centering, for level-specific measures. Table
3 overviews the correspondence between R2 MLM measures from
our integrative framework and those developed by previous au-
thors. Each column of Table 3 refers to one of the 12 measures in
our framework. Each row of Table 3 refers to a different author
who has previously developed a MLM R2 measure. Cells of Table
3 indicate the page number and symbol for each previously pub-
lished measure that corresponds to the same population quantity as
one of our measures (with supporting proofs in each case provided
in Appendix B1–B10).

It can be seen from Table 3 that certain measures were devel-
oped previously by, not one, but multiple sets of authors. As
previously mentioned in Issue 1 (Unknown Analytic Relationships
Among Measures) it has not before been appreciated that these
multiple measures are estimating the same population quantity.
Specifically, three previous sets of authors independently devel-
oped measures corresponding to Rt

2(fvm) in the population: Vonesh
and Chinchilli (1997) (proof of correspondence given in Appendix
B Section B1), Xu (2003) (proof given in Appendix B Section B2),
and Johnson (2014) (proof given in Appendix B Section B3). Also
three previous sets of authors independently developed measures
corresponding to Rt

2(f) in the population: Snijders and Bosker
(1999, 2012) (proof given in Appendix B Section B4), Vonesh and
Chinchilli (1997) (proof given in Appendix B Section B5), and
Johnson (2014) (proof given in Appendix B Section B6). Further-
more, two previous authors independently developed measures
corresponding to Rw

2�f1v� in the population: Raudenbush and Bryk
(2002, see also 1992 edition) (proof given in Appendix B Section
B7) and Vonesh and Chinchilli (1997) (proof given in Appendix B
Section B8).11 One previous set of authors developed a measure
corresponding to the same population quantity as Rb

2�f2�: Rauden-
bush and Bryk (2002, see also 1992 edition) (proof given in
Appendix B Section B9). Notably, the two latter measures were
also widely disseminated by Hox (2002, 2010) and Kreft and de
Leeuw (1998). Lastly, one previous set of authors developed a

11 Xu (2003) also includes a measure similar to Rw
2�f1v�, but formulae are

provided under the restrictive assumption that intercepts and slopes are
uncorrelated; hence, we exclude this measure from Table 3.
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measure corresponding to Rt
2(v) in the population: Aguinis and

Culpepper (2015) (proof given in Appendix B Section B10).12

Simulation Illustration

It is important to underscore that, though all rows within a given
column of Table 3 correspond with the same population R2 mea-
sure (as derived in Appendix B), that measure would be computed
differently by each author in a given sample. More specifically,
within a given column of Table 3, in service of estimating the same
population R2 measure, authors may use different combinations of
estimates (e.g., some use estimates from one fitted [full] model,
others use estimates from two [null and full] models; some use
estimates of level-1 residual variance but not estimates of random
effect variances and vice versa; some require outputting cluster-
specific empirical Bayes predicted scores and others do not). In
some cases, certain of our measures are not only equivalent to
pre-existing measures in the population, but also in the sample (for
Johnson, 2014 extension of Nakagawa & Schielzeth, 2013 and
Snijders & Bosker, 2012). In other cases, denoted by “�” in
Appendix B, equivalencies between our measures and pre-existing
measures hold in the population but not necessarily in a given

sample (for Aguinis & Culpepper, 2015; Raudenbush & Bryk,
2002; Vonesh & Chinchilli, 1997; and Xu, 2003). In all cases,
different authors’ sample estimates of the same population R2

measure would show greater correspondence with each other, and
with the population value, given a larger number of clusters and/or
cluster size. Even at moderate Nj and J, however, across repeated
samples, the average value of a given measure computed using
each author’s approach should be similar. We illustrate the latter
point using a simulation, wherein we generated 500 samples hav-
ing a known population value for each of the 12 MLM R2 in our
framework. The generating multilevel model had a random inter-
cept, random slopes of three cluster-mean-centered level-1 predic-

12 Although Aguinis and Culpepper (2015) did not interpret their measure
as an R2, it is such if considering v as a source of explained variance. They
termed their measure ICC beta and viewed it as a complementary measure to
the intraclass correlation coefficient (ICC). Whereas the conventional ICC
captures the degree of mean outcome variation across clusters, their ICC beta
(i.e., Rt

2(v)) captures “the degree of variability of a lower-level relationship
across higher-order units” (Aguinis & Culpepper, 2015, p. 168).

Table 2
MLM R2 Measures in the Integrative Framework, Distinguished by Outcome Variance of Interest (Denominator) and Sources
Contributing to Explained Variance (Numerator)

† Subscripts denote the outcome variance: t � total; w � within-cluster; b � between-cluster; Ll � level-1; L2 � level-2. � Superscripts denote source(s)
contributing to explained variance for a given measure: f � predictors via fixed slopes; f1 � level-1 predictors via fixed slopes; f2 � level-2 predictors via
fixed slopes; v � predictors via slope variation/covariation; m � cluster-specific outcome means via intercept variation. Shaded cells correspond to
combinations that are not applicable, as described in the text of the cells.
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tors, and fixed slopes of two level-2 predictors.13 For each sample,
J � 200 and Nj � 50. This sample size would be generally
considered sufficient for multilevel modeling (e.g., Maas & Hox,
2005). The generating model was fit to all 500 samples. All 12
MLM R2 measures were computed using each available previously
published approach from Table 3, as well as our own approach.
Computing sample estimates of measures in our framework in-
volves simply replacing the parameters in each equation in Table
1 with their corresponding sample estimates (i.e., estimated fixed
effects and estimated random effect [co]variances as well as the
sample-estimated predictor covariance matrices). Table 4 presents
the population value of each of the 12 measures (top row), along
with the average estimates obtained using our approach (second
row) and each previous author’s approach (subsequent rows).

The results in Table 4 indicate that estimates from our measures
and from other authors’ measures correspond closely to each other
and to the population values, on average. Two exceptions, however,
were that Vonesh and Chinchilli’s (1997) method of computing Rw

2�f1v�

and Raudenbush-Bryk/Hox/Kreft-de-Leeuw’s method of computing
Rb

2�f2� did not perform as well. The former may largely be due to the

fact that these Vonesh and Chinchilli’s (1997) measures require
outputting cluster-specific empirical Bayes estimates for intercept
and slope random effects (i.e., ûj) to compute the predicted
outcomes for each observation, which may introduce an addi-
tional source of error (Snijders & Bosker, 2012) that can lead to
bias in their measures at lower sample sizes. It is less clear
analytically why the Raudenbush and Bryk (2002) between-
clusters measure performed less well, but it should be noted that
it has been shown to perform poorly in another simulation
(LaHuis et al., 2014).

13 Predictors were multivariate normally distributed. Generating param-

eters were: �w � � 2 .3 .75
.3 1.5 .2
.75 .2 1

�, �b � �2 .5
.5 1.5 �, �w � � 1

�2
3
�,

�b � � 1
�.5

2
�, � � 	

10 .25 .5 .6
.25 1 .36 .4
.5 .36 1.5 .6
.6 .4 .6 2


, �2 � 17.

Table 3
Population Relationships Among Previous Authors’ MLM R2 Measures and Those in Our Integrative Framework (Supporting
Derivations in Appendix B)

Note. We show analytically in Appendix B that all measures in the same column are estimates of the same population quantity, with or without the
assumption of cluster-mean-centering for total measures (Appendices B1–B6) and with the assumption of cluster-mean-centering for level-specific
measures (Appendices B7–B10). Page numbers in the table correspond with authors’ original sources. The table has blank cells because each previous
author provided only 1, 2, or 3 out of the 12 measures in our framework. MLM � multilevel model.
� Computation involves fitting two models (full and null); in particular, Raudenbush-Bryk’s and Vonesh-Chinchilli’s analog to Rw

2�f1v� and the former’s
analog to Rb

2�f2� define the null model as random-intercept-only (see Appendix B).
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Our contribution in the current article was to show the analytic
equivalencies of existing measures with several of our measures in
the population (derived in Appendix B), as well as to show an
example of their finite sample correspondence and performance (in
this section). It is outside our scope to examine and contrast finite
sampling properties of these estimators under a variety of gener-
ating conditions; this could be a direction for future research.

Rationales for Newly Developed Measures
in the Framework

Deriving a suite of R2’s based on a more complete decomposi-
tion of variance than in prior literature allowed us to identify and
fill gaps where additional measures can be used to fill sensible
interpretational needs (addressing Issue 2). As was summarized in
Table 3, seven of the measures in our framework were newly
added here. Next we discuss substantive rationales motivating
these measures (Rt

2(fv), Rt
2(m), Rt

2�f1�, Rt
2�f2�, Rw

2�f1�, Rw
2(v), Rb

2(m)).

There is Substantive Need for Measures Representing
a Compromise Between So-Called “Conditional” and
“Marginal” Perspectives: Rationale for Rt

2(fv)

Compared with single-level contexts, in MLM the choice of
numerator for R2 is complicated by the presence of multiple
variance components. A researcher must consider: Should variance
attributable to predictors and cluster means via random effects be
treated as explained variance or unexplained variance? Two alter-
native perspectives have previously been offered in the literature
for total R2 measures, corresponding with the use of the terms
“marginal” versus “conditional” measures (e.g., Edwards et al.,
2008; Orelien & Edwards, 2008; Vonesh & Chinchilli, 1997;
Wang & Schaalje, 2009; Xu, 2003). The first alternative is to count
all variance attributable to predictors and cluster means via random
effects (v and m) as unexplained, and count variance attributable
only to predictors via fixed effects (f) as explained—that is, com-
puting Rt

2(f). This corresponds to what some authors have termed a
“marginal” total R2 (meaning that predicted scores are marginal-
ized across random effects and thus are based on only the fixed

portion from Equation [5], xij
w��w � xj

b��b). The second alternative
is to consider all variance attributable to v and m as explained,
along with that attributable to f—that is, computing Rt

2(fvm). This
measure corresponds to what some authors have termed a “condi-
tional” total R2 (meaning that predicted scores are conditioned on
random effects and thus are based on both the fixed and random
portion from Equation [5], xij

w��w � xj
b��b � wij�uj). The marginal

perspective is currently the more dominant view in psychology and
may feel intuitive given that random effect variation is commonly
termed “residual variance” at level-2 (see Footnote 9). The con-
ditional perspective may feel foreign outside of the biostatistics
field, where it primarily originated, due to the disciplinary divide
in the dissemination of measures (see Issue 3). As for why a
researcher may wish to use the conditional perspective to include
variance attributable to v and m in the numerator, one argument for
Rt

2(fvm) given by Vonesh and Chinchilli (1997) is that “Typically in
longitudinal studies, there tends to be greater variability between
subjects rather than within subjects. Consequently, the [Rt

2(f)] may
be somewhat undervalued since [it doesn’t] account for the pres-
ence of subject-specific random effects. A moderately low value
for [Rt

2(f)] may mislead the user into thinking the selected fixed
effects fit the data poorly. Therefore, it is important that we also
assess the fit of both the fixed and random effects based on the
conditional mean response” (p. 423). As another example, suppose
a researcher is studying math achievement for students (nested
within classrooms) and is particularly interested in the effect of
hours spent studying (e.g., Rights & Sterba, 2016). This effect
might reasonably be expected to differ across classrooms due to
any number of factors that may be unmeasured; for instance,
classrooms may vary in how effectively material is taught and the
degree to which independent study is expected of students. Simi-
larly, classrooms likely have different baseline levels of math
achievement, reflected by a random intercept. A researcher explic-
itly interested in both this slope and intercept heterogeneity would
likely want to include such variance in an R2 measure and thus
report Rt

2(fvm).
Though the marginal (Rt

2(f)) versus conditional (Rt
2(fvm)) distinc-

tion has always been framed as an “all-or-nothing” consideration

Table 4
Simulation Results: Finite Sample Correspondence Among Measures Listed in Table 3

Measure

Rt
2�f1� Rt

2�f2� Rt
2(f) Rt

2(v) Rt
2(m) Rt

2(fv) Rt
2(fvm) Rw

2�f1v� Rw
2�f1� Rw

2(v) Rb
2�f2� Rb

2(m)

Population value .31 .10 .41 .13 .17 .53 .71 .60 .42 .17 .36 .65
Author(s)

Rights and Sterba framework .31 .10 .40 .13 .17 .53 .70 .59 .42 .17 .36 .64
Snijders and Bosker (2012) .40
Raudenbush and Bryk (2002) .60 .33�

Xu (2003) .70
Vonesh and Chinchilli (1997) .41 .72 .76�

Aguinis and Culpepper (2015) .13
Johnson (2014) (extension of

Nakagawa and Schielzeth, 2013) .40 .70

Note. Each table cell provides the average estimate across 500 samples. Note that the table has blank cells because each previous author provided only
1, 2, or 3 out of the 12 measures in our framework.
� Discrepancies of these Vonesh and Chinchilli (1997) and Raudenbush and Bryk (2002) estimates from population values are discussed in the article text.
Bolded values are the population-generating values whereas plain-text values are across-sample average estimates of those values.
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(i.e., counting as explained all or none of the variation attributable
to predictors/cluster means via random effects), a new measure we
presented in Table 1 serves as a compromise by considering
variance explained by predictors via random slopes explained but
by cluster means via random intercepts unexplained—Rt

2(fv). Con-
sider, for instance, the example described above of predicting math
scores from hours spent studying. Suppose a researcher were
indeed interested in the heterogeneity in this effect across class-
rooms. This does not, however, imply there to be interest in the
intercept heterogeneity in math scores across classrooms. A re-
searcher interested in slope heterogeneity but not intercept heter-
ogeneity may wish to report Rt

2(fv), which conveniently can be
interpreted as the proportion of variance explained by the predic-
tors (because predictors explain the outcome via both f and v).
Such a measure is also consistent with recent recommendations to
develop measures that evaluate random effects in conjunction with
fixed effects (Demidenko et al., 2012; Edwards et al., 2008; Jaeger
et al., 2017; Kramer, 2005).

There is Substantive Need for Measures Representing
Each Source of Explained Variance Individually:
Rationale for Rt

2(m), Rt
2(f1), Rt

2(f2)

Researchers previously have been interested in making use of
measures that represent a given source of explained variance in
isolation. For instance, a pre-existing measure, Rt

2(v), isolates the
impact of predictors via random slope variation, or v (Aguinis &
Culpepper, 2015). Aguinis and Culpepper (2015) have recom-
mended that Rt

2(v) be used to compare slope heterogeneity across
studies and also used to assess the degree of clustering, in con-
junction with the ICC, when the researcher is determining the need
for a MLM.

Newly developed measures in our framework extend this prin-
ciple more completely in providing measures that isolate other
sources of explained variance. Specifically, Rt

2(m) isolates the pro-
portion of total variance explained by m, Rt

2�f1� isolates the propor-
tion of total variance explained by f1, and Rt

2�f2� isolates the pro-
portion of total variance explained by f2. Though we do not
necessarily anticipate that researchers would be interested in re-
porting only one of these isolated-source measures, each can be
useful to contrast with the others (Rt

2(v) vs. Rt
2(m) vs. Rt

2�f1� vs. Rt
2�f2�)

to get a broader understanding of the full decomposition. Also,
because researchers already are widely using published versions of
measures combining multiple sources of explained variance (e.g.,
Rt

2(fvm) that includes f1, f2, v, and m as sources), it stands to reason
that these researchers would also be interested in examining the
proportion of variance explained solely by each, one at a time.

There is a Substantive Need for Having “Parallel”
Total Versus Level-Specific Measures: Rationale for
Rw

2(f1), Rw
2(v), Rb

2(m)

For a given source of explained variance, it can be informative
to consider how much it explains relative to the total variance as
well as relative to level-specific (i.e., within or between) variance.
It could be the case, for instance, that a given source explains a
large proportion of level-specific variance, but explains little of the
total variance, or vice versa (as seen later in the section titled
Limitations of common practice of reporting level-specific mea-

sures Rw
2�f1v� and Rb

2�f2� without total measures). Thus, considering a
level-specific measure in isolation does not inform one of the
importance of a given source with respect to the total variance,
whereas considering a total measure in isolation does not inform
one of the importance of a given source with respect to level-
specific variance. To allow researchers to consider both types of
importance (total vs. level-specific) simultaneously, our frame-
work provides pairs of measures that we term “parallel” in that
they consider the same source of explained variance (numerator),
but with different denominators. For instance, we introduce Rw

2�f1�

to assess the amount of variance explained by level-1 predictors
via fixed slopes relative to the within-cluster variance; one can
compare this value with the total measure Rt

2�f1�. Similarly, we
provide Rw

2(v) as a parallel to Rt
2(v), and Rb

2(m) as a parallel to Rt
2(m). In

the empirical examples, we further illustrate limitations of consid-
ering either total or level-specific measures in isolation and illus-
trate the utility of considering parallel measures.

Limitations of the Common Practice of Reporting
Only a Single MLM R2

As mentioned earlier, currently when researchers using MLM
report an R2, they tend to report exclusively a total measure or
exclusively level-specific measure(s) (LaHuis et al., 2014). Cur-
rently, common choices for reporting a total measure are Rt

2(fvm) or
Rt

2(f) analogs and common choices for reporting level-specific
measures are Rw

2�f1v� and/or Rb
2�f2� analogs. Earlier we recommended

that one need not choose a single R2 to report because the measures
in our framework provide complementary information and thus it
is more informative to consider the suite of measures together.
This can be accomplished by inspecting the decomposition of
scaled variance into proportions graphic (e.g., Figure 1). In this
section, we present simulated demonstrations, in Figures 2–5, that
highlight limitations of the typical practice of reporting just one or
a pair of these common measures. Furthermore, we describe how
consulting the integrative framework can yield more informative
substantive interpretations. Note that each of our simulated dem-
onstrations in this section contains a single predictor simply for
ease of graphical depiction of results in line plots; the points we
make also apply to the context of multiple predictors.

Limitations of the Common Practice of Reporting
Estimate of Rt

2(fvm) Without Decomposing Total
Variance

We first demonstrate limitations of the common practice of
reporting exclusively a Rt

2(fvm) (e.g., Xu’s/Johnson’s/Vonesh-
Chinchilli’s measure) without decomposing total variance to form
our suite of total R2 measures (as in, e.g., Payne, Lee, & Feder-
meier, 2015; Stolz, 2015). Figure 2 Panel A depicts four condi-
tions. In each condition, the level-1 residual variance is the same
and there is a single level-1 predictor. Further, each condition has
an identical Rt

2(fvm) of .80. Nonetheless, each condition corresponds
to a unique substantive interpretation regarding the proportion of
variance explained; namely, each condition involves different
sources that contribute to explained variance. This is illustrated for
each condition using both a line plot (wherein each thin [black]
line is a cluster-specific regression line and the thick [red] line is
the average regression line) and in a corresponding bar chart
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(showing the decomposition of scaled variance into proportions,
previously defined in Figure 1). For instance, panel A, column 1
reflects a situation wherein Rt

2(fvm) � .80 such that variance is
explained solely by f1, and no variance is explained via random
effects (i.e., v or m). In contrast, panel A, columns 2 and 3 depict

situations wherein again Rt
2(fvm) � .80, but now variance is ex-

plained exclusively via random effects (v or m, respectively) and
the fixed slope is actually equal to 0. Clearly these situations in
Figure 2, panel A correspond with vastly different interpretations
regarding the influence of the predictor on the outcome and the

Figure 2. Limitations of the common practice of reporting a Rt
2(fvm) measure analog (e.g., Vonesh-Chinchilli/

Xu/Johnson’s measure) without decomposing scaled total variance into proportions: Substantively different
patterns yield the same Rt

2(fvm). Rt
2(fvm) was defined in Figure 1 and Table 1. Thin (black) lines � cluster-specific

regression lines; thick (red) line � marginal (mean) regression line in panel A and regression line in panel B;
dots � cluster-specific values. See the online article for the color version of this figure.
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extent of across-cluster heterogeneity. In column 1, cluster mem-
bership yields no predictive information, whereas in column 3, the
predictor yields no predictive information. In column 2, the pre-
dictor yields cluster-specific predictive information but no mar-
ginal information. These are extreme examples; a more realistic
and nuanced situation is presented in panel A, column 4, wherein
each of the aforementioned sources explains some variance in the
outcome, combining to yield Rt

2(fvm) � .80.
Figure 2, panel B illustrates this same concept with a single

level-2 predictor. Note that for each of the line plots in panel B,
the y-axis is now the cluster-specific outcome mean, each point
is cluster specific, and the line represents the regression line for
the level-2 predictor. Thus, greater vertical spread of these
points about the regression line indicates greater intercept vari-
ance. Panel B, column 1 reflects a situation wherein variance is
explained exclusively by f2, panel B, column 2 reflects a situ-
ation wherein variance is explained exclusively by m, and panel
B, column 3 reflects a situation with a mix of these sources.
Despite the vastly different corresponding substantive interpre-
tations, all three of these situations yield the same Rt

2(fvm)

of .80.
The key point of the demonstration in Figure 2 is that,

without also considering our suite of total R2 measures (readily
visualized from the bar chart decomposition of scaled variance
into proportions defined in Figure 1), it is not clear in what way
variance is being explained by the model when only reporting
Rt

2(fvm).

Limitations of the Common Practice of Reporting an
Estimate of Rt

2(f) Without Decomposing Total Variance

Though Rt
2(f) is simpler than Rt

2(fvm) in the sense that the only
sources of explained variance are f1 and f2, the common practice
of reporting a Rt

2(f) (e.g., Snijders-Bosker’s/Vonesh-Chinchil-
li’s/Johnson’s measure) exclusively (as in, e.g., Engert, Ples-
sow, Miller, Kirschbaum, & Singer, 2014; Lusby, Goodman,
Yeung, Bell, & Stowe, 2016) can nonetheless be misleading.
The limitations of this practice are illustrated in Figure 3. In
Figure 3, panel A, again holding level-1 residual variance
constant, we present four different situations with a level-1
predictor that yield the same Rt

2(f), despite each corresponding to
a unique substantive pattern of explained variance. In panel A,
column 1, the total outcome variance is attributable to only two
sources: f1 and level-1 residuals. As can be seen in the panel A,
column 1 line plot, a relatively modest slope yields an Rt

2(f) of
.40. In panel A, columns 2– 4, however, the total outcome
variance is now attributable to the sources mentioned for col-
umn 1 as well as at least one other—v (column 2), m (column
3), or the combination thereof (column 4). Notice that, despite
the slope of the predictor being greater in columns 2– 4, the Rt

2(f)

of .40 is the same as in column 1. One may have expected
intuitively that panel A, columns 2– 4 — having a larger slope of
xij than panel A, column 1 but having the same level-1 residual
variance—would also have had a higher Rt

2(f). However, this is
not the case here because there is greater total variance in panel
A, columns 2– 4. Similarly, in panel B with a level-2 predictor,
the first column consists of only variance attributable to level-1
residuals and f2, whereas column 2 also consists of variance

attributable to m. Despite the slope being much larger in column
2, they both have the same Rt

2(f) of .40.
The key point in this Figure 3 illustration is that Rt

2(f) reflects the
proportion of variance explained by f relative to total variance—
the latter of which is composed of several distinct components.
Large slopes of predictors and a small level-1 residual variance
does not mean Rt

2(f) will similarly be large; if there is substantial
variance attributable to other sources, Rt

2(f) may still be quite small.
This can be elucidated by interpreting Rt

2(f) in the context of the
other total R2 measures in our framework by decomposing total
scaled variance into proportions using the bar chart graphic (de-
fined in Figure 1).

Limitations of the Common Practice of Reporting an
Estimate of Rw

2(f1v) Without Decomposing Within
Variance

We next consider the common practice of reporting a Rw
2�f1v�

(e.g., Raudenbush-Bryk/Hox/Kreft-de-Leeuw/Vonesh-Chinchilli’s
measure) as an index of within-cluster variance explained, with-
out decomposing within-cluster scaled variance into propor-
tions to form our suite of within-cluster measures (as in, e.g.,
Sasidharan, Santhanam, Brass, & Sambamurthy, 2012; Wells &
Krieckhaus, 2006). Figure 4 presents three generating condi-
tions yielding the same Rw

2�f1v� � .50 despite different substan-
tive interpretations regarding the proportion of within-cluster
variance explained. In Figure 4, within-cluster variance is ex-
plained exclusively by f1 in column 1, by both f1 and v in
column 2, and exclusively by v in column 3. Thus, similar to the
Figure 2 demonstration, when reporting Rw

2�f1v� in isolation it is
not clear in what way variance is being explained. This can be
assessed only by examining all three within-cluster measures in
juxtaposition, which is straightforward to do using the bar chart
graphic.

Limitations of the Common Practice of Reporting
Estimates of Level-Specific Measures Rw

2(f1v) and Rb
2(f2)

Without Total Measures

Lastly, we consider the common practice of reporting only
level-specific measures Rw

2�f1v� and/or Rb
2�f2� (e.g., Raudenbush-

Bryk/Hox/Kreft-de-Leeuw’s measures) without simultaneously
considering their relation to the total outcome variance (as in, e.g.,
Holland & Neimeyer, 2011; McCrae et al., 2008). Figure 5, panel
A reflects a situation wherein Rw

2�f1v� is substantially smaller than
Rb

2�f2� (as seen in the comparison of the middle and right bars). One
might be tempted to conclude that this result implies that the
level-2 predictors are “more important” than the level-1 predictors,
such that less total variance is explained within-cluster than
between-cluster. However, this is not true. What is true, in this
case, is that the proportion of within-cluster variance that is
explained is less than the proportion of between-cluster variance
that is explained. In fact, in this illustration the opposite pattern
holds for total variance—that is, much more is explained by
within-cluster sources (f1 and v) than between-cluster sources (f2).
This can be seen in Figure 5, panel A by comparing Rw

2�f1v� and
Rb

2�f2� to their parallel total R2 counterparts (namely, Rt
2�f1v�—the

proportion of total variance explained by f1 and v—and Rt
2�f2�—the
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Figure 3. Limitations of the common practice of reporting a Rt
2(f) measure analog (e.g., Snijders-Bosker/

Vonesh-Chinchilli/Johnson’s measure) without decomposing scaled total variance into proportions: Substan-
tively different patterns yield the same Rt

2(f). Rt
2(f) was defined in Figure 1 and Table 1. Thin (black) lines �

cluster-specific regression lines; thick (red) line � marginal (mean) regression line in panel A and regression line
in panel B, dots � cluster-specific values. See the online article for the color version of this figure.
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proportion of total variance explained by f2). Note that this pattern
can also be reversed; Figure 5, panel B reflects a situation wherein
there is very little within-cluster variance and Rw

2�f1v� 	 Rb
2�f2� but

Rt
2�f1v� 
 Rt

2�f2�. The key point to this illustration in Figure 5 is that
restricting focus to measures representing purely within- and/or
purely between-cluster variance explained risks misunderstanding
as it tells a researcher little about the proportion of the total
variance explained.

Software Implementation

As mentioned previously (Issue 4), a current impediment to the
use of R2 measures for MLM in practice is the lack of available
software (Bickel, 2007; Demidenko et al., 2012; Edwards et al.,
2008; Jaeger et al., 2017; Kramer, 2005; LaHuis et al., 2014;
McCoach & Black, 2008; Nakagawa & Schielzeth, 2013; Snijders
& Bosker, 2012). Demidenko et al. (2012) emphasized that such
measures should be “computed as a standard output [in] software
every time a mixed model or a meta-analysis model is estimated”
(p. 967).

To aid researchers in computing measures in our framework, we
developed an R function, r2MLM. With this function, a user inputs

all MLM estimates and raw data. The function then outputs the
following: all 12 R2 measures listed in Table 1, all decompositions
illustrated in Figure 1, and a bar chart to visualize them (such as
that in Figure 1). In online supplemental Appendix A, R code is
provided both for the function itself and for example input.

Empirical Examples

In this section, we reanalyze three empirical examples from
popular MLM textbooks (Hox, 2010; Kreft & de Leeuw, 1998;
Snijders & Bosker, 1999). In these reanalyses, we highlight useful
insights and information gained by computing the suite of R2

measures in our framework with r2MLM software and visualizing
the decomposition of scaled variance into proportions.14 The orig-
inal analyses of Examples 1 and 2 did not present R2 measures.

14 Note that, in the textbooks, some of the below examples included
level-1 predictors that were not cluster-mean-centered. To facilitate a
decomposition of scaled variance into proportions within and between
cluster, we cluster-mean-centered level-1 variables while adding the cluster
mean as a level-2 variable. Also, for substantive reasons, we included a
random slope for parental education in Empirical Example 1.

Figure 4. Limitations of the common practice of reporting a Rw
2�f1v� measure analog (e.g., Raudenbush-Bryk/

Hox/Kreft-de Leeuw/Vonesh-Chinchilli’s measure) without decomposing scaled within-variance into propor-
tions: Substantively different patterns yield the same Rw

2�f1v�. Rw
2�f1v� was defined in Figure 1 and Table 1. Thin

(black) lines � cluster-specific regression lines, thick (red) line � marginal (mean) regression line. See the
online article for the color version of this figure.
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The original analysis of Example 3 presented only a subset of the
R2’s provided by our framework.

We fit all models using SAS Proc Mixed with REML estima-
tion. Here, to conserve space, we focus on results pertaining to
R2’s and decompositions. For each example, the complete set of
parameter estimate and standard error results can be found in
online supplemental Appendix B. We summarize t-test results for
fixed effects here; test results for variance components are in
online supplemental Appendix B.

Empirical Example 1: Kreft & de Leeuw (1998),
Predicting Math Scores

In this first example, we reanalyze Kreft and de Leeuw’s
(1998) multilevel example with 519 students nested within 23
schools wherein math scores are predicted from time spent on
homework and parental education. Specifically, our predictors
include school-mean-centered time spent on homework, school-
mean-centered parental education, school-mean time spent on
homework, and school-mean parental education. Across-school
heterogeneity was modeled with a random intercept and random
slopes of both level-1 predictors. Results indicated significant

(p 
 .05) fixed effects for cluster-mean-centered time spent on
homework and parental education and cluster-mean parental
education.

Figure 6 displays bar charts of the total, within-cluster, and
between-cluster decompositions of scaled variance into propor-
tions. The first thing to note is that Rt

2(fvm) is fairly high (.56)
whereas Rt

2(f) is fairly low (.20). Considering both of these
simultaneously clarifies that a large proportion of variance is
attributable to random effect variation. In particular, there is a
sizable amount of slope heterogeneity, reflected by the Rt

2(v) of
.24. If this slope heterogeneity in addition to the marginal
effects is deemed of interest, one may wish to focus on the new
measure Rt

2(fv) which is .44, meaning that 44% of the total
variance in math scores is explained by the predictors via f
and v.

Considering the within-cluster measures, previous common
practice was to report just a Rw

2�f1v� (here, .43) analog, but this
risks leading researchers to erroneously assume that marginal
effects of parental education and time spent on homework
explain a large amount of within-cluster variance, which is not
the case because the new measure Rw

2�f1� is quite low (.12).

Figure 5. Limitations of the common practice of reporting level-specific Rw
2�f1v� and/or Rb

2�f2� measure analogs
(e.g., Raudenbush-Bryk measures) without considering total measures. Rt

2�f1v� � proportion of total variance
explained by f1 and v; Rt

2�f2� � proportion of total variance explained by f2; Rw
2�f1v� and Rb

2�f2� were defined in Figure
1 and Table 1. See the online article for the color version of this figure.
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Considering the between-cluster measures, note that Rb
2�f2� is

fairly large (.47). Looking at the decomposition of total scaled
variance into proportions, however, clarifies that little of the
total variance is actually explained by level-2 predictors (11%)
because the amount of overall between-cluster variance is rel-
atively small (23% of the total). Additionally, juxtaposing the
total measures versus level-specific measures clarifies that al-
though Rb

2�f2� is over twice as large as Rw
2�f1v� this doesn’t imply

that f2 explains more of the total variance than f1 (in fact, their
proportions of total variance explained are about equal).

Empirical Example 2: Snijders and Bosker (1999),
Predicting Language Scores

Next, we reanalyze Snijders and Bosker’s (1999) multilevel
example with 2,287 students nested within 131 schools wherein
they predict language scores from verbal IQ, socioeconomic status
(SES), and within-school and between-school interactions thereof.
Specifically, our predictors include school-mean-centered verbal
IQ, school-mean-centered SES, school-mean verbal IQ, school-
mean verbal IQ � school-mean SES, school-mean SES, and
school-mean-centered verbal IQ � school-mean-centered SES.
We included a random intercept and a random slope of school-
mean-centered verbal IQ. Results indicated significant (p 
 .05)
fixed effects of all predictors except the latter two.

Figure 7 displays the decomposition of scaled variance into
proportions for Empirical Example 2. In contrast to Empirical
Example 1, here there is not a large difference between Rt

2(fvm) (.52)
and Rt

2(f) (.41), indicating that outcome variance is not driven as
strongly by random effect variation and is more attributable to f.
This fact may have been overlooked if a researcher had just
focused on statistical significance of random slope variance, be-
cause it is statistically significant. In fact, if we inspect the effect
size Rt

2(v), we see it is actually quite small (.01) and perhaps

substantively unimportant. Thus, in this example, we have evi-
dence that the marginal effects of the predictors are of primary
importance, whereas there is little heterogeneity in effects. When
considering the within-cluster measures, Rw

2�f1v� (.39) and Rw
2�f1�

(.38) are very similar, unlike for Empirical Example 1. When
considering the between-cluster measures, note that Rb

2�f2� is again
larger than any of the within-cluster R2 measures, despite the fact
that f2 explains much less of the total variance than does f1. This
is similar to the situation depicted in the Figure 5 demonstration.

Empirical Example 3: Hox (2010), Predicting
Popularity

Lastly, we reanalyze Hox’s (2010) example with 2,000 students
nested within 100 classrooms wherein he predicts popularity from
extraversion, sex, teacher experience, and the cross-level interac-
tion of extraversion and teacher experience.15 Specifically, our
predictors include class-mean-centered extraversion, class-mean-
centered sex, teacher experience, and class-mean-centered extra-
version � teacher experience. A random intercept and slope of
extraversion were modeled. All mean slopes were significant.

The decomposition of scaled variance into proportions for Em-
pirical Example 3 is in Figure 8. Here Rt

2(fvm) is fairly high (.71)
whereas Rt

2(f) is just over half as large (.41). The Rt
2(m) of .29

clarifies that much of this total variance is attributable to cluster
means via random intercept variation, whereas the Rt

2(v) of .01
indicates that little variance is explained by predictors via slope
heterogeneity, similar to Empirical Example 2 but different from
Empirical Example 1. When examining the level-specific mea-
sures, note that the proportion of within-cluster variance explained

15 Note that Hox (2010) reports that this dataset was artificially con-
structed for pedagogical purposes in the textbook.

Figure 6. Empirical Example 1: Results from model predicting math
scores (Kreft & de Leeuw, 1998). See the online article for the color
version of this figure.

Figure 7. Empirical Example 2: Results from model predicting language
scores (Snijders & Bosker, 2012). See the online article for the color
version of this figure.
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by f1 and v is greater than the proportion of between-cluster
variance explained by f2 (i.e., Rw

2�f1v� 	 Rb
2�f2�). In contrast to the

previous two empirical examples, this same pattern holds for the
parallel total measures in the Figure 8 bar charts. Thus, we do not
have a situation like that depicted in the Figure 5 pedagogical
demonstration.

For all three examples, had we considered only point estimates
and statistical significance of slopes and random effect (co)vari-
ances, it would have been difficult to determine what potential
sources of variance are most important. Having a graphical de-
composition and set of R2 measures gives a detailed suite of effect
sizes that indicate the degree to which total versus within-cluster
versus between-cluster variance in math/language/popularity can
be attributed to different sources.

Discussion

Motivated by researchers’ continued interest in R2 measures for
MLM (Bickel, 2007; Edwards et al., 2008; Jaeger et al., 2017;
Johnson, 2014; Kramer, 2005; LaHuis et al., 2014; Nakagawa &
Schielzeth, 2013; Orelien & Edwards, 2008; Recchia, 2010; Rob-
erts et al., 2011; Wang & Schaalje, 2009; Xu, 2003; Zheng, 2000),
several such measures have been developed. Nonetheless, the
current methodological literature on R2 measures for MLM had
suffered from several issues: Issue 1) analytic relationships and
equivalencies among popular existing measures in the population
had not been established; Issue 2) there were gaps in the avail-
ability of measures needed to answer substantive questions be-
cause a completely full partitioning of variance had not been used
to create measures; Issue 3) a unifying approach to interpreting and

choosing among measures had not been supplied; and Issue 4)
measures were infrequently and inconsistently available in soft-
ware. In this article, we have addressed each of these concerns in
the following manner. We developed an integrative framework of
R2 measures for models with random intercepts and/or slopes that
is based on a complete decomposition of scaled variance into
proportions (see Tables 1–2). We addressed Issue 1 by analytically
showing how 10 existing R2 measures (from the social sciences as
well as biostatistics) correspond to the same population quantities
as five measures in our framework (see Table 3 and Appendix B).
We addressed Issue 2 by reformulating contents of our framework
to create additional measures that answer novel substantively
relevant research questions. We addressed Issue 3 by developing
an integrated graphical representation of the suite of MLM R2

measures to straightforwardly communicate their relationships
(see Figure 1) and by providing four demonstrations of the advan-
tages of an integrated interpretation of a suite of MLM R2 mea-
sures, rather than the more common approach of interpreting a
single measure in isolation (see Figures 2–5). Finally, we ad-
dressed Issue 4 by creating an R function, r2MLM, that computes
all measures and decompositions in our framework and we illus-
trated this function using three empirical examples drawn from
popular MLM textbooks (Figures 6–8). Next we discuss several
extension topics.

Extensions and Future Directions

Following widespread recommendations, here we decided to
ensure unconflated slopes of level-1 predictors by focusing on the
MLM specification with cluster-mean-centered level-1 predictors.
In this context, each predictor has (and explains) either purely
level-1 or level-2 variance. If researchers wish to fit MLMs with
non-cluster-mean-centered level-1 variables, then level-specific R2

measures would likely no longer be of interest but total R2 mea-
sures would likely still be of interest.16 It is important to remember
that fitted MLMs have stricter assumptions when not cluster-
mean-centering and so, as usual, researchers fitting such MLMs
need to ensure their model assumptions are plausible. Our R
function r2MLM can also be used to compute total R2 measures in
the absence of cluster-mean-centering; these supplementary mea-
sures are given in Table 5 and they use a model-implied total
outcome variance derivation provided in Appendix A Section A2.
For the Table 5 measures, f retains the same interpretation as in

16 If researchers unconflate level-1 predictors’ effects using a “contex-
tual effect” approach (see Raudenbush & Bryk, 2002 or Snijders & Bosker,
2012) rather than cluster-mean-centering, besides the measures in Table 5
they may be also interested in separately estimating Rt

2�f1� and Rt
2�f2�.

Although measures shown in Table 5 do not split f into within- and
between-cluster components, the within-cluster component f1 can be com-
puted by separately (i.e., post-model-fitting) cluster-mean-centering each
level-1 predictor and taking their (co)variances to compute �w (see Equa-
tion 10) and then inserting the fixed component of each level-1 predictor’s
slope into �w. The between-cluster component of f (i.e., f2) can be com-
puted by taking the (co)variances of cluster-means of each level-1 predictor
to compute �b and then adding to the fixed component of the slope of each
cluster-mean (i.e., the contextual effect) the fixed component of the slope
of each level-1 predictor, and placing the resultant between-effect into �b.
If such researchers additionally wish to compute level-specific measures,
we suggest that they use a cluster-mean-centered MLM together with the
Table 1 formulas.

Figure 8. Empirical Example 3: Results from model predicting popular-
ity (Hox, 2010). See the online article for the color version of this figure.
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Table 1, though the interpretation of v and m is less clean: v can
now explain variance at both levels (not just within-cluster), and m
now reflects between-cluster variance that is not attributable to f or
v. At the end of each Appendix B Sections B1–B6 we include
additional derivations showing relationships between each pub-
lished total R2 and our corresponding total R2 when not cluster-
mean-centering level-1 predictors.

Second, some pre-existing R2 measures were not discussed or
related to our framework in the current article. For generality, we
excluded measures that required fitted models to have no random
slopes. Perhaps the most common example of such a measure that
assumes only random intercepts is that developed by Snijders and
Bosker (1999 [Equation 7.2]). Snijders and Bosker (1999) noted
that, if one has a random slope model of interest, one could refit
the model without random slopes (i.e., fitting a more constrained
model) to compute the measure. In line with Jaeger et al. (2017)
and Johnson (2014) (see also Gurka, Edwards, & Muller, 2011) we
feel, however, that it is preferable to have an R2 measure that fully
reflects the structure of the fitted model. Nonetheless, it can be
shown that this Snijders and Bosker (1999) measure is analogous
to Rt

2(f), even when the full fitted model has random slopes and the
measure is computed by constraining slope variances to 0. Addi-
tionally, to maintain a manageable scope (Appendix B already
contains 10 sections of derivations) we did not relate our frame-
work to existing individual measures that were not commonly used
in MLM applications. Future research can relate special case
measures from our framework to these other existing individual
measures that are, for instance, computed under a Bayesian frame-
work using posterior simulation (Gelman & Pardoe, 2006), derived
from likelihood ratio tests or Wald tests (Edwards et al., 2008;
Jaeger et al., 2017; Magee, 1990), represented as proportion re-
duction in deviance or in entropy (Zheng, 2000), or represented as
a weighted least squares average of cluster-specific R2’s (Roberts
et al., 2011).

Third, though all R2 measures in this article were specifically
denoted for the most commonly modeled multilevel struc-
ture—a two-level hierarchical design— our approach to vari-

ance partitioning could be implemented in models with more
than two levels. For instance, in a three-level context, variance
can be explained by level-1, level-2, and level-3 predictors via
fixed components of slopes. A three-level total R2 could be
computed with the three-level model-implied total outcome
variance in the denominator and one (or some combination of)
model-implied variance(s) attributable to a given source (or
combination of sources) of explained variance in the numerator.
Level-specific R2 measures could similarly be computed, but
with the model-implied outcome variance only at level-1, or
level-2, or level-3 in the denominator.

Fourth, we focused on MLM with the most commonly used
type of outcome distribution—normal outcomes—though these
measures could be extended to a generalized linear mixed
model (GLMM) framework with, for instance, binary outcomes.
This has been done for selected R2 measures from our frame-
work by Nakagawa and Schielzeth (2013) and Johnson (2014)
(see also Jaeger et al., 2017). The approach in the former two
publications is similar to our own in that it involves partitioning
of model-implied variance to form both the outcome variance
(denominator) and the explained variance (numerator). The
difference is that, for GLMM, the definition of the level-1
residual variance is particular to the error distribution and link
function used. For instance, to obtain our framework of R2

measures for GLMMs with binary outcomes using the binary
logit link, �2 would be replaced by �2/3 in our Table 1.

Fifth, all measures in the current article were defined and
demonstrated for evaluation of a single hypothesized model at
a time, which is currently the most common use of MLM R2

(Gelman & Pardoe, 2006). Nonetheless, researchers may be
interested in how a MLM R2 increases with the addition of
parameters. Researchers can compute any of the measures in
Table 1 for two models under comparison and compute the
difference in each measure. For instance, one can compare a
reduced Model A to a full Model B that adds a fixed slope of a
single level-1 predictor. If one is interested in how much more
variance is explained in Model B by level-1 predictors via fixed

Table 5
Supplement to Framework: Total R2 Formulas for Multilevel Models (MLMs) Not Employing Cluster-Mean-Centering

Measure Definition (Interpretation)

Rt
2�f� � ����

���� � tr���� � m��m � �2
Proportion of total outcome variance explained by predictors via fixed slopes

Rt
2�v� �

tr����
���� � tr���� � m��m � �2

Proportion of total outcome variance explained by predictors via random slope variation/covariation

Rt
2�m� � m��m

���� � tr���� � m��m � �2
Proportion of total outcome variance explained by cluster-specific outcome means (beyond that

attributable to predictors via fixed slopes and random slope variation/covariation)

Rt
2�fv� �

���� � tr����
���� � tr���� � m��m � �2

Proportion of total outcome variance explained by predictors via fixed slopes and random slope
variation/covariation

Rt
2�fvm� �

���� � tr���� � m��m
���� � tr���� � m��m � �2

Proportion of total outcome variance explained by predictors via fixed slopes and random slope
variation/covariation and by cluster-specific outcome means

Note. These measures are described only in the Extensions and Future Directions section of our Discussion. These measures use the Appendix A Equation
A11 model-implied variance in their denominators, which is applicable when not cluster-mean-centering level-1 predictors. The article provides reasons
why we recommend using the framework of measures in Table 1, together with fitting a MLM with cluster-mean-centered level-1 predictors, rather than
using the supplemental formulas in Table 5, together with fitting a MLM without cluster-mean-centered level-1 predictors.
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slopes one can compute the increase in Rt
2�f1� and Rw

2�f1�. How-
ever, a full treatment of how to interpret and use these differ-
ences in practice, and how they relate to prior literature and
recommendations on model selection with MLM R2’s, is out-
side of the scope of the present article.

Lastly, in the current article, we focused on obtaining point
estimates of proportions of variance explained rather than on
the computation of standard errors or confidence intervals. Our
focus mirrors that of the current MLM R2 literature more
broadly. To our knowledge, only one MLM R2 measure is
accompanied by an analytic solution for computing confidence
intervals (Edwards et al., 2008); however, it is limited in that it
evaluates only the fixed effects as it is computed from a Wald
test of the fixed components. More broadly, the estimates of the
measures in Table 1 (which together evaluate the importance of
both fixed and random effects) would each have their own
unique degree of precision in a sample. Measure-specific con-
fidence intervals could be computed, for instance, via one of
several available kinds of multilevel bootstrapping (see Gold-
stein, 2011) or with Bayesian estimation via Markov-Chain
Monte Carlo (MCMC) sampling. Both approaches have been
suggested as viable options that should be investigated (LaHuis
et al., 2014; Nakagawa & Schielzeth, 2013). Note that, when
using bootstrapping in this context, researchers would want to
ensure that level-1 predictors remain cluster-mean-centered
within every bootstrap resample.

Conclusions

This article responds to widespread methodological recommen-
dations to move beyond consideration of only statistical signifi-
cance when fitting models (APA, 2009; Cumming, 2012; Harlow
et al., 1997; Kelley & Preacher, 2012; Panter & Sterba, 2011;
Wilkinson & APA Task Force on Statistical Inference, 1999).
With the general framework for computing MLM R2 measures
provided here, researchers have the flexibility to choose among the
different types of variance that can be explained (total vs. within-
cluster vs. between-cluster) and the different sources that can
contribute to explanation. Moreover, researchers can graphically
visualize this expanded set of options simultaneously. This leads to
an integrated interpretation of measures from our framework. It is
our hope that, by extending and relating existing measures across
disciplines, this unifying framework of R2 effect size measures will
aid researchers in efforts to convey practical significance.
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Appendix A

Model-Implied Outcome Variance Decomposition

Section A1: Model-Implied Outcome Variance With
Cluster-Mean-Centered Level-1 Predictors

The data model for the two-level model with cluster-mean-
centered level-1 predictors was given in manuscript Equation 5
and is restated here as Appendix Equation A1. Symbols used in
this data model were defined in the manuscript.

yij � xij
w� �w � xj

b� �b � wij� uj � eij

uj � MVN(0, T)

eij � N(0, �2)
(A1)

Here we use Equation A1 to compute the model-implied total
variance of yij:

var (yij) � var (xij
w� �w � xj

b� �b � wij� uj � eij) (A2)

Given independence of residuals and fixed effects as well as that
of level-1 and level-2 predictors:

var (yij) � var (xij
w� �w) � var (xj

b� �b) � var (wij� uj) � var (eij)

(A3)

The first term in Equation A3 is equal to

var (xij
w� �w) � �w� var (xij

w� )�w � �w� �w�w (A4)

where �w denotes the covariance matrix of all elements of xij
w. The

second term in Equation A3 is

var (xj
b� �b) � �b� var (xj

b� )�b � �b� �b�
b (A5)

where �b denotes the covariance matrix of all elements of xj
b. The

fourth term in Equation A3 is

var (eij) � �2 (A6)

The third term in Equation A3, using the law of total variance, is

var (wij� uj) � E[var (wij� uj
uj)] � var (E[wij� uj
uj])
� E[uj� �uj] � var (E[wij� ]uj)
� E[uj� �uj] � var (m�uj)
� E[uj� �uj] � m�var (uj)m
� E[uj� �uj] � m� Tm
� E[uj� �uj] � �00

(A7)

where � denotes the covariance matrix of all elements of wij, m
denotes a vector of means of all elements of wij, and �00 denotes

the random intercept variance. Note that m=Tm � �00 because,
when cluster-mean-centering all level-1 predictors, the mean of
each level-1 predictor is equal to 0.

The first term in Equation A7 can be re-expressed as

E[uj�uj] � E[tr(uj� �uj)]
� E[tr(ujuj� �)]
� tr(E[ujuj� ]�)
� tr(��)

(A8)

Combining Equations A4–A6 and Equations A9 and A11 yields

var (yij) � �w��w�
w

� �b��b�
b

� tr(��) � �00 � �2

(A9)

Section A2: Model-Implied Outcome Variance With
Non-Cluster-Mean-Centered Level-1 Predictors

In the context of non-cluster-mean-centered level-1 variables
(see Extensions section of manuscript Discussion), we can
express the MLM as in manuscript Equation 4

yij � xij� � � wij� uj � eij

uj � MVN(0, T)

eij � N(0, �2)
(A10)

where xij denotes a vector of 1 and all predictors and � denotes
a vector of all fixed effects. Other terms retain the definitions
from Equation A1. Following the same procedure as for the
model in Equation A1, the model-implied variance of yij for the
non-cluster-mean-centered model is

var (yij) � var (xij� � � wij� uj � eij)
� var (xij� �) � var (wij� uj) � var (eij)

� �� �� � tr(��) � m� Tm � �2
(A11)

where � denotes the covariance matrix of xij (other terms retain
the same definitions as above).
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Appendix B

Analytically Relating Previous Authors’ MLM R2’s to Integrative Framework

Appendix B provides derivations showing how 5 of our R2’s reflect
the same population quantities as those of 10 measures previously
developed by Snijders and Bosker (1999, 2012), Raudenbush and
Bryk (2002 [see also 1992 edition]), Vonesh and Chinchilli (1997),
Xu (2003), Aguinis and Culpepper (2015), and Johnson (2014 [an
extension of Nakagawa & Schielzeth, 2013]), as overviewed in man-
uscript Table 3. In some cases, certain of our measures are not only
equivalent to pre-existing measures in the population, but are also
equivalent in the sample (for Johnson’s [2014] extension of Naka-
gawa & Schielzeth [2013] and Snijders & Bosker [2012]). In these
cases, derivations involve showing that terms in pre-existing measures
are equivalent to terms in our measures. In other cases, denoted by “�”
in Appendix B, equivalencies between our measures and pre-existing
measures hold in the population, but not necessarily in a given sample
(for Aguinis & Culpepper [2015]; Raudenbush & Bryk [2002];
Vonesh & Chinchilli [1997]; and Xu [2003]). In these cases, deriva-
tions involve showing that replacing certain terms in the pre-existing
measures with what the MLM implies for these terms (i.e., the
population quantity based on MLM parameters) yield equivalencies
to our measures.

All sections of Appendix B (sections B1-B10) show population
equivalencies among pre-existing measures and measures from our
framework for cluster-mean-centered MLMs (manuscript Table
1); these measures from our framework utilize the cluster-mean-
centered model-implied variance expression from Appendix A
Section A1 Equation A9. Additionally, Appendix B sections
B1-B6 also show population equivalencies among pre-existing
total measures and the non-cluster-mean-centered versions of our
total measures (manuscript Table 5); these latter measures utilize
the non-cluster-mean-centered model-implied variance expression
from Appendix A Section A2 Equation A11. Note that the man-
uscript provides reasons why we recommend using the framework
of measures in Table 1, together with fitting a MLM with cluster-
mean-centered level-1 predictors, rather than using the supplemen-
tal formulas in Table 5, together with fitting a MLM without
cluster-mean-centered level-1 predictors.

Section B1: Correspondence Between Vonesh and
Chinchilli’s (1997) Measure and Rt

2(fvm)

Vonesh and Chinchilli’s (1997, p. 422 Eqn. 8.3.7) conditional
R2 with an implied fixed intercept null model, denoted Rc(FInull)

2 , is
given as

Rc(FInull)
2 � 1 �

�
j�1

J

�
i�1

nj

(yij � ŷij)
2

�
j�1

J

�
i�1

nj

(yij � ȳ)2

(B1)

Here J denotes the number of clusters, nj denotes cluster size, y�
denotes the grand mean of yij, and ŷij � xij

w��w � xj
b��b � wjuj.

Note that it is not necessary to actually fit a fixed intercept null
model to get y� so we do not refer to this measure as requiring a
“two-model fitting approach” in the manuscript. With N denoting
the total sample size (i.e., all observations), B1 can be re-expressed
as

Rc(FInull)
2 � 1 �

�
j�1

J

�
i�1

nj

(yij � ŷij)
2

N

�
j�1

J

�
i�1

nj

(yij � ȳ)2

N

�

�
j�1

J

�
i�1

nj

(yij � ȳ)2

N

�
j�1

J

�
i�1

nj

(yij � ȳ)2

N

�

�
j�1

J

�
i�1

nj

(yij � ŷij)
2

N

�
j�1

J

�
i�1

nj

(yij � ȳ)2

N .

�

�
j�1

J

�
i�1

nj

(yij � ȳ)2

N �
�
j�1

J

�
i�1

nj

(yij � ŷij)
2

N

�
j�1

J

�
i�1

nj

(yij � ȳ)2

N

.

(B2)

Here, the denominator estimates the total variance, and the
numerator estimates the total variance minus the residual vari-
ance (i.e., the explained variance). Thus, Rc(FInull)

2 takes the
general form of

Rc(FInull)
2 �

var (ŷij)
var (yij)

. (B3)

Replacing these terms with model-implied variances from Equa-
tion A9 yields
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Rc(FInull)
2* �

var (xij
w� �w � xj

b� �b � wij� uj)
var (yij)

�
�w� �w�w � �b� �b�b � tr(��) � �00

�w� �w�w � �b� �b�b � tr(��) � �00 � �2

� Rt
2(fvm)

(B4)

When predictors are not cluster-mean-centered, we can instead
use the expression in Equation A11 and replace Equation B4 with
Equation B5:

Rc(FInull)
2* �

var (xij� � � wij� uj)
var (yij)

� �� �� � tr(��) � m� Tm
�� �� � tr(��) � m� Tm � �2

� Rt
2(fvm)

(B5)

Section B2: Correspondence Between Xu’s (2003)
Measure and Rt

2(fvm)

Xu’s (2003, p. 3530 Eqn. 6) �0
2 is given as

�0
2 � 1 � �2

var (yij)
. (B6)

Replacing var(yij) with the model-implied variance of yij from
Equation A9, this is

�0
2* � 1 � �2

�w� �w�w � �b� �b�b � tr(��) � �00 � �2

�
�w� �w�w � �b� �b�b � tr(��) � �00 � �2

�w� �w�w � �b� �b�b � tr(��) � �00 � �2

� �2

�w� �w�w � �b� �b�b � tr(��) � �00 � �2

�
�w� �w�w � �b� �b�b � tr(��) � �00

�w� �w�w � �b� �b�b � tr(��) � �00 � �2

� Rt
2(fvm).

(B7)

When predictors are not cluster-mean-centered, we can replace
var(yij) with Equation A11 and replace Equation B7 with Equation
B8:

�0
2* � 1 � �2

�� �� � tr(��) � m� Tm � �2

� �� �� � tr(��) � m� Tm � �2

�� �� � tr(��) � m� Tm � �2

� �2

�� �� � tr(��) � m� Tm � �2

� �� �� � tr(��) � m� Tm
�� �� � tr(��) � m� Tm � �2

� Rt
2(fvm)

(B8)

Section B3: Correspondence Between Johnson’s (2014)
Measure (Extending Nakagawa & Schielzeth [2013])

and Rt
2(fvm)

The linear mixed model (LMM) version of Johnson’s (2014)
measure is denoted RLMM(c)

2 and is an extension of Nakagawa and
Schielzeth’s (2013) measure to allow random slopes. This measure
(Johnson, 2014, p. 945 Eqn 2 after replacing �l�1

u �l
2 with John-

son’s Eqn. 10 and dropping �d
2 , which is irrelevant for LMM) is

given as

RLMM(c)
2 �

�f
2 � �l

2�

�f
2 � �l

2�� �ε
2

(B9)

with �f
2 denoting the variance attributable to predictors via fixed

effects, �l
2� denoting the mean random effect variance across ob-

servations, and �ε
2 denoting the level-1 residual variance. Note that

�f
2 is the same as our �

w
��w�

w
� �

b
��b�

b and �ε
2 is the same as our

�2. We will show that �l
2� is equivalent to tr(��) � �00. �l

2� is given
by

�l
2�� tr(Z�Z�) ⁄ N (B10)

with N denoting total sample size and Z denoting a N � (p � 1)
design matrix for random effects (i.e., a column of N 1’s for the
intercept, and a column for each predictor with a random slope)
and T denoting the random effect covariance matrix.

tr(Z�Z�) ⁄ N � tr(�Z� Z) ⁄ N

� N � tr��Z� Z
N � ⁄ N

� tr��Z� Z
N �

(B11)

Note that Z�Z
N denotes a (p � 1) � (p � 1) matrix with the means

of the squares of each element of Z across all N observations on
the diagonal, and the means of pairwise products of each nonre-
dundant element of Z across all N observations on the off-
diagonals. We will call this matrix Z2�. Note also that, by definition
of variance, � (the covariance matrix of elements of wij) can be
given as Z2�  Z�2, with Z�2 denoting a matrix with the squared
means of each element of Z across all N observations on the
diagonal and the pairwise products of means of each nonredundant
element of Z across all N observations on the off-diagonals. Thus,

�l
2� � tr��Z2��

� tr���� � Z�2��

� tr��� � �Z�2�

� tr(��) � tr��Z�2�

(B12)
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With cluster-mean-centered level-1 predictors, Z�2 contains the
intercept variance as the first element and all other elements are 0.
Thus,

�l
2� � tr(��) � tr��Z�2�

� tr(��) � �00

(B13)

We can then express RLMM(c)
2 as

RLMM(c)
2 �

�w� �w�w � �b� �b�b � tr(��) � �00

�w� �w�w � �b� �b�b � tr(��) � �00 � �2

� Rt
2(fvm)

(B14)

When predictors are not cluster-mean-centered, note that �f
2 is

the same as our �=�� and again �ε
2 is the same as our �2. Equation

B13 can be re-expressed as

�l
2� � tr(��) � tr(�Z�2)

� tr(��) � tr(�mm�)
� tr(��) � tr(m � �m)
� tr(��) � m � �m

(B15)

Thus, when not cluster-mean-centering we can express RLMM(c)
2 as

RLMM(c)
2 � �� �� � tr(��) � m� Tm

�� �� � tr(��) � m� Tm � �
2

� Rt
2(fvm)

(B16)

Section B4: Correspondence Between Snijders and
Bosker (1999, 2012) Measure and Rt

2(f)

Snijders and Bosker’s (1999, 2012) RS&B
2 (Snijders & Bosker,

2012, p. 117 with their Eqn. 7.9 as the denominator, and with the
first term in their Eqn 7.9, �X��X�X , as the numerator) is based on
the model-implied decomposition of variance in random slope
models and is given by:

RS&B
2 �

�X� �X�X

�X� �X�X � �00 � 2�X� �10 � �X� T11�X � tr(T11�X) � �2

(B17)

with �X denoting a vector of fixed effects (slopes) for each predictor,
�X denoting a covariance matrix of all predictors, �00 denoting the
random intercept variance, �X denoting a vector of means for each
predictor, �10 denoting a vector of intercept-slope covariances asso-
ciated with each predictor, T11 denoting a covariance matrix for the

random slopes, and �2 denoting the level-1 residual variance. Note
that this expression assumes all predictors have both fixed and ran-
dom effects, but could be easily modified by having separate matrices/
vectors for fixed and random components.

We show that our model-implied variance in Equation A9 is
equivalent to the denominator expression in Equation B17. First, we
will show that our �w��w�w � �b��b�

b is equal to Snijders and
Bosker’s �X� �X�X term. Note that the combination of �b and �w in our
expression contains all fixed parts of effects, whereas �X excludes the
intercept. The combination of �w and �b in our expression and �X

both contain the variances and covariances of all predictors, but our
�b also has a first row and column consisting entirely of 0’s (because
the first element of xij

b is a constant). We can thus set

�w� �w�w� ��b� �b�b� � (�b �w)� ��b 0

0 �w ���b

�w �
� (�00 �X)� � 0 0p�

0p �X
���00

�X
�

� �0 �X��X ���00

�X
�

� �X� �X�X

(B18)

with 0p denoting a vector of p (number of predictors) 0’s and �00

the fixed part of the intercept.
Next, we will show that tr(��) � tr(T11�X). Note that the first

row and column of � consist solely of 0’s (as the first element of
wij is a constant) and the remaining rows and columns consist of
variances and covariances of predictors with random slopes (i.e.,
�X). Thus,

tr(��) � tr���00 �10�

�10 T11
�� 0 0p�

0p �X
�

� tr��0 �10� �X

0 T11�X
�

� tr�T11�X�

(B19)

Next, note that when level-1 predictors with random slopes are
cluster-mean-centered, the expression �00 � 2�X� �10 � �X� T11�X

simplifies to �00, as the means of each such predictor equal 0.
Thus,

RS&B
2 �

�X� �X�X

�X� �X�X � �00 � 2�� �10 � �X� T11�X � tr(T11�X) � �2

� �w� �w�w � �b� �b�b

�w� �w�w � �b� �b�b � tr(��) � �00 � �2

� Rt
2(f)

(B20)
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When level-1 predictors are not cluster-mean-centered, note first
that our tr(��) is equal to tr(T11�X), as shown above (nothing in
the above derivation is specific to cluster-mean-centered contexts).
Second, note that our �=�� is equal to ��X�X�X.

�� �� � (�00 �X)� � 0 0p�

0p �X
���00

�X
�

� �0 �X� �X ���00

�X
�

� �X� �X�X

(B21)

Next, note that m�Tm � �00 � 2�X� �10 � �X� T11�X.

m� Tm � tr(m� Tm)
� tr(Tmm�)

� tr���00 �10�

�10 T11
�� 1

�X
�(1 �X� )

� tr���00 � �10� �X

�10 � T11�X
�(1 �X� )

� tr��00 � �10� �X �00�X� ��10� �X�X�

�10 � T11�X �10�X� �T11�X�X�


� �00 � �10� �X � tr(�10�X� �T11�X�X� )
� �00 � �10� �X � tr(�10�X� ) � tr(T11�X�X� )
� �00 � �10� �X � tr(�X� �10) � tr(�X� T11�X)
� �00 � �10� �X � �X� �10 � �X� T11�X

� �00 � 2�X� �10 � �X� T11�X

(B22)

Thus, when not cluster-mean-centering level-1 predictors,

RS&B
2 �

�X� �X�X

�X� �X�X � �00 � 2�X� �10 � �X� T11�X � tr(T11�X) � �2

� �� ��
�� �� � tr(��) � m� Tm � �2

� Rt
2(f).

(B23)

Section B5: Correspondence Between Vonesh and
Chinchilli’s (1997) Measure and Rt

2(f)

Vonesh and Chinchilli’s (1997) marginal R2 (p. 422 Eqn. 8.3.7),
denoted Rm

2 , is given by

Rm
2 � 1 �

�
j�1

J

�
i�1

nj

(yij � ŷij)
2

�
j�1

J

�
i�1

nj

(yij � ȳ)2

(B24)

with ŷij � xij
w��w � xj

b��b. As shown in Appendix B Section B1,
this can be reexpressed as

Rm
2 �

var (ŷij)
var (yij)

. (B25)

Using our model-implied variance approach from Equation A9,
this becomes

Rm
2* �

var (xij
w� �w � xj

b� �b)
var (yij)

� �w� �w�w � �b� �b�b

�w� �w�w � �b� �b�b � tr(��) � �00 � �2

� Rt
2(f).

(B26)

When level-1 predictors are not cluster-mean-centered, we use
Equation A11 to yield

Rm
2* �

var (xij� �)
var (yij)

� �� ��
�� �� � tr(��) � m� Tm � �2

� Rt
2(f).

(B27)

Section B6: Correspondence Between Johnson’s (2014)
Measure (Extending Nakagawa and Schielzeth [2013])

and Rt
2(f)

The linear mixed model (LMM) version of Johnson’s (2014)
measure, denoted RLMM(m)

2 (Johnson, 2014, p. 945 Eqn 1, after
replacing l�1

u �l
2 with Johnson’s Eqn 10 and dropping �d

2, which is
irrelevant for LMM), is an extension of Nakagawa and Schiel-
zeth’s (2013) measure to allow random slopes and is given as

RLMM(m)
2 �

�f
2

�f
2 � �l

2�� �ε
2
. (B28)

Replacing these terms with our model-implied notation that
involves cluster-mean-centered predictors, as shown in Appendix
B Section B3, this becomes

RLMM(m)
2* � �w� �w�w � �b� �b�b

�w� �w�w � �b� �b�b � tr(��) � �00 � �2

� Rt
2(f)

(B29)

When level-1 predictors are not cluster-mean-centered,

RLMM(m)
2* � �� ��

�� �� � tr(��) � m� Tm � �
2

� Rt
2(f)

(B30)
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Section B7: Correspondence Between Raudenbush and
Bryk’s (2002) Measure and Rw

2(f1v)

Raudenbush and Bryk’s (2002, p. 79 Eqn. 4.20; also in Bryk &
Raudenbush, 1992; Hox 2002, 2010; Kreft & de Leeuw, 1998) level-1
R2 (which uses a two-model-fitting approach in which the null model
is a random-intercept-only model) is denoted RL1,RInull

2 and is given as

RL1,RInull
2 �

�RInull
2 � �

2

�RInull
2 (B31)

with �RInull
2 denoting the level-1 residual variance from the random-

intercept-only null model. Note that the model-implied variance of
yij from this null model can be denoted

var (yij) � �RInull
2 � �00

* (B32)

with �00
� denoting the intercept variance from the random-

intercept-only null model. Thus, we can set

RL1,RInull
2* �

(var (yij) � �00
* ) � �

2

(var (yij) � �00
* )

(B33)

Using our model-implied variance that involves cluster-mean-
centered predictors, this becomes

RL1,RInull
2* �

(�w� �w�w � �b� �b�b � tr(��) � �00 � �2 � �00
* ) � �

2

�w� �w�w � �b� �b�b � tr(��) � �00 � �2 � �00
*

�
�w� �w�w � �b� �b�b � tr(��) � �00 � �00

*

�w� �w�w � �b� �b�b � tr(��) � �00 � �2 � �00
*

(B34)

Note that �00
* reflects all between-cluster variance, and thus

�00
* � �

b
� �b�

b
� �00 (B35)

Thus,

RL1,RInull
2* �

�w� �w�w � �b� �b�b � tr(��) � �00 � (�b� �b�b � �00)

�w� �w�w � �b� �b�b � tr(��) � �00 � �2 � (�b� �b�b � �00)

� �w� �w�w � tr(��)
�w� �w�w � tr(��) � �2

� Rw
2(f1v)

(B36)

Section B8: Correspondence Between Vonesh and
Chinchilli’s (1997) Measure and Rw

2�f1v�

Vonesh and Chinchilli’s (1997) conditional R2 with a random-
intercept-only null model involves a two-model-fitting approach
and is denoted Rc(RInull)

2 (p. 422 Eqn 8.3.7 replacing y� with ŷij
null from

Eqn. 8.3.9). It is given by

Rc(RInull)
2 � 1 �

�
j�1

J

�
i�1

nj

(yij � ŷij)
2

�
j�1

J

�
i�1

nj

�yij � ŷij
null�2

(B37)

The full model has ŷij � xij�� � wjuj and null model has ŷij
null �

�00
null � u0j

null. It can be re-expressed as

Rc(RInull)
2 � 1 �

�
j�1

J

�
i�1

nj

(yij � ŷij)
2

N

�
j�1

J

�
i�1

nj

(yij � ŷij
null)2

N

�

�
j�1

J

�
i�1

nj

(yij � ŷij
null)2

N

�
j�1

J

�
i�1

nj

(yij � ŷij
null)2

N

�

�
j�1

J

�
i�1

nj

(yij � ŷij)
2

N

�
j�1

J

�
i�1

nj

(yij � ŷij
null)2

N

�

�
j�1

J

�
i�1

nj

(yij � ŷij
null)2

N �
�
j�1

J

�
i�1

nj

(yij � ŷij)
2

N

�
j�1

J

�
i�1

nj

(yij � ŷij
null)2

N .

(B38)

Here, the denominator estimates the residual variance from the
random-intercept-only null model, and the numerator estimates the
residual variance from the random-intercept-only null model mi-
nus the residual variance from the full model. Thus, Rc(RInull)

2 takes
the general form of

(Appendices continue)
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Rc(RInull)
2* �

(var (yij) � var (ŷij
null)) � (var (yij) � var (ŷij))

var (yij) � var (ŷij
null)

(B39)

Using our model-implied variance approach that involves cluster-
mean-centered predictors, this is

Rc(RInull)
2* �

(var (yij) � �00
* ) � (var (yij) � var (xij� � � wjuj))

var (yij) � �00
*

�
(�w� �w�w � �b� �b�b � tr(��) � �00 � �2) � (�b� �b�b � �00)

(�w� �w�w � �b� �b�b � tr(��) � �00 � �2) � (�b� �b�b � �00)

�

(�w� �w�w � �b� �b�b � tr(��) � �00 � �2)

� (�w� �w�w � �b� �b�b � tr(��) � �00)

(�w� �w�w � �b� �b�b � tr(��) � �00 � �2) � (�b� �b�b � �00)

� �w� �w�w � tr(��) � �2 � �2

�w� �w�w � tr(��) � �2

� �w� �w�w � tr(��)
�w� �w�w � tr(��) � �2

� Rw
2(f1v)

(B40)

Section B9: Correspondence Between Raudenbush and
Bryk’s (2002) Measure and Rb

2(f2)

Raudenbush and Bryk’s (2002, p. 74 Eqn 4.12; also in Bryk &
Raudenbush, 1992; Hox 2002, 2010; Kreft & de Leeuw, 1998)
proportion of variance explained in �0j (the intercept) (which uses
a two-model-fitting approach in which the null model is a random-
intercept-only model) is denoted R�0j

2 and is given as

R�0j

2 �
�00

* � �00

�00
* (B41)

Using our model-implied variances involving cluster-mean-
centered predictors, this is

R�0j

2*
�

�b� �b�b � �00 � �00

�b� �b�b � �00

� �b� �b�b

�b� �b�b � �00

� Rb
2(f2)

(B42)

Section B10: Correspondence Between Aquinis and
Culpepper’s (2015) Measure and Rt

2(v)

Aguinis and Culpepper’s (2015) ICC beta, �� (p. 945 Eqn 2), is
given by

�� � tr��
Xc� Xc

N � 1�S�2 (B43)

with Xc denoting a N � (p � 1) design matrix with group-mean-
centered predictors and S2 denoting the total sample variance of yij.

First note that the term tr��
Xc� Xc

N�1 � is equivalent to our tr(��) in
the group-mean-centered version of our decomposition of total

variance. By definition,
Xc� Xc

N�1 is the sample estimate of the cova-
riance matrix of all group-mean-centered predictors (including 1
for the intercept), i.e., the sample estimate of �. Next, substituting
the sample variance S2 with our model-implied variance of yij

involving group-mean-centered predictors, this yields

��
*

�
tr��

Xc� Xc

N � 1�
�w� �w�w � �b� �b�b � tr(��) � �00 � �2

� tr(��)
�w� �w�w � �b� �b�b � tr(��) � �00 � �2

� Rt
2(v)

(B44)
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