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ABSTRACT
In structural equation modeling applications, parcels—averages or sums of subsets of item
scores—are often used as indicators of latent constructs. Parcel-allocation variability (PAV) is
variability in results that arises within sample across alternative item-to-parcel allocations. PAV
can manifest in all results of a parcel-level model (e.g., model fit, parameter estimates, standard
errors, and inferential decisions). It is a source of uncertainty in parcel-level model results that
can be investigated, reported, and accounted for. Failing to do so raises representativeness
and replicability concerns. However, in recent methodological literature (Cole, Perkins, &
Zelkowitz, 2016; Little, Rhemtulla, Gibson, & Shoemann, 2013; Marsh, Ludtke, Nagengast, Morin,
& von Davier, 2013; Rhemtulla, 2016) parceling has been justified and recommended in several
situations without quantifying or accounting for PAV. In this article, we explain and demon-
strate problems with these rationales. Overall, we find that: (1) using a purposive parceling
algorithm for a multidimensional construct does not avoid PAV; (2) passing a test of unidimen-
sionality of the item-level model need not avoid PAV; and (3) a desire to improve power for
detecting structural misspecification does not warrant parceling without addressing PAV; we
show how to simultaneously avoid PAV and obtain even higher power by comparing item-
level models differing in structural constraints. Implications for practice are discussed.
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Introduction

It is common practice for researchers to use parcel
scores as indicators of latent constructs in factor analysis
(FA) or structural equation modeling (SEM) applica-
tions. A parcel is a sum or average of a subset of item
indicators of a latent construct (e.g., Cattell, 1956). In
particular, between 17% and 63% of FA or SEM applica-
tions use parcel scores in lieu of item scores as indica-
tors of latent constructs (Bandalos & Finney, 2001; Hall,
Snell, & Foust, 1999; Plummer, 2000; Williams &
O’Boyle, 2008). Indeed, parceling is currently considered
the “prevailing approach for including scales with many
items in factor analysis and SEM” (Marsh, L€udtke,
Nagengast, Morin, & Von Davier, 2013, p. 258; see also,
Yang, Nay, & Hoyle, 2010, p. 123).

A parcel allocation is a choice of which items to
allocate to a given parcel, given the researcher’s
desired number of items per parcel and number of
parcels per construct. Parcel-allocation variability
(PAV) is variability in results that arises within sample

across alternative potential parcel allocations (Sterba &
MacCallum, 2010). PAV manifests in all results of
parcel-level models (i.e., in model fit statistics, model
ranking, structural parameter estimates, standard
errors, and inferential decisions), and the magnitude
of this PAV largely depends on the amount of model
error and/or sampling error (Sterba, 2011; Sterba &
Rights, 2016, 2017).1 PAV is a source of uncertainty
in parcel-level model results.

PAV has implications for any individual study
reporting parcel-level model results. If that individual
study uses a single allocation, unbeknownst to the
investigator results may be atypical of the distribution
of results from other potential allocations within the
sample. PAV also has implications across studies—
involving both representativeness concerns and replic-
ability concerns. First regarding the representativeness
concerns: if different studies each use the same
allocation, then their results are all conditional on the
choice of that particular allocation (whereas investiga-
tors conventionally interpret results unconditionally

CONTACT Sonya K. Sterba sonya.sterba@vanderbilt.edu Department of Psychology and Human Development, Vanderbilt University, Peabody #552,
230 Appleton Place, Nashville, TN 37203.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/hmbr.
1Additionally, Sterba and Rights (2017) showed that even in the absence of both measurement model error and sampling error PAV in results can arise
simply when there are unequal item loadings on a factor.
� 2019 Taylor & Francis Group, LLC

MULTIVARIATE BEHAVIORAL RESEARCH
2019, VOL. 54, NO. 2, 264–287
https://doi.org/10.1080/00273171.2018.1522497

http://crossmark.crossref.org/dialog/?doi=10.1080/00273171.2018.1522497&domain=pdf
http://www.tandfonline.com/hmbr
https://doi.org/10.1080/00273171.2018.1522497
http://www.tandfonline.com


as if they generalize to other allocations; Maul, 2012).
Second, regarding the replicability concerns: if different
studies each use a different allocation, PAV adds to
between-sample variability in results. Thus, a lack of
replicability of structural results across studies may be
due to substantive across-study differences (in, say,
design, or sampling), or may simply be due to the use
of different parcel-allocations.

In light of these representativeness and replicability
concerns, existing recommendations are to quantify and
report variability in parcel-level results across repeated
allocations within a given sample (Sterba & MacCallum,
2010; Sterba & Rights, 2017). This can involve pooling
results across allocations within sample using Rubin’s
(1987) rules to simultaneously account for sampling
variability and parcel-allocation variability (see Sterba &
Rights, 2016 for procedures). Accounting for PAV in
this manner parallels how Rubin’s (1987) rules are
already used to simultaneously account for other non-
sampling sources of variability, together with sampling
variability, in a wide variety of contexts (for review, see
Reiter & Raghunathan, 2007). For instance, when faced
with uncertainty regarding the values missing data
would take on had they been observed, researchers do
not just choose one imputation of the missing data, but
rather they repeatedly (i.e., multiply) impute (e.g.,
Enders, 2010; Little & Rubin, 2002; Rubin, 1987; van
Buuren, 2012) and incorporate into the analysis the
between-imputation variability in results, in addition to
sampling variability. Likewise, when faced with uncer-
tainty about the values of person-specific latent ability
scores (i.e., item response theory ability scores) during
secondary analyses of large scale surveys, researchers do
not just choose one set of plausible values for these
scores, but rather repeatedly generate sets of plausible
values (e.g., Asparouhov & Muth�en, 2010; Braun & von
Davier, 2017; Mislevy, 1991; Schofield, Junker, Taylor,
& Black, 2015; Wu, 2005) and incorporate into the ana-
lysis the between-plausible-value variability in results, in
addition to sampling variability.

However, in recent methodological literature,
parceling has been justified and recommended in
several situations without investigating or quantifying
PAV. In this article, we demonstrate problems
with rationales for parceling in these situations when
failing to consider PAV, and discuss implications for
practice. For reference throughout the article, these
situations (to be explained subsequently) are:

Situation 1: Parceling without concern for PAV when
using a purposive parceling algorithm for construct(s)
that are assumed to be multidimensional (Cole et al.
2016; Little et al. 2013).

Situation 2: Parceling without concern for PAV when
a unidimensional-construct item-level model fits well
in the sample (Marsh et al. 2013).

Situation 3: Parceling without concern for PAV when
the goal is to improve power for detecting structural
misspecification (Rhemtulla, 2016).

For each situation in turn, we describe the rationale
provided for parceling without considering PAV,
explain the problem with the rationale, provide a dem-
onstration of this problem, and indicate consequences
for applied practice. The rationales for each situation
are evaluated separately, reflecting how they appeared
in the literature. However, in the discussion section we
contrast rationales with each other and then conclude
with overall recommendations for methodological and
applied research concerning parceling.

Situation 1: Parceling without concern for PAV
when using a purposive parceling algorithm
for construct(s) that are assumed to be
multidimensional (Cole et al. 2016;
Little et al. 2013)

Rationale for Situation 1

Little et al. (2013) and Cole et al. (2016) state that
when substantive theory indicates that the construct
of interest is multidimensional, item indicators of this
construct can be allocated to parcels using a purposive
algorithm that takes into account this multi-
dimensionality, without a stipulation that researchers
account for PAV. The implicit rationale underlying
this practice is, first, that a purposive algorithm is
a nonrandom procedure such that it would be impos-
sible to create a within-sample distribution of results
across parcel allocations generated from a given
purposive algorithm, and, second, that a random
algorithm for allocating items to parcels is inherently
limited to a simple random allocating of all items
to parcels with equal probability (as could be imple-
mented for a unidimensional construct, for instance)
(e.g., Little et al., 2013 p. 295, 296). As such, this
rationale acknowledges that PAV can arise when using
random allocating for a unidimensional construct
(e.g., Little et al., 2013) but assumes it cannot arise
when using a purposive algorithm for a construct
theorized to be multidimensional.

Problems with the rationale for Situation 1

One problem with this rationale is that it draws too
stark a distinction between random and purposive
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algorithms for allocating items to parcels. In reality,
popular purposive algorithms for multidimensional
constructs can give rise to many possible different
allocations—often random ones. As such, there can be
a within-sample distribution of results across parcel
allocations generated from a purposive algorithm
and PAV can indeed arise when using purposive
allocating.

Another problem with this rationale is that it has
led simulations and empirical papers to implement
purposive parceling algorithms as if there were only
one implementation of each algorithm (i.e., as if only
one possible parcel allocation could be generated from
each purposive algorithm), and then to compare pur-
posive algorithms by comparing the results of each’s
single allocation (e.g., Bandalos, 2008; Coffman &
MacCallum, 2005; Cole et al., 2016; Hagtvet & Nasser,
2004; Hall et al., 1999; Landis, Beal, & Tesluk, 2000;
Marsh et al., 2013; Rhemtulla, 2016; Rogers &
Schmitt, 2004). This practice, in turn, serves to blur
and confound comparisons of purposive algorithms,
by conflating between-purposive-algorithm variability
and within-purposive-algorithm variability in results—
as will be shown below.

Demonstration of problems with the rationale
for Situation 1

To illustrate these problems, we consider what is
probably the most popular purposive parceling algo-
rithm: heterogeneous parceling, which is also called
domain-representative parceling or distributed parcel-
ing (e.g., Hagtvet & Nasser, 2004; Hall et al., 1999;
Kim & Hagtvet, 2003; Kishton & Widaman, 1994;
Little, Cunningham, Shahar, & Widaman, 2002; Little
et al., 2013; Rhemtulla, 2016). Heterogeneous parcel-
ing is applicable when the researcher’s construct of
interest is theorized to be multidimensional in the
sense of a second-order factor. See, for example,
Figure 1 Panel A. Allocating items to parcels using a
heterogeneous parceling algorithm can entail allocating
an item indicator from each lower order factor (i.e.,
facet) to a given parcel, as shown in Figure 1 Panel B.

According to the rationale for Situation 1, when
researchers theorize that their construct of interest is
multidimensional, as in Figure 1 Panel A, they can
implement a heterogeneous parceling algorithm by
generating a single heterogeneous parcel allocation
(e.g., Figure 1 Panel B) without concern for PAV
(e.g., Cole et al., 2016). However, a problem is that
there is not one but rather T different ways to allocate
items to parcels by applying a heterogeneous parceling

algorithm. T can be given as

T ¼ k=q
� �

!q�1 (1)

where k¼ the number of items and q¼ the number
of facets, which here is also the number of items
per parcel. Importantly, there can be PAV across these
purposive allocations within sample. For example,
consider the multidimensional extraversion construct
from the Neuroticism-Extroversion-Openness
Personality Inventory (NEO) (Costa & McCrae, 1985).
NEO extraversion involves 36 items loading on
six lower-order facets (warmth, gregariousness,
excitement-seeking, etc.) such that there are six items
per facet. Although NEO extraversion is often used in
single-allocation heterogeneous parceling analyses
(e.g., Little et al., 2002), there is not just one possible
heterogeneous allocation of extraversion but rather
there are 193 trillion different possible purposive
allocations that implement heterogeneous parceling
of extraversion.

Here, for illustration we randomly repeat this het-
erogeneous allocating (1 item from each lower-order
facet of NEO extraversion allocated into a given par-
cel) M¼ 1000 times2 within a sample using data from
the 1987 Computer Assisted Panel Study (N¼ 102)
(Latane, 1989). Within-sample PAV distributions of
model fit statistics across these potential purposive
heterogeneous allocations of extraversion are shown
in the histograms of Figure 2 for the Comparative
Fit Index (CFI), Tucker–Lewis Index (TLI), Root
Mean Square Error of Approximation (RMSEA),
Standardized Root Mean Square Residual (SRMR), the
p-value of the v2 test of absolute fit, and the p-value
of the RMSEA test of close fit. Close fit is here
defined as population RMSEA� .05 (Browne &
Cudeck, 1993). As seen in Figure 2, the v2 test of
absolute fit and RMSEA test of close fit both flip from
significant to nonsignificant across heterogeneous pur-
posive parceling allocations within this sample.
Likewise, the CFI, TLI, and SRMR all range from
good fit to poor fit across heterogeneous purposive
parceling allocations within this sample. Thus, in con-
trast to the rationale for Situation 1, there is PAV in
model fit despite having used a purposive parceling
algorithm that reflects substantive theory.

Now, suppose we wanted to compare results
within-sample across different purposive parceling
algorithms for our multidimensional construct of
NEO extraversion. The most common comparison is
between a heterogeneous parceling algorithm and a

2For discussion about choosing M see Sterba and Rights (2016).
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homogeneous parceling algorithm (also called “shared
uniqueness” or “facet representative” parceling). The
common procedure is to use just one chosen alloca-
tion of the heterogeneous algorithm and just one
chosen allocation of the homogeneous algorithm as
stand-ins to represent the performance of those algo-
rithms as a whole. The common attribution for find-
ing differences in results from those two allocations is
that the differences are reflective of the differences in
the general performance of the purposive algorithms
themselves (e.g., Bandalos, 2008; Coffman &
MacCallum, 2005; Cole et al., 2016; Hagtvet & Nasser,

2004; Hall et al., 1999; Landis et al., 2000; Marsh
et al., 2013; Rhemtulla, 2016; Rogers & Schmitt, 2004).
If we implement homogeneous parceling by allocating
all item indicators of a lower-order facet to the same
parcel, as shown in Figure 1 Panel C, then the model
fit results from this homogeneous purposive allocation
are shown by the vertical bar superimposed on each
histogram in Figure 2. We can see from Figure 2 that
we would draw very different conclusions about the
performance of heterogeneous versus homogeneous
parceling algorithms depending on which random
allocation from the heterogeneous algorithm we chose.

Figure 1. Background on Situation 1: Diagrams corresponding to one allocation from each of two kinds of purposive parceling
algorithms (heterogeneous and homogeneous) for the same multidimensional construct.
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That is, depending on the heterogeneous allocation,
we could conclude that the homogeneous parcel-level
model fit better, using any of the fit indices, or we
could conclude that the homogeneous parcel-level
model fit worse, using any of the fit indices. Hence,
the common procedure of using just one heteroge-
neous allocation within-sample to represent the
performance of the heterogeneous algorithm as a whole
sacrifices interpretability of results because it conflates
variability in results between purposive algorithms
(homogeneous vs. heterogeneous) with variability in
results within a given purposive algorithm.

Note that the heterogeneous- versus homogeneous-
parceling comparison would become even more com-
plex if we consider that there are also multiple ways
to implement homogeneous parceling (see Rogers &
Schmitt, 2004 for review); implementing these alterna-
tives would replace the thin vertical line in each panel
of Figure 2 with a second within-sample distribution
of results in each panel of Figure 2. This second
distribution would represent PAV in fit across homo-
geneous allocations within sample. Inferential statistics
could then be employed to compare fit between
homogeneous versus heterogeneous parceling algo-
rithms by assessing whether an estimate of the

variability in fit based on its between-algorithm vari-
ability is significantly greater than an estimate of the
variability in fit based on its within-algorithm PAV.

Implications for practice

Analyses using a substantively justified purposive allo-
cation designed for multidimensional constructs (e.g.,
heterogeneous or distributed or domain-representative
parceling) are still subject to PAV. Many simulations
and empirical applications may have had different
results if they had used one of the other thousands or
millions of heterogeneous allocations to compare to
homogeneous allocation(s). Relying on a single alloca-
tion implementation of a purposive algorithm again
raises concerns about representativeness and replic-
ability of results. Next, we turn to Situation 2.

Situation 2. Parceling without concern for PAV
when a unidimensional-construct item-level
model fits well in the sample (Marsh
et al., 2013)

Rationale for Situation 2

Marsh et al. (2013) share the widespread methodological
concern that when researchers assume a unidimensional-

Figure 2. Evaluation of Situation 1: Parcel-allocation variability in model fit for the multidimensional Extraversion construct using
purposive parceling within a single empirical sample: Results from repeated heterogeneous parceling allocations are shown in histo-
grams and, for comparison, results from a single homogeneous allocation is shown in the vertical bars.
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construct item-level model holds based purely on
substantive theory or based on previous item-level
analysis from a different sample, misspecification of
the item-level measurement model could be camou-
flaged by parceling. To allay this concern, they
require a formal statistical test of the assumed item-
level model to justify the use of parceling in the sam-
ple at hand. In particular, Marsh et al. (2013, p. 281)
recommend that “The use of item parcels is only jus-
tified when there is good support for unidimensional-
ity of all the constructs at the item level for the
particular models and sample being considered. Tests
for this requirement should be conducted for the
complete model at the item level.” In other words,
although Marsh et al. (2013) oppose parceling under
many conditions, they nonetheless conclude that
“Like Little et al., we acknowledge that the use of par-
cels is justified under certain circumstances, but for
us these circumstances are limited primarily to mod-
els where there is support for unidimensionality at
the item level” (p. 281).

The item-level testing procedure they empirically
demonstrated did not additionally require statistically
accounting for PAV in the parcel-level analysis after
the item-level test for unidimensionality was passed.
The rationale given for not addressing PAV as part of
the demonstrated testing procedure was that “Parcel
allocation variability will be most substantial when
violations of unidimensionality are substantial” (p.
280). This would imply that PAV is larger when
model error is larger. However, the relationship
between PAV and model error is more complex, as
will be explained shortly. Additionally, despite
acknowledging that sampling error could in principle
contribute to PAV, demonstrations of the effectiveness
of the proposed item-level testing procedure were per-
formed under no sampling error (N¼ 100,000), where,
all else equal, the risk of PAV would be minimized.
Marsh et al.’s rationale for omitting sampling error in
the demonstration of the proposed testing procedure
was that sampling error would cloud the picture of
the test performance. Sampling error will indeed cloud
this picture—but in a necessary way that is reflective
of real world practice.

Problems with the rationale for Situation 2

The problem with the rationale for Situation 2 is
that PAV can still arise under conditions where sam-
ples can nonetheless pass a test of unidimensionality
at the item-level. Under low or no model error (i.e.,
low or no departure from unidimensionality in the

population) together with elevated sampling error,
samples should be able to quite frequently pass (i.e.,
fail to reject) an item-level test of unidimensionality.
Because PAV is known to occur under low or no
model error plus elevated sampling error (Sterba &
MacCallum, 2010), it could likewise arise under these
conditions in samples passing the item-level screen-
ing test. Under moderate model error, fewer samples
should be able to pass an item-level test of unidi-
mensionality. However, PAV not only occurs in this
context at either low or high sampling error, but
PAV in certain results (e.g., inferential decisions) is
actually maximized in this context (Sterba & Rights,
2017), and such PAV could likewise arise in samples
passing the item-level screening test. Inferential deci-
sions about the parcel-level model include decisions
about rejecting the null hypothesis for tests of overall
fit for the parcel-level model, tests of individual
parameters in the parcel-level model, or tests com-
paring competing parcel-level models. Such inferen-
tial decisions are probably the most fundamental and
consequential for researchers’ substantive interpreta-
tions, so PAV in such decisions is critical and con-
cerning. The reason why PAV in inferential
decisions about the parcel-level model is maximized
under moderate model error is that in this setting a
fit index (or test statistic) from the parcel-level
model will tend to—on average, across allocations
within a sample—be close to its decision threshold
(or critical value), which makes it more likely
for results to flip back and forth from poor fit to
good fit (or significant to nonsignificant) across
repeated allocations within that sample (Sterba &
Rights, 2017).

Because PAV in inferential decisions about the par-
cel-level model is particularly elevated under moderate
model error (as compared to low model error or high
model error), such PAV is not monotonically related
to the amount of model error. In the present context,
this implies that PAV in inferential decisions is not
monotonically related to the departure from unidi-
mensionality in the population. In contrast to the
rationale for Situation 2, this implies that an item-
level test of unidimensionality cannot serve as a proxy
test for the presence of PAV in inferential decisions
about the parcel-level model. Indeed, under very high
model error, virtually no samples should be able to
pass an item-level test of unidimensionality, regardless
of the amount of sampling error. In this situation of
very high model error, PAV in inferential decisions
about, for instance, parcel-level model fit should be
low—because fit indices would (on average across
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allocations within a sample) be far from their decision
threshold (Sterba & Rights, 2017)—though PAV in
other results (e.g., PAV in point estimates) could con-
tinue to increase.

In sum, though well-intentioned, if adopted in
practice in its demonstrated form, an item-level test-
ing procedure for unidimensionality risks giving
researchers false assurance that they can ignore PAV
in subsequent parcel-level analyses, under circumstan-
ces where PAV can nonetheless be large enough to
affect substantive conclusions.

Demonstration of problems with the rationale for
Situation 2

Consider the scenario where a researcher theorizes
that he or she has three correlated unidimensional
constructs. Typical practice would be to rely on previ-
ous results and/or substantive theory regarding the
factor structure, and then parcel item indicators
within each factor, and exclusively fit a 3-factor
parcel-level model. Here, we evaluate the strategy
proposed in Situation 2 of testing the unidimensionality
of the 3-factor item-level model prior to parceling.
We use a simulation to investigate whether this test
serves as an indicator of the presence of PAV—such
that passing the test of unidimensionality implies no
or nonmeaningful PAV.

Before continuing, it is worth noting that Situation
2 reverses the logic commonly employed in applied
practice. Currently researchers often decide to parcel
when they obtain a poorly fitting item-level model or
when they cannot estimate an item-level model
(Bagozzi & Edwards, 1998; Hau & Marsh, 2004;
Irwing, Booth, & Batey, 2014; Little et al., 2013;
Martens, 2005; Matsunaga, 2008; Meade & Kroustalis,
2006; Nasser-Abu & Wisenbaker, 2003; Plummer,
2000; Sainio et al., 2013; Williams & O’Boyle, 2008;
Yang et al., 2010). On the contrary, Marsh et al.
(2013) is saying that researchers must obtain a well-
fitting unidimensional construct item-level model
to parcel.3 Hence, under Situation 2, there would be
many samples in which applied researchers simply
would not be allowed to parcel—either because the
item-level model does not fit adequately or the item-
level model is not computationally feasible. Here, we
do not focus on those samples (nor what analysis
options would be left open for them). Rather, we

focus on those samples that would pass the test, indi-
cating a well-fitting unidimensional-construct item-
level model.

Simulation design
The simulation design involves 20 cells, with 500
samples generated per cell. There are four sample
sizes: 100, 200, 300, and 500 (manipulating sampling
error) and five generating item-level models (manipu-
lating measurement model error). Each item-level
generating model is a confirmatory factor analysis
(CFA) model with three primary factors, nine items
per factor, item loadings alternating among 0.4, 0.5,
and 0.6 per factor, factor variances of 1.0, correlations
among the three primary factors of 0.25, 0.50, and
0.25, and item residual variances chosen to make all
items have unit variances.

Item-level generating models differed in the
extent to which they depart from construct unidi-
mensionality. That is, generating models differed in
the presence/absence of error covariances and a
method factor, as shown in Figure 3. In generating
Model A, items in the population truly are unidi-
mensional per factor in the population, which corre-
sponds to the substantively theorized model. In
Generating Model B the departure from three unidi-
mensional constructs is small, corresponding to an
RMSEA of .018 in the population; this model is simi-
lar to those used in previous parceling literature sim-
ulations (e.g., Bandalos, 2002, 2008). It has a method
factor on which five items from factor 1 load and 5
items from factor 2 load, with loadings of 0.3. In
Generating Model C the departure from 3
unidimensional constructs is medium, corresponding
to an RMSEA of .055 in the population; it adds
eight error covariances of size 0.25 to Model B. In
Generating Models D and E the departure from three
unidimensional constructs is medium-large or
large—corresponding to an RMSEA of .063 or .081
in the population, respectively. Generating Models D
and E add, respectively, 3 or 6 more error covarian-
ces of size 0.25 to Model C. Generating Models A–E
are diagramed in Figure 3.

Simulation analysis overview
A flowchart overview of the simulation analysis
procedure is given in Figure 4. First, the theorized
item-level model (three correlated unidimensional
constructs) is tested4 in each sample. If that test is not3One may wonder why researchers would want or need to parcel if they

can estimate an item-level model, but we do not take up this matter
here (see Bandalos, 2008, and see Situation 3 and its response below)
because our purpose here is to evaluate the implications of Situation 2
for PAV. 4The test used will be described shortly.
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passed in a given sample, parceling is not permitted
under Situation 2 and this sample is not analyzed fur-
ther here. However, if that test is passed in a given
sample, we can parcel under Situation 2. So in each
sample where this test was passed, we randomly

allocate items to parcels within factor 500 different
times and then we fit the 3-factor parcel-level model
(see Figure 4) to each of these 500 allocations within
sample. Finally, we assess PAV in parcel-level model
results within that sample.

Generating Model B: Departure from 3 unidimensional constructs corresponds to RMSEA=.018 in population. 

This generating model is similar to that used in previous parceling literature (e.g., Bandalos, 2002, 2008). 

Generating Model C: Departure from 3 unidimensional constructs corresponds to RMSEA=.055 in population.  

Generating Model D: Departure from 3 unidimensional constructs corresponds to RMSEA=.063 in population. 

Generating Model E: Departure from 3 unidimensional constructs corresponds to RMSEA=.081 in population.  
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Generating Model A: 3-factor model with 3 unidimensional constructs (researcher’s theorized model).

Figure 3. Generating item-level models used for the simulation evaluating Situation 2.
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Step 1: Test of unidimensionality for the
item-level model
Regarding the testing procedure for the item-level
model, there are many published approaches for test-
ing construct unidimensionality (e.g., Bandalos, 2002;
Bonifay, Reise, Scheines, & Meijer, 2015; Finch &
Habing, 2007; Gerbing & Anderson, 1988; Hagtvet &
Nasser, 2004; Hall et al., 1999; Hattie, 1985; Hoskens
& De Boeck, 1997; Matsunaga, 2008; Plummer, 2000;
Reise, Scheines, Widaman, & Haviland, 2013; Stucky,
Gottfredson, & Panter, 2012; West, Finch, & Curran,
1995). Although the item-level model is rarely tested
in empirical parceling applications (as noted in
Bandalos & Finney, 2001; Marsh et al., 2013), the
method most commonly mentioned for doing so in
the parceling literature is to test the absolute fit of an
item-level CFA model with unidimensional con-
structs and conclude that the test is passed if, for
instance, close fit (here defined as population
RMSEA � .05) (Browne & Cudeck, 1993) cannot be
rejected using the RMSEA. Employing exploratory
factor analysis (EFA) is an alternative that has been
mentioned less frequently in the parceling literature.
Marsh et al. (2013) suggested a more stringent test-
ing approach that is employed here for evaluating
Situation 2. This approach involves: testing the abso-
lute fit of the theorized 3-factor item-level CFA, and

then also fitting an EFA with the same number of
factors (here, 3). Parceling is admissible according to
this testing approach if (a) the item-level CFA fits
well, and also (b) the fit of the item-level EFA is not
significantly better than that of the item-level CFA.
Note that Marsh et al. (2013) additionally preferred
that the structural covariances would not meaning-
fully differ between the EFA and CFA solutions as
part of this testing procedure. However, they neither
operationalized what would constitute large versus
small differences, nor provided a formalized statis-
tical and objective method for their comparison
(they gave only single-sample demonstrations where
differences were informally visually inspected); hence
we cannot implement their additional suggestion
here. We later address the implications of this exclu-
sion in the “Implications and future directions” por-
tion of this section.

To mirror the most common empirical practice,
we consider the test passed if (a) close fit of the
item-level CFA model cannot be rejected using
RMSEA, and (b) there is a nonsignificant likelihood
ratio difference test between the item-level CFA and
item-level EFA.

Simulation results for testing the item-level model
are as follows. Under the correct specification
(Generating Model A), we are allowed to parcel (i.e.,

Figure 4. Analysis flowchart for the simulation evaluating Situation 2.
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the item-level test of unidimensionality is passed) in
86%, 91%, 92%, and 94% of samples across N’s
of 100, 200, 300, and 500, respectively. Under the
smallest misspecification (Generating Model B), we
are allowed to parcel in 80%, 71%, 62%, and 42% of
samples across N’s of 100, 200, 300, and 500, respect-
ively. Under medium misspecification (Generating
Model C), we are allowed to parcel in 30%, 24%,
12%, and 1% of samples across N’s of 100, 200,
300, and 500. Under medium-large misspecification
(Generating Model D), we are allowed to parcel
in 11%, 5%, 1%, and 0% of samples across N’s
of 100, 200, 300, and 500, and under the largest
misspecification, we can parcel in 0% of samples
across N.

Step 2. Parcel-analysis for samples passing the test
of unidimensionality for the item-level model
Next, we separated the samples in each cell where
unidimensionality was versus was not supported in
item-level analysis. In each of the samples where
unidimensionality was supported in item-level anal-
yses (i.e., where the test of unidimensionality was
passed at the item-level in Step 1), parcels were
formed by randomly allocating items to parcels
within factor 500 different times per sample. This
yielded 500 parcel-level data sets in each sample. As
mentioned earlier, each of these parcel-level data
sets was then fit with a 3-factor parcel-level CFA.
Among these samples passing the stringent test of
unidimensionality permitting parceling, we found
that PAV still arises, in contrast to the rationale for
Situation 2. Although PAV can be quantified in any
kind of parcel-level model result, here for illustra-
tion we show PAV in absolute fit of the parcel-level
model using RMSEA. A within-sample PAV distri-
bution of parcel-solution RMSEAs exists for every
sample passing the test of unidimensionality, and in
theory each of these distributions could be plotted.
To reduce the number of figures, we instead plot
pooled within-sample across-allocation distributions
of RMSEA, for each cell, in Figure 5.5

In Figure 5, Panels A–D correspond to generating
Models A–D and each distribution in a given panel

corresponds to a different sample size. Note that in
Figure 5 each distribution appears bimodal simply
because the RMSEA fit index is bounded from below
by zero. Observe that these within-sample PAV distri-
butions of parcel-solution RMSEAs span the com-
monly used cutoff of .05, indicating that fit is flipping
from good to poor across randomly drawn parcel-allo-
cations within samples that nonetheless passed the
stringent test of unidimensionality.

To complement the graphical results in Figure 5,
for each allocation in each of these samples, PAV in
the inferential decision about the parcel solution’s
RMSEA test of close fit was recorded. These results
indicated that, when there is no or small measure-
ment model misspecification (Figure 5 Panels A and
B) at lower N at least a fourth of these samples
(26–37%) exhibit PAV in the significance of the test
of close fit for parcel-solutions within-sample. And
for medium or medium-large measurement model
misspecification (Panels C and D) across all N’s,
>91% of these samples (Panel C) or across all N’s
>83% of these samples (Panel D) exhibit PAV
in the significance of the test of close fit for parcel-
solutions within-sample.

We now summarize the overall pattern of results
from the simulation analysis Steps 1 and 2, taken
together. Under low or no model error, more samples
pass the item-level test of unidimensionality, but
a lower proportion of these samples have PAV in the
parcel-level test of close fit. In contrast, under moder-
ate model error, fewer samples pass the test of unidi-
mensionality, but the great majority of these samples
have PAV. Only with a large amount of model error
do no samples pass the test of unidimensionality,
meaning that parceling is not allowed according to
Marsh et al. (2013); hence PAV was not investigated
here in this condition.

Implications for practice

This simulation demonstration showed that a test of
fit of a unidimensional-construct item-level model
(even if there are indeed unidimensional constructs
in the population) does not effectively function as a
test of when a researcher may parcel without inves-
tigating PAV. In samples that pass such a test, PAV
can still arise. In samples with moderate model
error that pass such a test, there are especially high
rates of PAV.

The solution is not that we need to, say, try
a different test of unidimensionality of the item-level
model. If we had used a less stringent test of

5The pooled PAV distribution for samples that passed the item-level test
in a given cell of the simulation is computed in the following manner.
Take each within-sample across-allocation distribution of parcel-solution
RMSEAs and subtract the sample mean of the parcel-solution RMSEAs.
Then, pool results across those samples, yielding a distribution of
sample-mean-centered parcel-solution RMSEAs which is essentially a
pooled-within distribution of parcel-solution RMSEAs. Then, add back in
the cell-mean of the parcel-solution RMSEAs.
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unidimensionality of the item-level model, then we
would again have PAV to contend with. If we had
used a more stringent test of unidimensionality of the
item-level model, as Marsh et al. (2013) would prefer,6

then parceling would have been allowed in fewer and
fewer samples. But among those few samples where
parceling is still allowed, PAV will still arise.

It is also possible that, under different data
generating conditions, applying the same test of
unidimensionality used here could allow parceling in
even fewer samples because of differential sensitivity
of EFA and CFA to certain kinds of departures
from unidimensional items (e.g., cross loadings). But
again, among the remaining samples where parceling
is allowed by the testing procedure, PAV would
still arise.

The bottom line is that a test of unidimensionality
of the item-level model is not an effective indicator of
whether the magnitude of PAV could substantively

Figure 5. Evaluation of Situation 2: Parcel-allocation variability (PAV) in parcel-solution model fit for samples passing a test
of unidimensionality of the item-level model.

6As mentioned earlier, Marsh et al. (2013) preferred a final step to make
their testing procedure even more stringent: inspecting structural
covariances to see if they meaningfully differ between the EFA and CFA
solutions. But they did not supply an objective way to operationalize
this aspect of the procedure, and so it was not implemented here.
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alter study results. It is safer to investigate and quan-
tify PAV in the sample at hand when intending to
parcel. Next, we turn to Situation 3.

Situation 3. Parceling without concern for PAV
when the goal is to improve power for
detecting structural misspecification
(Rhemtulla, 2016)

Rationale for Situation 3

To date, parceling has been widely discouraged when
research interest lies in scale development or refining
the measurement model (Rhemtulla, 2016); instead,
when researchers implement parceling they most
typically state that their interest lies in structural
relations among factors, under the assumption of a
well-understood, known population item-level meas-
urement model (e.g., Bandalos, 2002; Bandalos &
Finney, 2001; Little et al., 2002, 2013; Marsh et al.,
2013; Matsunaga, 2008; Meade & Kroustalis, 2006;
Nasser-Abu & Wisenbaker, 2006; Plummer, 2000;
Rogers & Schmitt, 2004; Sass & Smith, 2006; Stucky
et al., 2012; Williams & O’Boyle, 2008). In this com-
monly encountered context where researchers are
willing to assume a correctly specified measurement
model, Rhemtulla (2016) further recommends using
parceling to improve power for detecting structural
misspecification, stating “Most crucially, parcels
vastly improve power to detect misspecification in
the structural model. The goal of most research using
SEM is to test the structural relations among con-
structs. Parcels help make that goal more attainable”
(p. 366). However, this recommendation did not
include a stipulation that researchers account for
PAV. The rationale for this recommendation was
framed in terms of pros and cons of parceling.
Improved power for structural parameter tests was
viewed as a motivation for parceling, to be weighed
against the drawback of PAV—the implication being
that if the former was compelling enough, perhaps
parceling would still be warranted even if PAV
were ignored.

Problems with the rationale for Situation 3

There are three problems with the rationale under-
lying Situation 3. The first problem is that, as
evidenced in the simulation from the Situation 2
section, PAV arises under the very condition
assumed by Situation 3 (i.e., a correctly specified
measurement model) and moreover arises even when
the item-level model fits adequately in the sample at

hand. So it is not justifiable to parcel without con-
cern for PAV in this context—even if parceling were
to pose a benefit in terms of improving power for
detecting structural misspecification. An implication
for applied researchers is that they should not
conceptually tally pros and cons of parceling and
perceive that its beneficial and detrimental effects
can effectively cancel out in the grand scheme; bene-
fits of parceling do not stand on their own to justify
ignoring PAV.

The second problem with the rationale underlying
Situation 3 is that the gain in power for the parcel-
level model was shown only theoretically in Rhemtulla
(2016) (i.e., using theoretical power, defined shortly),
but it does not hold empirically under commonly
employed circumstances (i.e., using empirical power,
defined shortly). Instead, under commonly employed
empirical circumstances the opposite pattern holds:
item-level power is greater than parcel-level power for
the test Rhemtulla (2016) used (a global absolute test
of fit of the structural-plus-measurement model under
the assumption that the measurement portion is cor-
rectly specified). Therefore Rhemtulla’s theoretical
power results are not reflective of the item-versus-par-
cel power difference that actually manifests in empir-
ical practice when parceling is used to detect
structural misspecification with this test. This is only
part of the issue, however, because of course, empir-
ical power results could be analytically adjusted to
conform more with theoretical results, though this is
not done in applied practice and is not incorporated
in SEM software.7 The other part of the issue—our
third problem with the rationale—is that the test that
was used in Rhemtulla (2016) for detecting structural
misspecification (a global test of absolute fit of the
measurement-plus-structural model, under the
assumption that the measurement portion is correctly
specified) is insensitive for the stated purpose of
detecting structural misspecification. It will be shown
here that this test provides much lower power—
whether using theoretical power or empirical power
and whether using an item-solution or a parcel-solu-
tion—as compared to a model comparison approach
that compares models differing in structural specifica-
tion (as in Sterba & Rights, 2017). Moreover, it will
be shown here that Sterba and Rights’ (2017) struc-
tural model comparison approach not only can yield
higher power, but moreover can yield approximately
equal power for the item-solution and parcel-solution,
regardless of whether theoretical power or empirical

7Sterba and Preacher (in prep) discuss how and when to make such
adjustments to the v2 test of absolute fit.

MULTIVARIATE BEHAVIORAL RESEARCH 275



power calculations are used. This equivalency result
undermines Rhemtulla’s (2016) recommendation to
parcel to achieve higher power for testing structural
constraints, as parceling is not then necessary for this
purpose. Moreover, parceling without accounting for
PAV in this context then lacks a justification. These
second and third problems are demonstrated in the
next section.

Demonstration of problems with the rationale for
Situation 3

We begin by reproducing the evidence Rhemtulla
(2016) supplied to show that parceling improves
power for detecting structural misspecifications.

Theoretical power for a global absolute test of fit of
the structurally constrained model
The method Rhemtulla (2016) used to compute
power was theoretical—that of Satorra and Saris
(1985)—and the test for which power was computed
was a v2 test of global absolute fit of the full (meas-
urement-plus-structural) model with structural con-
straints—assuming that the measurement portion
was correctly specified. Her generating item-level
latent variable mediation model is shown in Figure
6 and fitted (item-level and parcel-level) models are
shown in Figure 7.

As can be seen from Figure 7, the fitted models
had misspecification only in the structural
portion (an omitted direct path). This example will
serve as our Situation 3 running example. In this
example, the largest discrepancy in item-level ver-
sus parcel-level power was at a modest N
around 150, wherein analytic results for the item-
level v2(592) test of absolute fit here yielded
power¼.08 but the power for the parcel-level v2(25)
test of absolute fit was indeed higher:

power¼ 0.28.8 Why is there greater theoretical power
at the parcel-level than item-level here? The reason is
that there are many more degrees of freedom for the
item-level model (df¼ 592) than the parcel-level model
(df¼ 25) but there is nearly identical noncentrality for
the item-level model (noncentrality¼ 8) and parcel-level
model (noncentrality¼ 8) because the misspecification
arises purely from the structural portion of the model
(relatedly, see Mulaik et al., 1989).

Empirical power for a global absolute test
of fit of the structurally-constrained model
In contrast to the theoretical power results supplied
above, we next demonstrate that, in conditions
encountered in common empirical practice, parceling
does not improve power, vis-a-vis the item-solution,
for detecting structural misspecification using this glo-
bal test of absolute fit. Common empirical practice for
parceling applications is reflected by sample sizes
below 1000 but a large number of items (p). However,
it is under this very situation that the v2 statistic is
inflated and does not follow its theoretical distribution
well (e.g., Shi, Lee, & Terry, 2018; Yuan, Tian, &
Yanagihara, 2015). Hence, in parceling applications
empirical power, but not theoretical power, will mirror
the actual magnitude of power that an applied
researcher could expect to have in practice when
fitting a misspecified model to a real dataset using
standard SEM software and computing this v2 test of

Figure 6. Generating model from Rhemtulla (2016) used in evaluating Situation 3.

8The same pattern of results held for Rhemtulla’s generating parameters from
her Model 3b. Here, we used a similar set of generating parameters:
standardized latent regression paths were 0.4 except for the direct effect of
the x-factor on the y-factor, which was 0.35; standardized item loadings were
0.4. Note that we used these generating parameters because the even larger
effect sizes in the original source led to a ceiling on power at 1.0 when we
implemented our alternative testing approach (described subsequently) but
not when implementing the originally reported approach, which made our
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absolute fit.9 Theoretical power for the v2 test of abso-
lute fit uses a theoretical null distribution and a theor-
etical alternative distribution (e.g., Satorra & Saris,
1985). Empirical power for the v2 test of absolute
fit uses a theoretical null distribution but an empiric-
ally generated alternative distribution, obtained via
repeated sampling; empirical power is the area under
this empirically generated alternative distribution
beyond the critical value defined under the theoretical
null distribution.10 Empirical power is computed by
generating repeated samples (here 5000) from a model
and then, to each sample, fitting the structurally mis-
specified model and computing the v2 test of absolute

fit using standard SEM software, and then calculating
the proportion of tests that are significant. For the
same structural misspecification and same sample size
(N¼ 150) used above, empirical power shows the
opposite pattern than was found theoretically by
Rhemtulla (2016)—for the item-level analysis, empir-
ical power is 0.63, double that of the parcel-level ana-
lysis, for which empirical power is 0.29. This
empirical approach—unlike the theoretical approach—
also allows us to acknowledge and report the amount
of PAV in power that would manifest in practice;
here, for a parcel-level analysis, power for the absolute
test of fit ranged from 0.27 to 0.33 depending on the
allocation.11

This higher empirical power for detecting structural
misspecification in the item-level model contributes to
what practitioners have encountered in practice in the
typical situation of moderate N and large p. In prac-
tice—where a common objective of a parcel-analysis is

Figure 7. Background on Situation 3: To compute item-level and parcel-level power for detecting a structural misspecification,
Rhemtulla (2016) fit the structurally misspecified model as an item-level model (Panel I) or parcel-level model (Panel II) and
assessed power for the global absolute test of fit.

9The same logic applies to, for instance, RMSEA, which is a function of
the v2, but we do not repeat our demonstration for multiple fit
indices here.

10Note that what we term empirical power for the v2 test of absolute fit
differs from what Yuan, Zhang, and Zhao (2017) term Monte Carlo
power. As explained and illustrated in detail in Sterba and Preacher (in
prep), Yuan et al. (2017) use both an empirically generated null
distribution and an empirically generated alternative distribution. Power
computed using their approach will not mirror the actual power that
manifests in real-world practice with low N and high p after researchers
collect data and fit their model using standard SEM software. (Standard
SEM software by default uses a theoretical null distribution, not an
empirically generated null distribution, when performing a v2 test of
absolute fit.)

11Although our focus here is not on PAV in structural parameter
estimates, note that in this simulation the average across-allocation
within-sample range for the point estimate of the direct effect of the x-
factor on the y-factor (c-path) was {0.28–0.43} and the average across-
allocation within-sample range for the standard error of the direct effect
(c-path) was {0.11–0.15}.
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to test constraints on a structural model which is likely
somewhat misspecified—researchers frequently com-
ment that their item-solution “fits worse” and their
parcel-solution “fits better” as well as frequently com-
ment that their item-solution more often rejects Ho

for the global v2 test of absolute fit (e.g., Bagozzi &
Edwards, 1998; Bagozzi & Heatherton, 1994;
Bandalos, 2002; Gribbons & Hocevar, 1998; Hagtvet &
Nasser, 2004; Landis et al., 2000; Little et al., 2002;
Marsh et al., 2013; Martens, 2005; Matsunaga, 2008;
Nasser & Wisenbaker, 2003; Plummer, 2000; Rogers &
Schmitt, 2004; Schallow, 2000; Sterba, 2011; Takahashi
& Nasser, 1996; Thompson & Melancon, 1996;
Williams & O’Boyle, 2008). Such comments are
another way for researchers to say that their item-sol-
utions had higher empirical power in practice than
their parcel-solutions.

In sum, the above demonstration communicates that
the theoretical advantage in power from Rhemtulla
(2016) using parceling together with a global absolute
test of fit to detect structural misspecification is likely
not borne out in empirical practice. Fortunately, to
detect structural misspecification, we do not need to
choose between using a global test of absolute fit with a
parcel-solution (with better theoretical power and worse
empirical power) versus an item-solution (having better
empirical power and worse theoretical power).12 The
reasons are that (a) the global test of absolute fit itself is
insensitive for the stated purpose of detecting structural
misspecification, and (b) an alternative testing approach
will yield much higher power for detecting the structural
misspecification, and it will do so regardless of whether
an item-level or parcel-level analysis is used and regard-
less of whether power is computed theoretically or
empirically. Moreover, in this case the alternative test-
ing approach shows virtually no discrepancy between
item-solution and parcel-solution power, regardless of
whether power is computed theoretically or empirically.
This means that it is not in fact necessary to use parcel-
ing to improve power for detecting structural misspeci-
fications, as was stated in Rationale 3.

Empirical and theoretical power for detecting struc-
tural misspecification by comparing structurally-
constrained and structurally-unconstrained models
This alternative approach to detecting structural mis-
specification (again under the same assumption of a
correctly specified measurement model), involves
comparing the fit of competing models differing in
their structural constraints (e.g., Sterba & Rights,
2017). This could be done with model selection indi-
ces, but here is shown with a v2 difference test. For
our Situation 3 running example, this structural
model comparison approach is diagramed in Figure
8 and involves comparing the fit of models with
(Model B) and without (Model A) the structural dir-
ect path between the X-factor and Y-factor. Next we
demonstrate and explain the aforementioned features
of this approach.

Figure 9 shows that theoretical and empirical
power computations agree13 that, when using a struc-
tural model comparison approach, (i) the item-solu-
tion and parcel-solution now both have nearly the
same power, and (ii) the item-solution and parcel-
solution now both have much higher power (�0.80)
than when using Rhemtulla’s (2016) global v2 test of
absolute fit for detecting a structural misspecification.
These points are demonstrated in Figure 9 for detect-
ing the structural misspecification in the Situation 3
running example. Note that in this running example,
theoretical power for the model comparison can be
computed using a special case of Satorra and Saris
(1985) rather than using the nested model procedure
of Satorra and Saris (1983) because Model B is in fact
also the generating model. Key features of these
results are explained as follows.

a. The reason that, using the structural model com-
parison approach, the item-solution and parcel-
solution yield virtually equal power (within
rounding) in Figure 9 for detecting the structural
misspecification is that there is again nearly iden-
tical noncentrality for the item- and parcel-level
analyses (because it arises from the structural mis-
specification (noncentrality¼ 8 for both)) but
additionally there is now the same Ddf for both
the item- and parcel-analyses (Ddf¼ 1). This is
represented visually in Figure 10.

12Such a choice would be fraught. Although the parcel-solution has a
theoretical power advantage using the global test of absolute fit for
detecting structural misspecifications, it has a disadvantage for detecting
measurement model misspecification (e.g., Bandalos, 2002; Hall et al., 1999;
Meade & Kroustalis, 2006; Rhemtulla, 2016), and in the likely context where
at least a little of both kinds of misspecification co-occur, such advantages
and disadvantages could cancel out. Furthermore, although the item-
solution has an empirical power advantage using the global test of absolute
fit for detecting structural misspecification in the common circumstances of
moderate N and large p, it also has elevated type I error under these
circumstances [unless adjustments to the v2 test of absolute fit are made to
allow empirical type I error and power to more closely conform with
theoretical expectation—see Sterba and Preacher (in prep) for procedures].

13Regarding the closer correspondence between theoretical and empirical
power for detecting the structural misspecification using a v2 difference test
than using the v2 test of absolute fit in Figure 9, it can be shown that the
empirical inflation of the v2 statistic under low N and high p is smaller for
the v2 difference test. Note that the empirical power calculation also allows
the researcher to quantify and report PAV, as in Figure 9.
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b. The reason that the power for the v2 difference
test in Figure 9 is much higher than the power
for the v2 test of absolute fit of the misspecified
Model B is that the noncentrality for the v2

difference test is equal to the noncentrality
of the v2 test of absolute fit of Model A in this
circumstance (MacCallum, Browne, & Cai, 2006;
Steiger, Shapiro, & Browne, 1985)14 but the Ddf
for the difference test (i.e., 1) is much lower
than the df under either test of absolute fit (i.e.,
592 for the item solution and 25 for the parcel-
solution) (relatedly, see Mulaik et al., 1989). This
is represented visually in Figure 10.

Implications for practice

The desire to use parceling to improve power for
detecting structural misspecification when assuming
a correct measurement model does not motivate
parceling without considering PAV. Specifically, in
contrast to Situation 3, for a gain in power for detect-
ing structural misspecifications, it is not necessary
to use a parcel-solution plus a global test of absolute
fit. Rather, even higher power can be obtained by
comparing models differing in structural relations,
regardless of whether parcel-solutions or item-
solutions are used. Further, using item-solutions for
such model comparisons can yield the same power
as parcel-solutions, on average across allocations,
while avoiding PAV (which is marked under some
settings—Sterba & Rights, 2017).

Discussion

Here, we described and critiqued rationales for three
situations under which parcel-allocation variability

(PAV) has been ignored in recent methodological
literature. None were found to offer a viable reason to
ignore PAV. Doing so raises both representativeness
and replicability concerns about a parceling study.
Our field is grappling with concerns about replicabil-
ity, recently voiced in the context of parcel-solutions
(Maul, 2012). Acknowledging and reporting informa-
tion about PAV in parcel-solutions can help relate
and synthesize results of parcel-solutions across
studies.

Summary

In sum, in Situation 1 the existence of PAV was
thought to be defined away by restricting focus to a
kind of parceling strategy (purposive) with only one
possible allocation, thus precluding the creation of a
PAV distribution of results across alternative parcel-
allocations. We showed that a purposive algorithm
can still be repeatedly implemented within-sample,
and is still subject to PAV. Ignoring PAV in this con-
text obfuscated comparisons of results between pur-
posive algorithms. In Situation 2 the need to quantify
PAV was thought to be bypassed by using an item-
level test (for unidimensionality) that would permit
parceling when PAV wouldn’t be a concern. However,
PAV was shown to still arise when such a test is
passed; this same general pattern of results would
hold for other kinds of tests of unidimensionality as
well. Situation 3 sought to identify new benefits of
parceling—in terms of improved power for detecting
structural misspecification—while ignoring PAV.
Applied researchers could have interpreted this new
motivation for parceling as counterbalancing the per-
ceived drawback of PAV. However, in empirical par-
celing practice it was shown that this benefit may not
actually arise, though PAV does arise. Furthermore,
an alternative testing approach was shown to provide
a much greater improvement in power regardless of
whether an item-solution is used (thus, avoiding PAV
altogether) or a parcel-solution is used.

In the following section, we address relationships
among the situations by considering a few incompati-
bilities. Subsequently, we conclude with recommenda-
tions for methodological and empirical research
involving parceling.

Relationships among the situations

Above we addressed Situations 1–3 separately because
they were proposed separately in the literature. We
also did so because, in the view of their respective

14From Steiger et al. (1985) Theorem 1, the chi-square test of absolute fit
of Model A uses test statistic nF̂

ðAÞ � noncentral v2 with df¼ vA and
noncentrality dA whereas the chi-square difference test for Model A
versus Model B uses test statistic [ðnF̂ ðAÞ�nF̂

ðBÞÞ � noncentral v2 with
df¼ðvA�vBÞ and noncentrality ðdA�dBÞ. Here, F̂

ðAÞ
and F̂

ðBÞ
are

minimized discrepancies for a sample size of n for Models A and B,
respectively. Noncentralities dB and dA are population “badness of fit”
quantities. If both Model B and A are incorrect, the noncentralities for
these tests are different (i.e., dA vs. ðdA�dBÞ). However, in the case
where Model B is the generating model (as also assumed in Rhemtulla
(2016), and in widespread parceling practice when researchers routinely
assume no measurement model error and calculate power for a
particular parametric structural misspecification), dB ¼ 0 and dA>0. In
this case, the chi-square test of absolute fit of Model A uses test statistic
nF̂

ðAÞ
with df¼ vA and noncentrality dA whereas the chi-square

difference test for Model A versus B uses test statistic ðnF̂ ðAÞ�nF̂
ðBÞÞ

with df¼ðvA�vBÞ and noncentrality dA. Although the latter two tests
use the same noncentrality, that does not imply the same power (see
Figures 9 and 10) because although in either test the centers of the null
and alternative distributions differ by dA, for a given test the pair of
(null and alternative) distributions is pushed left or right depending on
the values of vB and vA (see Figure 10).
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authors, they are not all compatible with each other.
As one example, Situation 2 is incompatible with
Situation 1 because Situation 1 allows heterogeneous/
distributive purposive parceling of multidimensional
constructs but Situation 2 does not. According to
Marsh et al. (2013, p. 260), the “underlying rationale of
the explicit distributive [i.e., heterogeneous] strategy
only makes sense when the assumption of unidimen-
sionality is violated, thus, precluding the appropriate
use of item parcels.” Our own perspective lies in the
middle. That is, multidimensional constructs (such as
in Figure 1 Panel A, which often arise in real-world
practice) do not themselves preclude parceling, so long
as PAV is accounted for and reported.

As another example, Situations 2 and 3 are
incompatible with Situation 1 because Situation 1
does not ultimately require a test of the item-level
model as a prerequisite for parceling (as do Marsh
et al. [2013] and Rhemtulla [2016]), but rather would
still allow researchers to rely on substantive justifica-
tion for the correct specification of the measurement
portion of the model prior to parceling. According to
Marsh et al. (2013, p. 281), “whereas we focus on
empirical tests of when parceling is or is not appropri-
ate, Little et al. provides little in the way of testable
criteria to justify the use of parcels.” Again, our per-
spective lies in the middle. A test of absolute fit of the
item-level model can indeed be helpfully informative

Figure 8. Background on Situation 3: An alternative approach to computing item-level or parcel-level power for detecting a structural
misspecification involves comparing models with and without the structural misspecification and assessing power for a test of the dif-
ference in fit.
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about the location and extent of measurement model
error. However, if applied researchers are considering
parceling specifically because the item-level model is
inestimable (which occurs more often with complex
models and at lower sample sizes), we would not bar
them from parceling, as would Situation 2. Applied
researchers have limited analytic options available to
them when their item-level model is inestimable, and
parceling could be allowable so long as PAV were
investigated and accounted for. Measurement model
error in a parcel-level analysis that remains undiag-
nosed due to an inestimable item-level model will to
some extent contribute to and be reflected in PAV.

Recommendations for methodological research
on parceling

The demonstrations presented throughout this manu-
script lead to the following two recommendations for
future methodological studies on parceling.

1. Methodological research and simulation studies
on parceling should not avoid sampling error by
focusing exclusively on the performance of parcel-
ing in the population. This circumvents consider-
ation of PAV in an unrealistic manner which
does not mirror empirical parceling practice. In
practice, researchers parcel using sample-level
data, not census data, and moreover they parcel

much more often when they have lower commu-
nalities and/or lower sample size, which in turn
increases the magnitude of PAV, all else equal
(Sterba, 2011; Sterba & MacCallum, 2010). These
realistic conditions should be included in parcel-
ing simulation designs, in conjunction with evalu-
ating PAV. Otherwise, simulations provide
researchers with results and recommendations for
using parceling that do not reflect the complex-
ities of parceling in empirical practice, as was
demonstrated in earlier sections.

2. Methodological research and simulation studies on
parceling should not ignore PAV because of the fact
that they involve purposive parceling, multidimen-
sional constructs, and/or no measurement error.
PAV can arise in empirical practice under all of
these settings. Hence, it is again unrealistic to pro-
vide researchers with results and recommendations
for using parceling that do not factor in the uncer-
tainty in parcel-solution results due to PAV.

Addressing these recommendations in methodo-
logical research requires modifying common simula-
tion designs. Commonly, Monte Carlo simulation
study designs allow assessing bias and variability of
parcel-solution results across repeated samples using
a single parcel-allocation to represent a given parcel-
ing algorithm. Investigating PAV requires repeatedly
generating parcel-allocations from that parceling

What test? 

Test of absolute fit 

• for model with structural constraints  

• assuming correct measurement model 

• used χ
2

 test of absolute fit of Model A 

Test of difference in fit 

• for models with vs. without structural constraints  

• same measurement model 

• used χ
2

 difference test comparing Models A & B 

What  

 method to    

 compute   

 power? 

Theoretical Power* 

(e.g., Satorra & 

Saris,1985) 

Item-level power: .08 

Parcel-level power: .28 

(used in Rhemtulla, 2016) 

 Item-level power: .81 

Parcel-level power: .81 

Empirical Power* Item-level power: .63 

Parcel-level power: .29  

PAV: range=.27-.33 

Item-level power: .79 

Parcel-level power: .79 

                            PAV: range=.77-.80 

(used in Sterba & Rights, 2017) 

Notes. PAV = parcel allocation variability. Models A and B were defined in Figure 8. The misspecification we are trying to detect is the 

same as in Rhemtulla (2016) (i.e., omitting the direct effect of the x-factor on the y-factor in Figure 6). * The theoretical and empirical 

power analysis procedures were described in the manuscript.

Figure 9. Evaluation of Situation 3: Power for detecting the same structural misspecification at the same N using two differ-
ent levels of analysis (item vs. parcel), two different testing approaches (absolute fit vs. difference in fit), and two different
methods of computing power (theoretical vs. empirical).
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algorithm within each of these samples, and then fit-
ting the model of interest to each parcel-allocation
within each sample. This procedure allows quantifying
and distinguishing the magnitude and effects of
sampling variability versus parcel-allocation variability
(for details see Sterba, 2011; Sterba & MacCallum,
2010; or Sterba & Rights, 2017).

Recommendations for empirical applications
using parceling

In applied practice, initial reactions to the concept of
PAV ranged from considering it a nuisance and a has-
sle to investigate, to reacting with concern and avoid-
ance—concern that merely mentioning the possibility

 Power for a global χ2 test of absolute fit 

of the reduced model (A) that has 

structural constraint 

Power for a χ2 difference test  

comparing reduced model A & full model B 

that differ in structural constraints 

Item-level 

analysis: 

noncentrality=8, df=592 

(used in Rhemtulla, 2016) 

noncentrality=8, Δdf=1 

Parcel-level 

analysis: 

noncentrality=8, df=25 

(used in Rhemtulla, 2016) 

noncentrality=8, Δdf=1 

Notes. The scaling of the axes is the same for plots in a given column. In each plot, the density on the 

left is the chi-square distribution when the null is true and the density on the right is the chi-square 

distribution when the null is false to a specified degree (here, corresponding to the misspecification 

of omitting the direct effect of the x-factor on the y-factor in Figure 6). The null distribution is 

centered over df. The alternative distribution is centered over df + noncentrality. Even though 

noncentrality is the same in both plots in column 1, the distributions in the top and bottom panels 

look different because of the shape of the chi-square distribution at those different dfs. In contrast, in 

column 2, the noncentrality and df are the same in both plots, so the plots in column 2 are identical. 

Power=.08

Power=.81 

Power=.28 

Power=.81 

Figure 10. Visual representation of the theoretical power comparison reported in Figure 9 for detecting the same structural mis-
specification at the same N.
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or existence of PAV could spook reviewers and
threaten publication, leading to avoidance of address-
ing PAV. We have been told about researchers search-
ing for “phrasing that doesn’t invite any suggestions
to reallocate parcels and re-run” to avoid the situation
where “a reviewer may ask you to try out a few other
allocation schemes and determine how consistent the
results are. That’s a big can of worms.”

Historically, when confronted with new sources of
uncertainty in statistical results, researchers have like-
wise reacted with concern that was followed by
acceptance only after widespread pedagogical dissem-
ination informed reviewers and journal editors about
how the uncertainty could be quantified and
addressed (Panter & Sterba, 2011). One historical
example concerns missing data uncertainty. When
faced with missing data uncertainty, researchers were
initially reluctant to repeatedly generate random mul-
tiple imputations and pool results across imputations,
as results could differ when a different set of imputa-
tions were employed. Rubin (1996, p. 479) explains
that “an early criticism, not much heard anymore but
worthy of response, is that multiple imputation is the-
oretically unsatisfactory and practically unacceptable
because it adds random noise to the data. In this con-
text, it is critical to remember that multiple imput-
ation does not pretend to create information through
simulated values but simply to represent the observed
information this way so as to make it amenable to
valid analysis…The extra noise created when using a
finite number of imputations is the price to be paid
for this luxury.” Other early concerns about multiple
imputation according to Rubin (1996, p. 480) were
that the “multiply imputed data sets take too much
storage” and “multiple imputation [is] too much work
for the user.” Software advances and accessible peda-
gogical treatments of multiple imputation (e.g.,
Enders, 2010) have allayed these concerns. Now ignor-
ing missing data uncertainty in applied research
would be widely considered unacceptable by reviewers
and journal editors.

Our recommendations for applied practice continue
to involve, first, acknowledging the possibility of PAV
and, second, accounting for and reporting PAV.
These recommendations have been detailed elsewhere,
but we provide a brief overview here. One approach
to implement these recommendations involves con-
ducting a sensitivity analysis (see Sterba &
MacCallum, 2010; Sterba & Rights, 2017 for proce-
dures). For instance, researchers can investigate and
report whether substantive conclusions based on infer-
ential decisions about parcel-solution overall fit,

model ranking, or individual/multiparameter tests
would change across many repeated item-to-parcel
allocations (e.g., 500) within their sample and can
examine the magnitude of PAV in point estimates of
fit indices and structural model parameters. If overall
substantive conclusions do not change across alterna-
tive parcel allocations, then they are robust to the
existence of PAV. If overall substantive conclusions
can change across alternative parcel allocations, this
degree of uncertainty can be acknowledged, and
future studies can seek to minimize it by reducing
sampling error and/or model error.

Another approach to implementing these recom-
mendations involves pooling results across allocations
(see Sterba & Rights, 2016 for procedures). This
approach can be used, for instance, to provide a single
(pooled) point estimate for each structural parameter
(rather than a range of point estimates across repeated
allocations within sample). This approach can also be
used to provide a single (pooled) standard error for
each structural parameter that combines sources of
uncertainty stemming from both sampling variability
and parcel-allocation variability. Thus, this approach
yields a single inferential decision for each structural
parameter, rather than a range of (potentially signifi-
cant to nonsignificant) results across repeated alloca-
tions within sample. As a concrete example, suppose
an applied researcher were interested in an inferential
decision about the indirect effect (a-path� b-path)
when fitting the Figure 6 model (where the a-path is
the x-factor’s effect on the m-factor and the b-path is
the m-factor’s effect on the y-factor). This researcher
has a single sample, which we drew from the
Situation 3 simulation. In this sample, the indirect
effect is significant in 66% of allocations and non-
significant in 34% of allocations; that is, there is PAV
in the substantively important inferential decision
about the indirect effect.15 However, using Sterba and
Rights’ (2016) pooling approach we can obtain a sin-
gle inferential decision that accounts for both sam-
pling variability and PAV: a 95% CI of {.002–.242},
indicating that the null hypothesis is rejected. Here,
the pooled a-path SE, pooled a-path estimate, pooled
b-path SE, and pooled b-path estimate were used,
together with conventional procedures in Preacher
and Selig (2012), for obtaining a Monte Carlo CI for
an indirect effect. Note that Sterba and Rights (2016)

15For reference purposes, note that 40% of samples from the Situation 3
simulation similarly had PAV in the result of the significance test for the
indirect effect. Significance of the indirect effect was determined by
creating a 95% Monte Carlo confidence interval for the indirect effect
(using Preacher & Selig, 2012 procedures), for each allocation, and then
checking to see if that 95% CI includes the null hypothesized value of 0.
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also supplied supplementary diagnostics, termed
PPAV and RPAV, for quantifying the degree of
uncertainty in estimates that is due to parcel alloca-
tion variability; PPAV indicates the proportion of total
variance of a parameter estimate that is attributable to
parcel-allocation variability and RPAV indicates the
ratio of parcel-allocation variability to sampling vari-
ability in a parameter estimate.

Investigations of PAV are beginning to be
employed and reported in empirical parceling applica-
tions (e.g., Ayturk, 2016; Cole et al., 2017; Cole et al.,
2018; Kam & Meyer, 2015; Sainio et al., 2013;
Trautwein et al., 2015). As one concrete example, in
Cole et al. (2017), 20% of the variability in structural
model coefficients was found to be attributable
to PAV, leading to some different inferences about
structural model parameters when using repeated
single-allocations, as compared to a pooled-allocation
approach that accounted for PAV and yielded a single
inferential decision. More generally, across empirical
studies to date, the impact and magnitude of PAV has
ranged from a “small” amount of PAV (e.g., Kam &
Meyer, 2015),16 to results being “remarkably influ-
enced” by PAV (Ayturk, 2016). For the widely held
goals of replicability and representativeness of results,
it is beneficial to know such information about PAV
for studies using parceling.
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