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Research interest often lies in comparing structural model specifications implying different relationships
among latent factors. In this context parceling is commonly accepted, assuming the item-level measure-
ment structure is well known and, conservatively, assuming items are unidimensional in the population.
Under these assumptions, researchers compare competing structural models, each specified using the
same parcel-level measurement model. However, little is known about consequences of parceling for
model selection in this context—including whether and when model ranking could vary across alternative
item-to-parcel allocations within-sample. This article first provides a theoretical framework that predicts
the occurrence of parcel-allocation variability (PAV) in model selection index values and its conse-
quences for PAV in ranking of competing structural models. These predictions are then investigated via
simulation. We show that conditions known to manifest PAV in absolute fit of a single model may or may
not manifest PAV in model ranking. Thus, one cannot assume that low PAV in absolute fit implies a lack
of PAV in ranking, and vice versa. PAV in ranking is shown to occur under a variety of conditions,
including large samples. To provide an empirically supported strategy for selecting a model when PAV
in ranking exists, we draw on relationships between structural model rankings in parcel- versus
item-solutions. This strategy employs the across-allocation modal ranking. We developed software tools
for implementing this strategy in practice, and illustrate them with an example. Even if a researcher has
substantive reason to prefer one particular allocation, investigating PAV in ranking within-sample still
provides an informative sensitivity analysis.
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Social scientists frequently parcel (average or sum subsets of
items) and use the parcel scores as factor indicators. Recent re-
views indicate that parceling is used in 20%, 17%, 63%, and 44%
of structural equation modeling applications, across various jour-
nals (Hall, Snell, & Foust, 1999; Bandalos & Finney, 2001; Plum-
mer, 2000; Williams & O’Boyle, 2008). Whereas item-level anal-
yses are usually preferable, in the context of complex models but
modest sample sizes, item-level analyses may become impractical
or encounter estimation problems. Parceling is one of few alter-
natives available in this context (see Bagozzi & Edwards, 1998;
Coffman & MacCallum, 2005; Hau & Marsh, 2004; Little,
Rhemtulla, Gibson, & Schoemann, 2013; Marsh, Lüdtke, Nagen-
gast, Morin, & von Davier, 2013; Matsunaga, 2008; Meade &
Kroustalis, 2006; Nasser & Wisenbaker, 2003; Sass & Smith,
2006; Yang, Nay, & Hoyle, 2010).

But parceling is not universally applicable. Because parceling
can obscure the detection of measurement model misspecifications
such as unmodeled multidimensionality, parceling has often been
considered most defensible when items per parcel are unidimen-
sional in the population (i.e., items per parcel load on one and the
same factor; see Bandalos, 2002, 2008; Hall et al., 1999; Hau &
Marsh, 2004; Landis, Beale & Tesluk, 2000; Little, Cunningham,
Shahar & Widaman, 2002; Marsh & O’Neill, 1984; Marsh et al.,
2013; Matsunaga, 2008; Meade & Kroustalis, 2006; Plummer,
2000; Rogers & Schmitt, 2004; Sass & Smith, 2006; Yang et al.,
2010; Yuan, Bentler, & Kano, 1997). Parceling has been discour-
aged when research interest lies in scale development or exploring
the number of factors; rather, parceling is typically implemented
when interest is in structural relations among factors, under the
assumption of a known population item-level measurement model
(e.g., Bandalos, 2002; Bandalos & Finney, 2001; Little et al., 2002,
2013; Marsh et al., 2013; Matsunaga, 2008; Meade & Kroustalis,
2006; Nasser-Abu & Wisenbaker, 2006; Plummer, 2000; Rogers
& Schmitt, 2004; Sass & Smith, 2006; Stucky, Gottfredson, &
Panter, 2012; Williams & O’Boyle, 2008). To increase the plau-
sibility of this assumption, parceling has been considered accept-
able only when latent constructs are well defined theoretically
(e.g., Little et al., 2013; Matsunaga, 2008) and preferably have
been subjected to previous item-level analyses investigating di-
mensionality (e.g., Bandalos & Finney, 2001; Marsh et al., 2013).
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For a given sample, there are typically thousands of possible
ways a researcher could allocate items to parcels—given a pre-
specified number of parcels per factor and items per parcel. These
are sometimes called alternative parceling strategies but are here
called alternative parcel allocations. If we were to repeatedly,
randomly allocate items to parcels for a given number of parcels/
factor and items/parcel, we would eventually, by chance, employ
many purposive parceling strategies in existence (e.g., balancing,
correlational, factorial, odd–even, adjacent-loading, etc.). Thus,
we can consider these strategies as special case instantiations of
random item-to-parcel allocations. When evaluating the fit of a
single model in isolation, it is known that absolute model fit can
vary meaningfully (e.g., from poor to excellent) across repeated
allocations of items to parcels—even when items are unidimen-
sional in the population (Sterba, 2011; Sterba & MacCallum,
2010). Such parcel-allocation variability (PAV) in absolute fit
within-sample can arise simply due to sampling error (but would
be exacerbated in the context of model error in the measurement
model). In this light, it may be unsettling to select and report
absolute fit based on just one item-to-parcel allocation. On one
hand, a particular item-to-parcel allocation could be substantively
justified by the researcher. On the other hand, it is possible that the
researcher’s substantive justification is underdeveloped or even
wrong. Hence, it is more reassuring to know a range of possible
absolute fit results from alternative item-to-parcel allocations
within that researcher’s single sample. Under some data condi-
tions, this range will be narrow, such that substantive conclusions
about model adequacy would not be contingent on the allocation
chosen. Under other conditions, this range can be broad. Building
on MacCallum and Tucker (1991) and Bandalos (2002); Sterba
and MacCallum (2010) provided a theoretical framework that
identified conditions increasing PAV in absolute fit of a single
parcel-level model.

However, frequently researchers are not simply interested in a
single parcel-level model. Rather, researchers often parcel with the
goal of comparing competing structural specifications that imply
different relationships among latent factors, assuming a known
item-level measurement structure. In other words, researchers who
parcel are often interested in model selection among different
structural model specifications, where the parcel-level measure-
ment model is the same across the set of candidate models. For
instance, this was the focus of many recent applications, including
Booth, Murray, Marples, and Batey (2013); Daspit, Tillman, Boyd,
and McKee (2013); Dunkley, Ma, Lee, Preacher, and Zuroff
(2014); Flack, Salmivalli, and Idsoe (2011); Gallagher, Lopez, and
Preacher (2009); Geiser, Keller, and Lockhart (2013); Gellert,
Ziegelmann, and Schwarzer (2012); Hankonen, Konttinen, and
Absetz (2014); Jackson and Gaertner (2010); Kuhn and Holling
(2009); Liao, O’Brien, Jimmieson, and Restubog (2015); Mairet,
Boag, and Warburton (2014); Malmberg and Little (2007); Martin et
al. (2011); Nouwen, Urquhart Law, Hussain, McGovern, and Napier
(2009); Owuamalam, Issmer, Zagefka, Klaben, and Wagner (2014);
Segrin, Woszidlo, Givertz, and Montgomery (2013); Sierau and Her-
zberg (2012); Winkler, Busch, Clasen, and Vowinkel (2015); Zam-
petakis, Kafetsios, Bouranta, Dewett, and Moustakis (2009); and
Zheng, Gaumer Erickson, Kingston, and Noonan (2014). Here, only
the structural specification differs across models. Each competing struc-
tural model corresponds with a different substantive theory. Among the
structural models under comparison, none may represent the

population-generating process exactly. Model selection indices
may be used to, for instance, select the candidate model that is
closest to the generating structural process or select the most
generalizable model (Burnham & Anderson, 2004; Myung & Pitt,
1998).

Despite the frequent application of parceling in the context of
structural model selection, we know little about its consequen-
ces—in terms of whether and when model selection results (e.g.,
model ranking) could vary across alternative item-to-parcel allo-
cations within-sample. This article is devoted to filling this gap.
This article makes the following contributions. First, we extend the
theoretical framework of Sterba and MacCallum (2010)—which
allowed for sampling error in a parcel-level measurement
model—to include a structural model, as well as sampling and
model error in the structural model. Then we apply this framework
to the context of model selection. We use this extended framework
to identify situations under which PAV in model selection index
values can occur when comparing structural models. When PAV in
selection index values can occur, the framework is used to predict
conditions that increase risk of PAV in model ranking. Second, we
investigate these predictions in a simulation. We show that the
conditions under which there is PAV in model ranking within-
sample may be similar to or greatly different from conditions
under which previous research found PAV in absolute model fit. In
other words, it is not sufficient to assume that low PAV in absolute
model fit implies a lack of PAV in model ranking, and vice versa.
Third, when PAV in model ranking exists, we provide an empir-
ically supported strategy for deciding what model to select, which
draws on the relationship (shown later) between model ranking in
parcel- versus item-solutions. Finally, we provide software tools
for implementing this strategy in applied practice and demonstrate
their implementation in an empirical example.

Before proceeding, however, we must clarify that although the
topic of whether to parcel has recently been framed in terms of pro
and con arguments (e.g., Little et al., 2013; Marsh et al., 2013;
Matsunaga, 2008), previous authors found some common ground
on the admissibility of parceling in particular situations—includ-
ing the exact context considered in this article (i.e., interest in
structural relations, unidimensional items in the population, mod-
est N). The present study contains empirical results that stand on
their own and are in essence agnostic to a particular side. That is,
this study presents knowledge about the consequences of parceling
within-sample in an understudied but common setting—model
selection. As conceptualized here, the existence of PAV in model
selection results (or any other results) itself needn’t discredit nor
encourage the use of parceling. At issue here is this: When par-
celing is used, how can we understand and investigate PAV in
model selection within-sample and interpret results in this light?

Theoretical Framework

In this section, we begin by representing a sample item-level
covariance structural model. Next, we relate this expression to a
sample parcel-level covariance structure model. Consistent with
the common context for parceling—moderate sample size and an
assumed-known item-level measurement model—our model rep-
resentation allows only for sources of sampling error and
structural-model-specific model error. That is, we assume no
model error arises from the measurement model—an assumption
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made implicitly or explicitly by most researchers who employ
and/or recommend parceling (see Little et al., 2002, for review).1

Finally, we then detail implications of this framework for PAV in
model selection.

Item-Level Covariance Structure Model in the Sample

We start by considering a covariance structure model for an
item-level sample covariance matrix, Si. An i subscript denotes
item level. We can consider the illustrative situation where items
per factor are unidimensional with unit variances in the population
so that our later discussion can refer interchangeably to the impact
of loading or communality size (the latter is the square of the
former).

There are m items measuring q factors. In Equation (1), �i is a
m � q common factor loading matrix, Ccci

is a q � q common
factor covariance matrix, and �i is a m � m diagonal matrix of
unique factor loadings.

Si � �iCcci
��i � �i

2 � �SE1i
(1)

Following MacCallum and Tucker (1991) and MacCallum, Wida-
man, Zhang, and Hong, (1999), the term �SE1i

represents all lack
of fit due to sampling error arising from the measurement model.
The sources of sampling error contributing to �SE1i

are represented
in greater detail in the Appendix A equations (see also MacCallum,
2013; MacCallum et al., 1999; Bandalos, 2002; Bandalos &
Finney, 2001; Matsunaga, 2008; Meade & Kroustalis, 2006).

In Equation (2), we introduce a structural model which allows
constraints on common factor covariances in Ccci

. In Equation (2),
�i is a q � q matrix of residual covariances among common
factors and Bi is a q � q matrix of regressions among common
factors.

Ccci
� �I � Bi��1�i�I � B�i��1 � �SE2i

� �MEi
(2)

In MacCallum and Tucker’s (1991) original framework, Ccci
was

unstructured; no lack of fit due to sampling error could arise from
such a saturated structural model because it has no constraints. In
contrast, the constraints imposed on Ccci

in Equation (2) can cause
misfit; indeed, sampling error alone could cause the constraints to
be inappropriate even if they hold in the population. Lack of fit due
to sampling error, arising from the structural model, is represented
by �SE2i

in Equation (2). The Appendix A equations represent in
greater detail the sources of sampling error contributing to �SE2i

.
Finally, the term �MEi

in Equation (2) represents all lack of fit
from model error specifically in the structural model. In MacCa-
llum and Tucker (1991); MacCallum, Widaman, Preacher, and
Hong (2001), and MacCallum (2013), model error was not specific
to the structural model, as it is here. This model error might arise
due to, for example, parametric misspecifications of the population
structural model.

In Equation (3), we substitute Equation (2) into (1) and denote
�SEi

� �i�SE2i
��i � �SE1i

to yield a reduced-form item-level
covariance structure model in the sample:

Si � �i�I � Bi��1�i�I � B�i��1��i � �i
2 � �i�MEi

��i � �SEi
.

(3)

Parcel-Level Covariance Structure Model in the Sample

Having first considered the item-level covariance structure
model in the sample, we now turn our attention to the parcel-level
covariance structure model in the sample. Let A be an m � j
selection matrix. It serves to allocate m items to j parcels in the
measurement model for a given, prespecified number of parcels/
factor and items/parcel, within a single sample. Allocation A could
be chosen randomly or purposively from the within-sample distri-
bution of potential allocations that has the desired number of
parcels/factor and items/parcel. A p subscript indicates parcel
level. The parcel-level covariance structure model can be obtained
by pre- and postmultiplying Equation (3) by A and A=, respec-
tively:

Sp � A�i((I � Bi)
�1�i(I � B�i )

�1)��i A� � A�i�MEi
��i A�

� A�i
2A� � A�SEi

A�. (4)

Following Sterba and MacCallum (2010), MacCallum (2013), and
Sterba (2011), for the parcel-level model, we can define the
following specific to allocation A: loadings, �p � A�i, unique
variances, �p

2 � A�i
2A�, and lack of fit due to sampling error,

�SEp
� A�SEi

A�. Additionally, we newly define �MEp
� �p�MEi

��p as
the lack of fit due to structural model error that is specific to
allocation A. The latter expression shows that the contribution of
structural model error is specific to allocation A because its con-
tribution is differentially weighted by the allocation-specific load-
ings. Simplifying Equation (4) using these definitions yields Equa-
tion (5).

Sp � �p((I � Bi)
�1�i(I � B�i )

�1)��p � �p
2 � �MEp

� �SEp

(5)

Although the same structural parameters Bi and �i appear in
both the item-level expression (Equation [3]) and parcel-level
expression (Equation [5]), their sample estimates will not be the
same across allocations within-sample because �SEp

and �MEp
have allocation-specific impacts on structural estimates.

We now denote the population model-implied parcel-level
covariance structure as �̃p, where �̃p � �p�I � Bi��1�i�I �

B�i ��1��p � �p
2. In other words, �̃p is a function of all model

parameters and here is evaluated at population values of these
parameters (i.e., values of the parameters obtained if the model
were fit in the population). Similar to MacCallum et al. (2001,
Equation [15]), we substitute �̃p into Equation (5) to yield Equa-
tion (6).

Sp � �̃p � �MEp
� �SEp

(6)

In Equation (6), the parcel-level sample covariance matrix is partly
accounted for by the population model-implied covariance struc-
ture and partly explained by misfit due to structural model error
and sampling error.

1 Violation of this assumption would increase PAV in a manner similar
to reducing sample size; see Discussion section.
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Model Selection Between Competing Structural
Specifications of Parcel-Level Models

Suppose now that we have not one but two such parcel-level
models, designated Models a and b. Models a and b differ from
each other only in the structural submodel. That is, the measure-
ment submodel specification for Models a and b are the same.
Models a and b are fit in the sample using the same parcel-
allocation.

Further suppose that we want to select between parcel-level
Models a and b. For this purpose, we might consider computing a
likelihood ratio test (LRT) statistic or computing differences in
information criteria.2 First, consider the LRT statistic, here re-
ferred to as T. Because the LRT will require nested models, here
suppose Model a is nested within b. When all items are assumed
mean deviated, T can be expressed as Equation (7), as explained in
Appendix B.

T � (N � 1)�ln��̂p
a� � ln��̂p

b� � tr��̂p
a�1��̃p

a � �MEp

a � �SEp

a ��
� tr��̂p

b�1��̃p
b � �MEp

b � �SEp

b ��� (7)

In Equation (7), superscripts a or b refer to Models a or b,
respectively. Also, �̂p refers to a sample model-implied parcel-
level covariance structure. It is important to note that Equation (7)
is not a computational formula for T that would be used in
empirical practice (see later Simulation Method section for a
computational formula). Rather, Equation (7) is useful for under-
standing how T is affected by sampling and model error, as
described in the next section.

Researchers also often use differences in Bayesian information
criteria (Schwarz, 1978) or Akaike’s information criterion
(Akaike, 1973) to aid in model selection: �BIC � T � lnN(ka �
kb) and �AIC � T � 2(ka � kb). Here, ka � kb is the difference
in the number of free parameters between Models a and b. In the
next section we use our framework to infer whether within-sample
PAV in model selection index values (i.e., T or �BIC or �AIC) is
possible under three situations. Note that we are not yet discussing
model ranking. For a given pair of models, the standard deviation
of the within-sample PAV distribution of T, �BIC, and �AIC will
be the same because these indices each differ by a constant. Hence,
the next section can refer to all three index values generically.

Parcel-Allocation Variability in Model Selection Index
Values Within-Sample

Here we consider three key situations and we use the above
framework to determine whether PAV in model selection index
values can occur in each situation. We define structural model
differences as between-model differences in inappropriate con-
straints in the structural model and/or between-model differences
in superfluous parameters in the structural model. Structural model
differences are represented as ��MEp

b � �MEp

a �.
Case I: Models a and b are equivalent models and there is

sampling error. First, suppose structural model differences be-
tween Models a and b approach 0 [i.e., ��MEp

b � �MEp

a � ¡ 0]. This
implies that ��̃p

b � �̃p
a� ¡ 0 because Models a and b both were

defined as having no model error in the corresponding item-level
measurement models. It also follows that ��SEp

b � �SEp

a � ¡ 0 and
��̂p

b � �̂p
a� ¡ 0. This is because, although sampling error could

manifest differently across models, as the models become more
and more similar, the sampling error must eventually have the
same manifestation per model. Now, consider the limiting situa-
tion where Models a and b are equivalent models in the sense of
Lee and Hershberger (1990) and MacCallum, Wegener, Uchino,
and Fabrigar (1993); this corresponds with structural model dif-
ferences between Models a and b being 0 in the sample. In this
limiting case, sampling error alone cannot induce PAV in model
selection index values in Equation (7). Indeed, in this case Equa-
tion (7) would be 0.

Case II: Models a and b have structural differences and
there is no sampling error. Suppose sampling error approaches
0 (i.e., �SEp

b
¡ 0 and �SEp

a
¡ 0), meaning the final term in Equa-

tion (5) drops out for each model and that �̂p
a
¡ �̃p

a and �̂p
b
¡ �̃p

b

(see Appendix B). If item-level loadings within-factor are unequal
in the population, then the impact of structural model error (present in

Model a, �MEp

a � �p
a�MEi

a �a�p and/or Model b, �MEp

b � �p
b�MEi

b �b�p) is
still weighted by allocation-specific matrices (i.e., �p= � A�i). This
implies the possibility of PAV in model selection index values.3

However, if item-level loadings within-factor are equal in the
population, then the impact of structural model error (present in
Model a or b or both) is no longer allocation-specific because its
contribution is no longer weighted by allocation-specific matrices.
This implies no PAV in model selection index values.4

Case III. Models a and b have structural differences and
there is sampling error. Under Case III, neither �SEp

a nor �SEp

b

drop out of Equation (7). Additionally, the influence of structural
model error (present in Model a, �MEp

a , and/or Model b, �MEp

b ) is
allocation-specific because, even if item-level loadings within-
factor are equal in the population, they will be unequal in the
sample due to sampling error. Thus, the combination of sam-
pling error plus structural model differences between a and b
can yield PAV in values of a model selection index such as the
LRT statistic, T.

2 We refer to LRT and information criteria all as “selection indices” here
because we use them later for the same purpose—to rank models (Maxwell
& Delaney, 2004; Rodgers, 2010; Sterba & Pek, 2012)—despite the
former coming from a distinct hypothesis-testing tradition.

3 This point predicted by the theoretical framework was verified by a
small simulation. A population item-level dataset was generated with
unidimensional items per factor and unequal item-level loadings per
factor. The item-level dataset was generated in SAS Proc IML using
Kaiser and Dickman’s Method 2 (Kaiser & Dickman, 1962, Equation 5,
p. 180) to have no sampling error (meaning that fitting the generating
item-level model in the sample would exactly reproduce the population
correlation matrix). The nine items per factor were repeatedly randomly
allocated to three three-item parcels, and two parcel-level models were
fit with the same measurement specification but different structural
specifications. PAV in model selection index values was observed.

4 This point predicted by the theoretical framework was verified by a
small simulation. The same procedures from Footnote 3 were followed to
generate a population item-level dataset (i.e., no sampling error) with
unidimensional items per factor and equal item-level loadings per factor.
The nine items per factor were again repeatedly randomly allocated to three
three-item parcels, and two parcel-level models were fit with the same
measurement specification but different structural specifications. PAV in
model selection index values was not observed.
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Substantively, however, our interest is not simply in PAV in T,
�BIC, �AIC, or values of another selection index. Rather, we are
interested in PAV in the decision regarding which model to retain
as best fitting—that is, PAV in model ranking. This is the topic of
the next section.

Parcel-Allocation Variability in Model Ranking
Within-Sample

PAV in model ranking is defined as when the ranking preference
flips from model a to b or b to a in a nonzero proportion of
allocations, within-sample. Sampling error plus structural model
differences can induce PAV in fit ranking within-sample, but are
not sufficient to guarantee that it will arise. In a given parcel-
allocation within sample, model ranking of b over a (i.e., support
for Model b) corresponds to T(df) � Tcrit(df) for the LRT statistic,
�BIC � 0 for the Bayesian information criterion, or �AIC � 0 for
Akaike information criterion. Here, df � kb – ka. Tcrit(df) is the
critical value of the LRT statistic at that df . The null hypothesis for
the LRT is that there is no difference in the fit of Models a and b
in the population. Unlike the LRT, �BIC, and �AIC do not require
that Model a be nested in Model b.

Next, we describe two hypotheses involving conditions ex-
pected to increase or decrease the risk of PAV in model fit ranking
within-sample, in this context. Figure 1 illustrates these two hy-
potheses. In the subsequent section, a simulation is used to eval-
uate each hypothesis.

Hypotheses

Hypothesis 1: PAV in model ranking can arise at small,
medium, or large structural differences, depending on the
amount of sampling error; it is more likely to arise when
structural differences yield a selection index value closer to its
decision threshold.

Consider that each selection index has a decision threshold that
distinguishes support for Model a versus b. In the case of the LRT,
this threshold is Tcrit(df), and for �BIC or �AIC, this threshold is
0. The across-allocations within-sample distribution of the selec-
tion index’s values (i.e., T, �BIC, or �AIC) needs to overlap that
index’s decision threshold in order for PAV in model ranking to
arise. As an example, if �BIC ranges from 10 to 15 across
allocations within-sample, this implies no PAV in model ranking,
because the decision threshold for �BIC is 0 and all allocations
prefer Model b. On the other hand, if �BIC ranges from �3 to 4
across allocations within-sample, overlapping the decision thresh-
old, there would be PAV in model ranking in that sample because
some allocations prefer Model b and some prefer Model a. Alter-
natively, if �BIC ranges from �9 to �2 across allocations within-
sample, there would be no PAV in model ranking in that sample
because all allocations prefer Model a.

In the Figure 1 heuristic illustration, each distribution represents
an across-allocation within-sample distribution of a generic model
selection index (�BIC, �AIC, or T). The vertical line represents

Figure 1. Illustration of Hypotheses 1 and 2. Hypothesis 1 is illustrated by comparing across the four panels
(columns). Hypothesis 2 is illustrated by comparing top and bottom distributions within each panel. Each
distribution is a within-sample across-allocation distribution of model selection index values obtained when
comparing Models a and b. The model selection index could be either change in Bayesian information criterion
(�BIC), change in Akaike information criterion (�AIC), or likelihood ratio test statistic; see text for definitions.
The vertical line represents the decision threshold for a model selection index. To the right of the decision
threshold, Model b (the more complex model) is preferred; to the left of the decision threshold, Model a is
preferred. In this illustration, the decision threshold stays at the same location in all plots for a given index
because Model a and b have the same �df in all plots (as will be the case later in the simulation). Incidence of
parcel-allocation variability in model ranking occurs when the decision threshold overlaps the across-allocation
distribution, within-sample. Magnitude of parcel-allocation variability in model ranking within sample is
denoted by the size of the shaded portion of the distribution (i.e. the proportion of allocations preferring the least
favored model, within-sample). Each column corresponds with a different amount of structural differences
between Model a and b. High manifestation of sampling error corresponds with lower sample size and lower
communalities.
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the decision threshold for that index; it stays in the same location
for all panels of Figure 1 (see Figure 1 notes). To the right of the
decision threshold, Model b (the more complex model) is preferred
and to the left of the decision threshold, Model a is preferred.
When structural differences ��MEp

b � �MEp

a � lead on average to
selection index values closer to its decision threshold, there is a
greater potential for that across-allocations within-sample distri-
bution to overlap the decision threshold. This overlap corresponds
with the incidence of PAV in model ranking. Note that, when PAV
in model ranking occurs, the size of the shaded area depicts
magnitude of PAV– the proportion of allocations preferring the
least favored model, within-sample.

Hypothesis 1 additionally states that the risk of PAV in model
ranking occurring should not be limited to a particular degree of
structural differences between models. This is because, for a given
degree of structural difference between models in the population,
the across-allocation within-sample distribution of the selection
index could be closer to its decision threshold (higher risk of PAV
in ranking) or farther from its decision threshold (lower risk of
PAV in ranking) depending on the amount of sampling error. In
Figure 1, the four panels (columns) correspond with four different
degrees of structural differences between Models a and b in the
population. Figure 1 illustrates that PAV in ranking should occur
under some conditions within each panel (further discussed in
Hypothesis 2, below). Specifically, Figure 1 illustrates the expec-
tation that, under certain conditions, PAV in ranking can be
encountered when structural constraints imposed on Model a (but
not imposed on Model b) are highly inappropriate, moderately
appropriate, slightly inappropriate, or appropriate. Only when all
allocations within sample prefer a single model (e.g., bottom right
plot of Figure 1), should there be no PAV in ranking.

Recall that the Figure 1 illustration is shown for a single model
selection index. Because each selection index (e.g., T, �BIC, or
�AIC) differentially weighs fit and parsimony in determining
model ranking (for reviews see Kuha, 2004 and Vrieze, 2012),
under the same data and model conditions PAV in ranking could
occur for some selection indices but not others. This is because
data/model conditions rendering one selection index close to its
decision threshold (implying high chance of PAV in ranking
within-sample) may render another far from its decision threshold
(implying low chance of PAV in ranking within-sample). For
example, in a sample where �BIC ranges from �3 to 4 across
allocations (implying PAV in ranking), �AIC may range from 3 to
7 (implying no PAV in ranking).

Hypothesis 2: Assuming nonequivalent structural models,
PAV in model ranking is more likely to arise when sampling
error is higher (i.e., lower item communalities, lower N, and
particularly their combination).

Modest N and low item communalities are widespread in parcel
applications, and their existence is used as one motivation for
parceling (e.g., Little et al., 2013; Matsunaga, 2008; Plummer,
2000; Williams & O’Boyle, 2008; Yang et al., 2010). For each
model, there will be greater sampling error in selection index
values in the context of lower N and lower item communalities5

(see also Bandalos, 2002; MacCallum et al., 1999; Matsunaga,
2008; Meade & Kroustalis, 2006). Assuming some structural dif-
ferences between models, the influence of sampling error on fit

should not only be (i) allocation-specific but also (ii) model-
specific (i.e., �SEp

a � �SEp

b ). Regarding (i), the influence of sam-
pling error on fit should be allocation-specific because �SEp

�
A�SEi

A�. Regarding (ii), the influence of sampling error on fit
should be model-specific because models with different structural
constraints have different potential for those constraints to be
inappropriate simply due to sampling error. Taken together, (i) and
(ii) should allow greater potential for PAV in fit ranking propor-
tional to the amount of sampling error. This hypothesis is illus-
trated in Figure 1 by contrasting the top row of plots (where
sampling error is high) with the bottom row of plots (where
sampling error is low). There is incidence of PAV in ranking in all
four panels in the top row of plots but in only two panels in the
bottom row of plots. Also, the top row of plots has on average
greater magnitude of PAV in ranking.

Simulation Study to Assess PAV in Model Ranking
Within-Sample

We use a simulation study to investigate Hypotheses 1 and 2.
The simulation involved a fully crossed design with 84 cells
resulting from manipulating sample size (four levels), difference
between structural specifications of Models a and b (seven levels),
and communality size (three levels). Details of these conditions are
provided later in the section titled Manipulated design conditions,
following the presentation of the generating model. Although the
simulation study pertains to a pair of models, if a researcher had
multiple models to compare, results of this simulation would apply
to each pair under comparison. The empirical example provided
later illustrates a selection scenario with more than two models.

Simulation Method

Generating Model

Within each cell of the design, 500 sample datasets were gen-
erated from the following item-level model. This generating item-
level model was chosen to reflect an empirical application that had
employed parceling and then compared alternative structural mod-
els—Zampetakis et al. (2009).

First consider the structural portion of the item-level generating
model. As diagrammed in Figure 2, there were q � 5 factors,
�i � ��i

pro, �i
emo, �i

cre, �i
att, �i

ent�, representing proactivity, emo-
tional intelligence, creativity, attitudes toward entrepreneurship,
and entrepreneurial intention, such that

Bi ��
0 B12 0 0 0
0 0 0 0 0

B31 B32 0 0 0
B41 B42 B43 0 0
B51 0 B53 B54 0

�. (8)

Generating values of B41 and B43 were manipulated in the study
design (see Manipulated design conditions section, below). On a

5 This can be explained using notation from Appendix A, as follows. For
each model, lower N implies that elements of Cu�i

and C�ui
and off-diagonal

elements of Cuui
depart from 0 by chance alone, which increases the impact

of �SEi
in Equation (1). Also, lower item communalities imply greater

impact of Cuui
on �SEi

in Equation (1).
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standardized metric, generating values of B12, B31, B32, B42, B53,
B54 were .2 and the generating value of B51 was .1. We specified
factor residual variance values in �i to imply total factor variances
of 1 in the population.

In the measurement portion of the item-level generating model,
	i and 	i

2 were manipulated in the study design (see Manipulated
design conditions section, below). In total, there were m � 39
multivariate normally distributed item indicators. Specifically,
there were nine item indicators per each �i

pro, �i
emo, �i

att, and �i
ent

factor. These unidimensional items were subsequently parceled
within factor, as described in the next subsection. Additionally, we
generated three item indictors for �i

cre which were not subse-
quently parceled. The latter was done because, in our literature
review of applications employing parceling and model selection,
sometimes researchers had several factors with parcel-indicators
but one or more factors with item-indicators. Mplus 7.3 (Muthén &
Muthén, 1998-2014) was used for data generation.

Parceling

For each of the item-level sample datasets generated per cell of
the simulation design, 100 item-to-parcel allocations were ran-
domly generated. The fact that allocations were generated ran-
domly does not limit the relevancy of the simulation with respect
to purposive allocations. This is because different kinds of purpo-
sive allocations (i.e., different purposive parceling strategies) can
arise by chance as special cases of random allocations. Specifi-
cally, in a given sample, for each of the �i

pro, �i
emo, �i

att, and �i
ent

factors, we randomly assigned the nine items per factor to three
parcels per factor. Each parcel score was obtained by averaging the
items allocated to that parcel. This yielded 50,000 parcel-level
datasets per cell. Across all 84 cells, there were thus 4,200,000
parcel-level datasets. SAS 9.4 and R were used for parceling and
data management.

Fitted Models a and b

Each parcel-level dataset was fit with two parcel-level models,
a and b, using maximum likelihood estimation. Mplus 7.3 was

used for model fitting. Models a and b only differed in the
structural specification.

In the model selection literature, it is considered realistic for
none of the models under comparison to perfectly structurally
match the generating model (for review see Preacher & Merkle,
2012). Hence, in our simulation the structural specification of both
Models a and b were simpler than the generating model. This is
consistent with our theoretical framework, which allows for struc-
tural model error. Specifically, fitted Models a and b both fixed
B51 � 0, unlike the generating model in Equation (8). Whereas
other kinds of structural error could be introduced,6 its nature and
presence is not central to the testing of our hypotheses. Model a
differed from b in that Model a imposed the constraints B41 � 0
and B43 � 0, whereas Model b did not. As such, df � 2 when
comparing Model a versus b. Model a is nested in b. This model
comparison is similar to that employed in applications we re-
viewed that used parceling and then compared models that differed
in structural specifications. Note that there is nothing about the
phenomenon of PAV in model ranking that is limited to nested
models.7 We chose nested models for illustration so that we could
include the LRT among the selection indices considered.

In the fitted model, the factor residual variances were con-
strained in a model-based way such that all total factor variances
were 1 (e.g., Steiger, 2002). Thus, all estimated structural path
coefficients are interpretable as standardized effects.

For each of the 50,000 parcel-level datasets per cell, we re-
corded the maximized likelihoods for Models a and b, denoted La

and Lb. These were used to calculate three statistics useful in
model selection: the LRT statistic, T � �2[ln La � ln Lb],
�BIC � �2[ln La � ln Lb] � ln N(ka � kb), and �AIC � �2[ln La �
ln Lb] � 2(ka � kb). Support for Model b over a corresponds with
T(df) � Tcrit(df), and also with �BIC � 0 and with �AIC � 0.

Manipulated Design Conditions

Sample size. The 4 sample sizes used were N � 150, 250,
350, and 450. These modest to large sample sizes are larger than
most of the Ns considered in previous work on PAV to demon-
strate that, importantly, PAV is not confined to low Ns. In contrast,
N � 75–250 were used in Sterba (2011) and Sterba and MacCa-
llum (2010). The lowest N used in the present design (N � 150) is
close to the average N used in structural equation modeling (SEM)
applications, according to Baumgartner and Hornburg’s (1996)
review.

Communality size. The three item communality sizes used
were: low � .16 (corresponding with 
i � .4, 	i

2 � .84), me-
dium � .30 (corresponding with 
i � .55, 	i

2 � .6975), and high �
.49 (corresponding with 
i � .7, 	i

2 � .51). Recall that the i
subscript indicates item level. These communality conditions were
chosen using the Spearman-Brown prophecy formula to imply a
particular scale reliability for each parceled factor (as in Sterba,
2011 and Sterba & MacCallum, 2010). When nine items/factor

6 Note that Cudeck and Browne’s (1992) method for introducing model
error could not be used here because our interest was in introducing model
error into the structural model specifically.

7 PAV in model ranking using �BIC or �AIC can also occur with
nonnested models (including models with the same degrees of freedom);
this was confirmed in additional pilot simulations (not shown).

Figure 2. Simulation population-generating structural model. Generating
values of B41 and B43 were manipulated in the study design; see text. The
proactivity, emotional intelligence, attitudes, and entrepreneurial intention
factors each had nine item indicators per factor that were subsequently
parceled within factor. The creativity factor had three item indictors that
were not subsequently parceled.
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were allocated to three parcels/factor, implied scale reliability was,
according to Nunnally and Bernstein (1994), excellent (.90) in the
high condition, above-satisfactory (.80) in the medium condition,
and .63 in the low condition. These item communalities and
item-to-parcel ratios imply average parcel-communalities of .74,
.56, and .36 for the high, medium, and low conditions. Population
error variances were chosen to make all item variances � 1.0. Note
that more PAV would be anticipated when item loadings within-
factor in the population are unequal (see Case II above), so our
equal-loading generating model provides a conservative depiction
of potential PAV.

Structural differences between Models a and b. In some
settings, differences between models can be defined using a metric
of an overall fit index or selection index. For instance, the size of
the noncentrality parameter of the noncentral 
2 distribution and
its associated df (e.g., Fan & Sivo, 2005) could be used or the
differences in expected BIC (defined in Preacher & Merkle, 2012)
could be used. In the present study, however, we cannot quantify
structural differences between Models a and b with respect to such
fit metrics. This is because, whereas our generating model is an
item-level model, fitted models a and b are parcel-level models
that do not have one true fit difference. Rather, they have a
distribution of fit differences across possible allocations.

In the present study, Models a and b differ only in the structural
model; thus, we can instead define the difference between Models
a and b parametrically, with respect to the size of the standardized
structural coefficients in Bi that are constrained to 0 in Model a but
freely estimated in Model b. Recall that standardized coefficients
B41 and B43 were fixed � 0 in fitted Model a but freely estimated
in fitted Model b. In the generating model in Equation (8), B41 and
B43 refer to effects of proactivity and creativity on attitudes. The
standardized coefficients B41 and B43 both have seven different
generating values in the simulation design: 0, .05, .10, .15, .20, .25,
.30. The six nonzero values of B41 and B43, ranging from .05 to
.30, were chosen so that the variance in the latent attitudes factor
jointly explained by proactivity and creativity factors ranges from
small �R2 � .01 to large �R2 � .24 (Cohen, 1988). For instance,
a small �R2 of .01 for the joint contribution of proactivity and
creativity corresponds with B41 � B43 � .05 and a large �R2 of .24
corresponds with B41 � B43 � .30. Even for the seventh generat-
ing value, when both B41 and B43 � 0 (and thus �R2 � 0), Models
a and b are still structurally different (i.e., they are not equivalent
models). Hence, there could still be some PAV in model ranking
under this condition, because both coefficient values will not be
exactly 0 in the sample.

Simulation Results and Discussion

Converged proper solutions. Between 96.3% and 100% (av-
erage 99.7%) of the 50,000 allocations � samples per cell yielded
parcel-solutions that converged for Models a and b. Between
86.0% and 100% (average 98.5%) yielded parcel-solutions that
were both converged and proper for Models a and b. Results from
the latter solutions are summarized in subsequent sections. The
probability of a solution being converged or proper was virtually
uncorrelated (r � .08 and r � �.01, respectively) with the size of
structural differences between models, but was nonlinearly related
to communality and sample size. Specifically, nonconvergence
and improper solutions arose largely in the cells with both low-

communality and N � 150; in these cells, 96–98% of parcel-
solutions converged and 86–87% were converged and proper. For
all other communality and sample size combinations, �99% of
parcel-solutions converged and �97% were converged and proper.

PAV in model ranking. To address Hypotheses 1 and 2, we
calculated the model ranking for each of the repeated parcel-
allocations in each sample per cell. For the LRT, ranking of Model
b over a (i.e., support for b) corresponded to a p value �.05.
Ranking of b over a also corresponded with �BIC � 0 or �AIC �
0. Recall that PAV in model ranking within-sample is defined as
when ranking preference flips from a to b or b to a in a nonzero
proportion of allocations within-sample. If there is PAV in model
ranking within-sample, the ranking obtained in empirical practice
could be contingent on the particular item-to-parcel allocation
chosen. First, we focus on results involving the incidence of PAV
in model ranking within sample. Later, we focus on results involv-
ing the magnitude of PAV in ranking, among samples where PAV
arose.

There are alternative ways to display results involving the
incidence of PAV in ranking. We adopt two possible ways of
depicting incidence—the proportion of samples where �1% of
allocations exhibit PAV in model ranking, and also the proportion
of samples where �5%, of allocations exhibit PAV in model rank-
ing. Results pertaining to the incidence of �1% PAV in ranking are
provided in the Online Appendix. Results pertaining to the incidence
of �5% PAV in ranking show the same pattern but with a reduction
in rates; they are provided here in Figures 3, 4, and 5. In particular, the
y-axis of Figures 3, 4, and 5 is the proportion of samples where �5%
of allocations exhibit a flip in model ranking—meaning that they
prefer a different model than the majority of the allocations within-
sample. The x-axis of Figures 3, 4, and 5 is the average selection index
value per cell.

In Figure 3, the x-axis is the average LRT statistic value per cell.
Each panel in Figure 3 corresponds with a different sample size.
Within each panel, each curve represents a different communality
size: top curve � low communalities; middle curve � medium
communalities; bottom curve � high communalities. In Figure 3,
each of the seven dots represents a particular size of structural
differences between Models a versus b. Dots are connected by
splines. The dot size is proportional to the size of the structural
difference between Models a and b (i.e., with the largest dot
representing �R2 � .24). In Figure 3, the gray vertical line repre-
sents the decision threshold, that is, the critical value of Tcrit(df �
2) � 5.991. An obtained LRT statistic exceeding this critical value
indicates preference for Model b; otherwise Model a is preferred.

In support of Hypothesis 1, Figure 3 shows that incidence of
PAV in model ranking peaks as the obtained LRT statistic ap-
proaches the decision threshold of Tcrit. Importantly, notice that the
nature of the peak is not a sharp narrow spike in the immediate
vicinity of the decision threshold; rather, we see a gradually
increasing and then decreasing amount of PAV spanning a broad
range of LRT statistic values both before and after the decision
threshold (e.g., from T � 3 to T � 20). Also note that, for this
model pair, PAV peaks at medium-sized structural differences
when N is smaller (i.e., dots are medium sized at peak of curve
when N � 150). When N is larger, however, PAV peaks at
smaller-sized structural differences (i.e., dots are smaller at peak of
curve when N � 450).
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Figure 3. Proportion of samples per cell with �5% parcel-allocation variability (PAV) in model ranking versus
average likelihood ratio test (LRT) statistic per cell. In each panel, top curve � low communalities; middle
curve � medium communalities; bottom curve � high communalities. The seven dots per curve are connected
by a spline and represent 7 sizes of structural differences between Models a and b, ranging from small to large.
Vertical bar � decision threshold (i.e. critical value of 5.99) for LRT. See the online article for the color version
of this figure.
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Figure 4. Proportion of samples per cell with �5% parcel-allocation variability (PAV) in model ranking versus
average change in Bayesian information criterion (�BIC) per cell. In each panel, top curve � low communal-
ities; middle curve � medium communalities; bottom curve � high communalities. The seven dots per curve
are connected by a spline and represent seven sizes of structural differences between Models a and b, ranging
from small to large. Vertical bar � decision threshold for �BIC (i.e., 0). See the online article for the color
version of this figure.
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Figure 5. Proportion of samples per cell with �5% parcel-allocation variability (PAV) in model ranking versus
average change in Akaike information criterion (�AIC) per cell. In each panel, top curve � low communalities;
middle curve � medium communalities; bottom curve � high communalities. The seven dots per curve are
connected by a spline and represent seven sizes of structural differences between Models a and b, ranging from
small to large. Vertical bar � decision threshold for �AIC (i.e., 0). See the online article for the color version
of this figure.
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In support of Hypothesis 2, peak frequency of PAV occur-
rence is higher when N and/or item communalities are lower.
For example, when both factors are low, PAV in ranking occurs
in up to 28% of samples. Importantly, when only one of these
factors is low, the risk of PAV in model ranking remains, in line
with Hypothesis 2. That is, for lower sample size (N � 150)—
but medium to high communalities—PAV in model ranking can
still occur in 13–18% of samples. Likewise for low communal-
ities— but medium to high N—PAV in model ranking can still
occur in 17–20% of samples. Note that even combinations of
medium to large N and medium to large communalities still can
give rise to PAV in model ranking in up to 10 –12% of samples.

In Figure 4, the x-axis is average �BIC per cell and in Figure
5 the x-axis is average �AIC per cell. In Figures 4 and 5, the
gray vertical line represents the decision threshold of 0. Sup-
porting Hypothesis 1, in Figures 4 and 5 the incidence of PAV
in model ranking again peaks when the selection index is closer
to its decision threshold (0). Notably, there was elevated PAV
across a wide range of index values surrounding the decision
threshold (e.g., �BIC of �9 to 15). Only when the absolute
values of cell-average �BIC or �AIC were extremely large was
there no incidence of PAV in model ranking (i.e., Model a or
Model b was always preferred). Additionally, supporting Hy-
pothesis 2, in Figures 4 and 5 the peak in PAV for model
ranking is higher when communalities are lower and/or N is
lower.

It is important to note that the data/model conditions corre-
sponding to peak risk of PAV in model ranking differ somewhat
from one selection index to another across Figures 3, 4, and 5.
For instance, for this pair of models, PAV incidence peaks at
larger structural differences (i.e., larger dot sizes) when using
�BIC compared with LRT or �AIC, and when using LRT
compared with �AIC. This is because different sizes of struc-
tural differences are needed for each index to be close to its
decision threshold. The LRT statistic will equal its decision
threshold when the fit difference �2[ln La � ln Lb] equals
Tcrit(df); �BIC will equal its decision threshold when the fit
difference equals its penalty term ln N(ka � kb); �AIC will
equal its decision threshold when the fit difference equals its
penalty term 2(ka � kb). Consider, for instance, the top curve in
the top panel of Figures 3, 4, and 5 (i.e., lower communalities
and N � 150). A larger fit difference, and thus a larger struc-
tural model difference (i.e., larger dot size), is needed for �BIC
to equal its decision threshold (10.02) than for LRT to equal its
decision threshold (5.99) or �AIC to equal its decision thresh-
old (4.0). This pattern reflects the fact that Model b is the more
complex model and �AIC generally has a lower bar for prefer-
ring the more complex model than �BIC (Kuha, 2004;
Preacher, Zhang, Kim, & Mels, 2013). What this means in the
context of PAV in model ranking is that there is a wide range
of structural differences under which PAV could occur for at
least one selection index. That is, given a particular N and
communality size, for this model pair there could be an elevated
risk of PAV using �AIC for a comparison involving small
structural differences, but elevated risk of PAV using LRT or
�BIC for a comparison involving medium to large structural
differences.

We have thus far considered the incidence of PAV in ranking.
Next, for samples where PAV in model ranking arises in a nonzero

proportion of allocations within-sample, we also consider the
magnitude of PAV in ranking within-sample. We quantify the
magnitude of PAV in ranking as the proportion of allocations per
sample preferring the least favored model. Hence, the maximum
magnitude boundary is .50. In Figure 6, the magnitude of PAV in
ranking in a sample (on the y-axis) is plotted against the average
selection index value (LRT statistic or �BIC, or �AIC) in that
sample (on the x-axis). The three rows of Figure 6 depict this
relationship for low, medium, and high communalities. In the
online appendix (see Supplemental Materials), a parallel plot is
provided depicting this relationship for N � 150, 250, 350, and
450 separately; the same pattern of results in Figure 6 across low
to high communalities is found in the online appendix across low
to high N. Each data point in Figure 6 is a sample where PAV in
ranking occurred. Figure 6 shows that the magnitude of PAV in
ranking within-sample peaks (with half of allocations preferring
Model a and half preferring Model b) when the average selec-
tion index value within-sample is closest to the selection in-
dex’s decision threshold. The decision threshold is represented
by a vertical bar. Additionally, note how the white space around
the decision threshold decreases as sampling error decreases.
This implies that samples with average selection index values
near the decision threshold tend to exhibit peak PAV magnitude
(i.e., near .50) when sampling error is high (top row), but tend
to exhibit a whole range of PAV magnitudes when sampling
error is low (bottom row). This is because there is more across-
allocation variability in index values when sampling error is
higher. Thus, in samples with average index values near the
decision threshold, a larger proportion of allocations within-
sample tend to span the decision threshold when sampling error
is higher than when it is lower. Consequently, for a single
sample with an average selection index value close to the
decision threshold, it is easier to predict the magnitude of PAV
in ranking when sampling error is high.

Summary. In sum, there was elevated potential for PAV in
model ranking across a range of selection index values around
each index’s decision threshold. Within this range, the incidence
and magnitude of PAV in model ranking depended on sampling
error (i.e., N and item communalities). It is possible to have PAV
in ranking for one selection index but not other indices. Eliminat-
ing risk of PAV in model ranking required structural differences
rendering each index far from its decision threshold (e.g., very
inappropriate constraints imposed in model a but not b in this
simulation) plus either medium-to-high communalities or N �
250.

Model Ranking in the Item-Solution Versus Modal
Parcel-Solution

When PAV in model ranking exists within-sample, a researcher
is confronted with the question of which model to select. If the
researcher picks only one allocation, the model ranking may differ
if another single allocation were chosen. Instead, one suggestion is
to conclude in favor of the model selected in the highest proportion
of allocations within sample. This is here termed the across-
allocation modal ranking (AMR). To implement this suggestion,
first the within-sample proportion of allocations (WPA) preferring
Model b is obtained. If this WPA � .50, the AMR would select
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Model b; otherwise, a would be selected.8 The suggestion to use
AMR reflects the principle of aggregation (discussed in other
settings by Little et al., 2013; Matsunaga, 2008; Nunnally, 1978;
Rushton, Brainerd, & Pressley, 1983) in that any one parcel-
allocation is less representative than the average of many such
parcel-allocations from the same parcel-allocation distribution.
Additional rationale for this suggestion stems from the finding that
the AMR, on average, matches the model ranking obtained if
item-level versions of Models a and b were fit, instead of parcel-
level Models a and b. This result is useful to note because re-
searchers often are initially interested in an item-level solution but
end up using parcel-level solutions as a proxy for practical reasons,
as described in the introduction.

Specifically, the item-solution ranking matches the AMR in
98% of samples for LRT, 99% of samples for �BIC, and 98% of
samples for �AIC.9 The accuracy of this within-sample match
varied slightly from cell to cell, as shown in Figure 7, right
column. Each datapoint in the right column of Figure 7 represents
a design cell. The y-axis depicts the proportion of samples per cell
where the parcel-solution AMR matches the item-solution ranking.
Note the concave-up quadratic relationship across cells in Figure 7,
right column. The minimum of this curve corresponds to cells with
the worst match between item solution ranking versus parcel-
solution AMR (i.e., minimum 93% match for LRT, 92% for �BIC,

and 93% for �AIC). This minimum occurs, on the x-axis, where
cell-average WPA is around .50. Additionally, as shown in Figure
7, left column, the proportion of item solutions that prefer Model
b in each cell (y-axis) is correlated �.999 with the cell-average
WPA (x-axis). Each datapoint in Figure 7, left column, again
represents a design cell.

Taken together, Figure 7 indicates that, if one has decided to
parcel, selecting the model which is preferred in the highest
proportion of parcel-allocations within sample can be justified on
the grounds that this same ranking would be expected from an
item-level analysis, on average. This result is noteworthy because
it differs from the relationship between absolute model fit of
item-solutions and parcel-solutions for a single model in isolation
(see Bandalos, 2002; Landis et al., 2000; Meade & Kroustalis,

8 If WPA is exactly .50 in practice, we would suggest substantially
increasing the number of random allocations within sample and then
reporting the WPA as well as the AMR (see Discussion).

9 Compared to parcel-solutions, a similar proportion of item solutions
were converged and proper (range across cells: 83.6%–100%; average:
98.4%). The Figure 7, left column, results were re-run including vs.
excluding samples where item-solutions were nonconverged and/or im-
proper but some parcel-solutions were converged and proper. The pattern
of results was the same.

Figure 6. Magnitude of parcel-allocation variability (PAV) in model ranking. Each X � a sample where PAV
in model ranking occurred. Magnitude of PAV in rank � proportion of allocations/sample preferring the
least-favorable model; maximum magnitude � .50. Vertical bar � decision threshold. LRT � likelihood ratio
test; BIC � Bayesian information criterion; AIC � Akaike information criterion.
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Figure 7. Comparing item-solution model ranking versus parcel-solution across-allocation modal ranking
(AMR). Each data point represents a design cell. See the online article for the color version of this figure.
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2006; Nasser & Takahashi, 2003; Nasser & Wisenbaker, 2003;
Rogers & Schmitt, 2004). For a single model in isolation, the
absolute fit of an item solution tends to be systematically worse
than the across-allocations average fit of a parcel-solution. In the
context of evaluating absolute fit, the df of the item-level model
greatly exceeds the df of a parcel-level model; the larger dimension
of the item-solution’s error covariance matrix, for instance, pro-
vides systematically more potential for unmodeled error covari-
ances to cause misfit (see Bandalos, 2002; Sterba, 2011). In the
context of model selection among structural models, the pair of
item-level Models a and b and the pair of parcel-level Models a
and b have the same �df and impose/relax the same structural
constraints. We have shown here that ranking among structural
models need not be systematically different between the item-
solution ranking and the parcel-solution AMR.

Software Tools for Assessing PAV in Model Ranking
Within-Sample

The above simulation study was performed under the conserva-
tive situation of no measurement-model-specific model error (con-
sistent with the assumption of most researchers using parceling)
and equal item-loadings within-factor. Even under these stringent
conditions, simulation results showed PAV in model ranking oc-
curring under many different conditions depending on the combi-
nation of sample size, communality size, structural difference
between models, and selection index used. The context of real-
world data may present different—and potentially less ideal—
conditions such as smaller sample sizes and measurement-model-
specific model error (e.g., induced by using categorical rather than
metric items). Hence, in practice it is useful and diagnostic for
researchers to assess the degree of PAV in model selection in their
own sample, for their own models of interest. To that end, we
supply a software utility to allow researchers to do so. Previously,
Sterba and MacCallum (2010) produced a SAS-based software
utility to allow researchers to repeatedly, randomly allocate items
to parcels for a single SEM model in isolation, where model-fitting
occurred in a SEM package of choice. Quick and Schoemann
(2012) converted this utility from SAS into R, again for a single
model in isolation. The present R tool (PAVranking) extends that
of Quick and Schoemann (2012) to the context of model selection
between competing SEM models, generalizes it to handle noncon-
verged and improper solutions, and supplies a variety of new
output relevant to assessing PAV in model ranking, as described
below.

To use the PAVranking R utility,10 the researcher provides an
item-level dataset and specifies (in lavaan input format) two
competing SEM models of interest at a time that differ in the
structural model specification. The researcher also specifies the
desired numbers of: parcels per factor, items per parcel, and
random item-to-parcel allocations. Both models are fit repeatedly
(using lavaan, Rosseel, 2012) to that number of randomly gener-
ated allocations. In addition to providing output information rele-
vant to each model considered separately (the across-allocations
average, standard deviation, and range of parameter estimates,
standard errors, and absolute fit indices; Quick & Schoemann,
2012; Sterba & MacCallum, 2010), the program provides the
following output relevant to model selection: the proportion of
allocations in which the LRT is significant, the proportion of

allocations where each model is selected according to BIC and
AIC, the average size of the �BIC and �AIC, and the across-
allocations average, standard deviation, and range of the LRT.
Furthermore, plots are also automatically generated for the distri-
bution of �BIC, �AIC, and LRT p values across allocations
within-sample. Additionally, the researcher can specify whether he
or she is comparing multiple models, so that the same set of
random item-to-parcel allocations can be used for each pairwise
model comparison. In the empirical example section below, we use
this software to quantify PAV in model ranking and aid in drawing
substantive conclusions.

Empirical Example

Here we consider an empirical analysis where the goal is model
selection. We use this example to demonstrate interpretation and
reporting of selection results in the context of PAV. This example
is pedagogically illustrative because it includes commonly encoun-
tered model specifications. Furthermore, this example generalizes
the context of the simulation study in that it involves multiple
model comparisons, a different N, and categorical rather than
continuous items. The simulation results are relevant to each
model comparison pair.

The empirical example involves four latent factors identified
and used in previous research (e.g., Hill, Payne, Jackson, Stine-
Morrow, & Roberts, 2014; Smith, 2013). Each was measured on
N � 102 undergraduates in the 1988 Computer-Assisted Study
(Latane, 1989). The first latent factor was belonging social support
(i.e., perceived availability of people to do things with) measured
with 12 binary items (Cohen & Hoberman, 1983, Interpersonal
Support Evaluation list). The next three factors were openness to
feelings, general anxiety, and perceived vulnerability to stress,
each measured with 8 5-point ordinal items (from the Neuroticism-
Extraversion-Openness [NEO] personality inventory, Costa & Mc-
Crae, 1985). Items were randomly allocated to parcels 100 times in
the following manner. The 12 items on the first factor were
parceled into three parcels of four items each (as in, e.g., Brook-
ings & Bolton, 1988). The eight items on each of the next three
factors were parceled into three parcels of three, three, and two
items per factor. The same 100 item-to-parcel allocations were
used in all fitted models.

In this example, research interest focused on four parcel-level
models that involve predicting anxiety. These four models differ
only in the structural model specification (see Figure 8). The
parcel-level measurement model specification was the same in all
fitted models (as in the simulation study). As depicted in Figure 8,
in Model 4, anxiety is predicted by belonging support, stress
vulnerability, and openness to feelings. Models 1, 2, and 3, also
depicted in Figure 8, are simpler competing structural models. In
Model 1, openness to feelings predicts both social support and
vulnerability (Eldesouky, 2012), which both, in turn, predict gen-
eral anxiety (Thoits, 1984). In other words, emotional awareness
may both elicit more social support (which may reduce anxiety)
and increase resilience to stress (which also may reduce anxiety).

10 This utility will be made available online at www.vanderbilt.edu/
psychological_sciences/bio/jason-rights and www.vanderbilt.edu/peabody/
sterba/appxs.htm and in the semTools R package https://cran.r-project.org/
web/packages/semTools/index.html.
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In Model 2, openness and belonging support have equal effects on
stress vulnerability, which then predicts anxiety (Gershuny &
Sher, 1998; Sexton, Norton, Walker, & Norton, 2003; Suarez,
Bennett, Goldstein, & Barkow, 2008; Williams, Rau, Cribbet, &
Gunn, 2009). Finally, in Model 3, the amount of social support
predicts anxiety level directly (e.g., Karevold, Røysamb, Ystrom,
& Mathiesen, 2009), but also through affecting openness and
vulnerability. We were substantively interested in comparing Mod-
els 1, 2, and 3 each to Model 4. Of course more (or all) model
comparisons would be possible. Models 1, 2, and 3 were each

nested in Model 4 so we elected to use LRT as well as �BIC and
�AIC selection indices for these comparisons, as follows.

First consider the Model 1 versus 4 comparison. As shown in
Table 1, there was PAV in model ranking for all three selection
indices, and on average (across parcel-allocations within-sample),
all three selection indices supported Model 4. Specifically, 93–
98% of allocations preferred Model 4, depending on the selection
index. For the Model 2 versus 4 comparison, in Table 1, there was
PAV in model ranking for two out of three selection indices (�BIC
and LRT). Specifically, for �BIC there was support for Model 4 in
77% of allocations and for LRT there was support for Model 4 in
98% of allocations. On average across allocations all three selec-
tion indices supported Model 4. Finally, for the Model 3 versus 4
comparison, in Table 1, there was no PAV in model ranking. All
three selection indices supported Model 3 in 100% of allocations.
These empirical results are consistent with our earlier simulation
results in that they illustrate the possibility of PAV occurring in
some model selection index values but not others, within sample.

Taken together, these empirical results indicate support for
Model 4 over 1 or 2 and support for Model 3 over 4. Compared to
Model 4, Model 3 provides a more parsimonious representation of
a pathway to anxiety. We report AMR results because they are
typical of the distribution of parcel-allocations in this sample. If we
had selected and reported results from only one parcel-allocation,
instead of aggregate results across a distribution of parcel-
allocations, we could have obtained a different model selection
outcome that was quite atypical among possible parcel-allocations.

Though outside of the scope of this illustration, in practice, other
study designs could be considered to strengthen the grounds for
causal inference, such as measuring anxiety at a later timepoint.
Also, future research could further study the potential pathway to
anxiety in Model 3 by, for example, experimentally manipulating
the amount of social support provided.

Overall Discussion

Applied researchers widely use parceling when their research
interest lies in comparing competing structural models each spec-
ified using the same parcel-level measurement model (e.g., Booth
et al., 2013; Daspit et al., 2013; Dunkley et al., 2014; Geiser et al.,
2013; Hankonen et al., 2014; Flack et al., 2011; Gallagher et al.,
2009; Gellert et al., 2012; Jackson & Gaertner, 2010; Kuhn &
Holling, 2009; Liao et al., in press; Mairet et al., 2014; Malmberg
& Little, 2007; Martin et al., 2011; Nouwen et al., 2009; Owua-
malam et al., 2014; Segrin et al., 2013; Sierau & Herzberg, 2012;
Winkler et al., 2015; Zampetakis et al., 2009; Zheng et al., 2014).
Although much applied research employs parceling with moderate
sample sizes in the context of structural model selection, we lacked
understanding of the within-sample consequences of PAV in this
context. The present article filled this gap.

In summary, this article first extended a theoretical framework
to show how structural differences, in the absence of sampling
error, can induce PAV in model selection index values when item
loadings are unequal within-factor in the population. This framework also
showed how, more generally, sampling error plus structural differ-
ences between models can induce PAV in model selection index
values when item loadings are equal or unequal within-factor in
the population. We used a simulation to test two hypotheses,
informed by this framework, regarding patterns of PAV in

Figure 8. Empirical example structural models. Measurement models for
all latent factors shown involve three parcel indicators per factor. In Panel
2, model-based standardization was used for variables involved in the
equality constraint. See the online article for the color version of this
figure.
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model ranking. In support of these hypotheses, simulation re-
sults showed that PAV peaked when structural model differ-
ences implied selection index values close to the index’s deci-
sion threshold. The incidence and magnitude of PAV at this
peak was proportional to sampling error. That is, the incidence
and magnitude was higher when N and item communalities
were lower. Potential for PAV in ranking occurring in at least
5% of allocations/sample remained elevated in a relatively
broad vicinity of each index’s decision threshold (e.g., �9 �
�BIC � 15). In the simulation, there was a wide range of
structural model differences (including small, �R2 � .01, and
large, �R2 � .24) across which at least one selection index was
close to its decision threshold—and, thus, where there was an
elevated chance of PAV in ranking. Furthermore, the potential
for PAV in model ranking cannot simply be quantified as a
function of data and model conditions, because it depends to
some extent on the selection index used. Taken together, en-
suring the absence of within-sample PAV in model ranking for
all selection indices necessitated structural differences that ren-
der each index far from its decision threshold, (e.g., very
inappropriate constraints in Model a but not b), as well as either
medium/high communalities or N � 250.

In practice, we suggested that researchers could report the
across-allocation modal ranking (AMR) for parcel-solutions. It
was shown via simulation to correspond, on average, with the
item-solution model ranking. We provided software that can be
used for detecting and describing PAV in model ranking, and we
demonstrated its use in the context of an empirical example compar-
ing competing structural models predicting a latent anxiety factor.
Note that, in practice, there is no need to make an arbitrary cut-off
designation regarding what amount of PAV in ranking within-sample
is meaningful (e.g., �1%, �5%); the AMR can be reported regard-
less.

In addition to reporting the AMR, researchers can report the
magnitude of PAV in ranking within their sample, as was done in
the empirical example. Particularly if a researcher had interest in
precisely estimating the magnitude of PAV in ranking, and/or if
the magnitude was near .50, the researcher would want to ensure
that the percent of allocations preferring a given model remained
stable when the total number of allocations (here, 100) was appre-
ciably increased (see also Sterba & Rights, in press).

Parcel-Allocation Variability in Absolute Model Fit
Versus in Model Fit Ranking

This study’s findings, in conjunction with previous findings,
yield the following important implications about the relationship
between PAV in model ranking versus PAV in absolute fit. In a
sample, a researcher could find (a) PAV in model ranking but not
PAV in absolute fit of a given model, (b) PAV in absolute fit of a
given model but not model ranking, or (c) PAV in both. Examples
of each possibility can be inferred by combining the present results
with those of Sterba and MacCallum (2010), under conditions
examined in these studies. Specifically, a researcher could often
encounter (a) if sampling error were low and at least one model
selection index value was near its decision threshold, (b) if sam-
pling error were high but at least one model selection index value
was far from its decision threshold, and (c) if sampling error wereT
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high and at least one model selection index value was near its
decision threshold.

Generalizability Considerations

We increased generalizability by choosing different conditions
in our simulation than empirical example (e.g., presence/absence
of an unparceled factor, two or more model pairs, continuous/
categorical items, different Ns). Here, we further discuss the gen-
eralizability of our simulation results in the context of using
random allocations, unidimensional items per factor in the popu-
lation, unequal item loadings within factor, and particular model
pairs.

First, although we illustrated PAV in model selection using
repeated random allocations (as commonly done in practice, Ban-
dalos & Finney, 2001), we noted that this phenomenon is not
limited to random allocations. If a single allocation is purposively
chosen, there can still exist a hypothetical distribution of item-to-
parcel allocations with the same number of items/parcel and par-
cels/factor.

Second, we conservatively chose to employ unidimensional
items in the population in our simulation because there is the most
widespread agreement on the appropriateness of parceling in this
setting (e.g., Bandalos, 2002, 2008; Hagtvet & Nasser, 2004; Hall et
al., 1999; Hau & Marsh, 2004; Landis et al., 2000; Little et al., 2002;
Marsh & O’Neill, 1984; Marsh et al., 2013; Matsunaga, 2008; Meade &
Kroustalis, 2006; Nasser-Abu & Wisenbaker, 2006; Plummer, 2000;
Rogers & Schmitt, 2004; Sass & Smith, 2006; Williams & O’Boyle,
2008; Yang et al., 2010; Yuan et al., 1997). Parceling multidimen-
sional items per factor or parceling in the context of appreciable
model error in the item-level measurement model would be ex-
pected to increase the potential for PAV in model ranking, all else
equal. Future research should address how measurement model
misspecification (e.g., unaccounted for nonnormality, nonlinearity,
or multidimensionality) could affect the correspondence between
AMR parcel-solution results and item-solution ranking results
described in Figure 7. It was outside the scope of this article to
address how unidimensionality might be tested with the sample;
there are large literatures on this topic in factor analysis, item
response theory, and exploratory structural equation modeling
(e.g., Bollen, 1989; Embretson & Reise, 2000; Marsh, Morin,
Parker, & Kaur, 2014; Stucky et al., 2012). If a researcher intends
to test and establish unidimensionality of items per factor as a
prerequisite for parceling—as recommended by, for instance,
Marsh et al. (2013) and Matsunaga, (2008)—this literature can be
consulted for procedures.

Third, here we also employed equal-	i within-factor in the
simulation’s item generating model. Because our Case II section
showed that unequal-	i within-factor can induce PAV in selection
index values even in the absence of sampling error, our simulation
provides a conservative lower bound for PAV that might be
encountered under alternative conditions of unequal-	i. Future
research can investigate incidence and magnitude of PAV in model
ranking under broader conditions, including unequal-	i within-
factor.

Fourth, model pairs used in the simulation and empirical exam-
ple were chosen because they mirrored those commonly employed
in practice. They were used to provide proof of concept of PAV in
model selection. In the simulation conditions where B41 and B43

equaled .05, .10, .15, .20, .25, or .30, structural differences be-
tween models were induced by placing inappropriate constraints in
Model a that were not imposed in Model b. In the simulation
conditions where B41 and B43 equaled 0, structural differences
between models entailed freely estimating unnecessary/superflu-
ous parameters in Model b that were fixed in Model a. If additional
superfluous free parameters had been added to Model b in the
latter condition, some risk of PAV in ranking would remain so
long as the selection index value remained close to its decision
threshold. Choosing other pairs of models in conjunction with
other sample sizes will affect where �BIC, �AIC, and LRT peak
in PAV relative to each other. For this reason, we suggest that
researchers can use software tools to gauge the risk of PAV in
ranking under their own specific model and data conditions.

Future Research Directions

Previous studies concerning PAV in absolute fit of a single
model found that it mainly occurred under high sampling error.
This may have led some to assume that PAV in absolute fit of a
single model is limited to this setting. However, previous studies
assumed no structural model error. Using the extended theoretical
framework supplied here that incorporates structural error, future
research could examine the combined effects of sampling error and
structural model error on PAV in absolute fit. The present findings
predict a compensatory relationship where, under low sampling
error, there could still be substantial risk of PAV in absolute fit, so
long as there is modest structural model error. In other words, the
present findings predict an appreciably increased scope of condi-
tions evidencing PAV in absolute model fit—depending on the
precise combination of structural model error and sampling error.

Conclusions and Recommendations

Historically, parceling has been motivated as a way to combat
various kinds of data suboptimalities, such as nonnormal or
coarsely categorized items, when using normal-theory estimation.
There are alternative ways to address some problems for which
parceling had been suggested as a solution, while still fitting
item-level models. For instance, advances in nonnormality-robust
estimation and categorical variable estimation reduce the need for
parceling in this context (e.g., Bandalos, 2008, 2014; DiStefano &
Morgan, 2014). In other situations—such as the combination of
complex models with moderate sample sizes—item-level models
may become infeasible and parcel-level models are still considered
when interest lies in structural relationships (e.g., Bagozzi &
Edwards, 1998; Hau & Marsh, 2004; Little et al., 2013; Marsh et
al., 2013; Matsunaga, 2008; Meade & Kroustalis, 2006; Nasser &
Wisenbaker, 2003; Sass & Smith, 2006; Williams & O’Boyle,
2008; Yang et al., 2010). In this exact setting, and despite having
unidimensional items in the population, we showed that PAV in
model ranking arises under a variety of sample sizes, communality
sizes, and differences between structural models. Researchers are
encouraged to investigate the presence of PAV in model ranking
within their own sample and report the AMR and WPA. This
sensitivity analysis can even aid in interpreting the model ranking
from a single substantively chosen allocation.
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Appendix A

We begin with the item-level common factor measurement
model in the sample (MacCallum & Tucker, 1991):

Si � �iCcci
��i � �iCcui

��i � �iCuci
��i � �iCuui

��i (A1)

As defined in the article text, �i is a common factor loading
matrix, �i is a diagonal matrix of unique factor loadings, and Ccci
is a common factor covariance matrix. Here we define Ccui

and
Cuci

as containing covariances of common and unique factors and
Cuui

as containing correlations among unique factors. In the pop-
ulation, elements of Ccui

and Cuci
would be 0 and Cuui

would be an
identity matrix. But in a sample drawn from this population,
nonzero elements of Ccui

and Cuci
and nonzero off-diagonal ele-

ments of Cuui
arise purely due to sampling variability and contrib-

ute to lack of fit due to sampling error. This lack of fit due to
sampling error is represented by �SE1i

in Equation (1), (as in
MacCallum, 2013; MacCallum & Tucker, 1991; MacCallum et al.,
1999).

Now we modify this framework in three new ways: (a) we add
a structural model; (b) in the structural model, we allow for misfit
arising due to sampling error; and (c) we allow for model error
specifically from the structural model.

Si � �iCcci
��i � �i�I � Bi��1C�ui

��i � �iCu�i
�I � B�i��1��i

� �iCuui
��i (A2)

Ccci
� �I � Bi��1�i�I � B�i��1 � �I � Bi��1Cof fseti

�I � B�i��1

� �MEi
(A3)

Here—unlike in previous versions of this framework—the co-
variance matrix among common factors, Ccci

, is structured. As
defined in the article text, Bi is a matrix of regressions among
common factors. Here we define C�ui

and Cu�i
as containing

covariances of unique factors and residuals of common factors. To
relate Equations (A1) and (A2), note that Ccui

� �I � Bi��1C�ui
and

Cuci
� Cu�i

�I � B�i ��1. In Equation (A3), �i is a q � q matrix of
residual covariances among common factors and Cof fseti

represents
discrepancies, due to sampling, in constrained elements of �i

which can contribute to lack of fit due to sampling error. This lack
of fit (due to sampling error) arising from the structural model is
represented by �SE2i

in Equation (2). If sampling error goes to 0,
then this term �I � Bi��1Cof fseti

�I � B�i ��1 drops out. Lastly, �MEi
was defined in the article text.

Appendix B

One way to represent a likelihood ratio difference test statistic (here denoted T) for multivariate normally distributed, mean-deviated
manifest variables is as follows. j is the number of manifest parcels. N is sample size. Superscripts a and b refer to Models a or b.
Superscript �1 denotes an inverse. Sp is the observed sample parcel-level covariance matrix. �̂p

a and �̂p
b are the model-implied sample

parcel-level covariance structures for Models a and b.

T � (N � 1)��ln��̂p
a� � ln�Sp� � tr��̂p

a�1Sp� � j� � �ln��̂p
b� � ln�Sp� � tr��̂p

b�1Sp� � j��
T � (N � 1)��ln��̂p

a� � ln�Sp� � tr��̂p
a�1Sp�� � �ln��̂p

b� � ln�Sp� � tr��̂p
b�1Sp���

T � (N � 1)�ln��̂p
a� � ln��̂p

b� � tr��̂p
a�1Sp� � tr��̂p

b�1Sp��
(B1)

Now we substitute the Equation (6) expression for Sp into Equation (B1). Sp is the same for Models a and b. However, the contents
of matrices to the right of the equals sign in Equation (6) differ for Models a and b, and so are designated as such below. �̃p

a and �̃p
b are

the model-implied population parcel-level covariance structures for Models a and b; other terms were defined in the article.

T � (N � 1)�ln��̂p
a� � ln��̂p

b� � tr��̂p
a�1��̃p

a � �MEp

a � �SEp

a �� � tr��̂p
b�1��̃p

b � �MEp

b � �SEp

b ��� (B2)

Equation (B2) is also given in Equation (7). In the Case I situation, Equation (B2) simplifies to

T � (N � 1)�ln��̂p�� ln��̂p�� tr��̂p
�1(�̃p � �

MEp
� �

SEp
)� � tr��̂p

�1(�̃p � �
MEp

� �
SEp

)��
� 0

(B3)

In the Case II situation (where �̂p
a
¡ �̃p

a, �̂p
b
¡ �̃p

b, �SEp

a
¡ 0, �SEp

b
¡ 0), Equation (B2) simplifies to

T � (N � 1)�ln��̂p
a� � ln��̂p

b� � tr�I � �̂p
a�1�MEp

a � � tr�I � �̂p
b�1�MEp

b ���

T � (N � 1)�ln��̂p
a� � ln��̂p

b� � tr��̂p
a�1�MEp

a � � tr��̂p
b�1�MEp

b ��
(B4)
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