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Many psychology applications assess measurement invariance of a construct (e.g., depression)
over time. These applications are often characterized by few time points (e.g., 3), but high rates
of dropout. Although such applications routinely assume that the dropout mechanism is ignor-
able, this assumption may not always be reasonable. In the presence of nonignorable dropout,
fitting a conventional longitudinal factor model (LFM) to assess longitudinal measurement
invariance can yield misleading inferences about the level of invariance, along with biased
parameter estimates. In this article we develop pattern mixture longitudinal factor models (PM-
LFMs) for quantifying uncertainty in longitudinal invariance testing due to an unknown, but
potentially nonignorable, dropout mechanism. PM-LFMs are a kind of multiple group model
wherein observed missingness patterns define groups, LFM parameters can differ across these
pattern-groups subject to identification constraints, and marginal inference about longitudinal
invariance is obtained by pooling across pattern-groups. When dropout is nonignorable, we
demonstrate via simulation that conventional LFMs can indicate longitudinal noninvariance,
even when invariance holds in the overall population; certain PM-LFMs are shown to ameliorate
this problem. On the other hand, when dropout is ignorable, PM-LFMs are shown to provide
results comparable to conventional LFMs. Additionally, we contrast PM-LFMs to a latent
mixture approach for accommodating nonignorable dropout—wherein missingness patterns
can differ across latent groups. In an empirical example assessing longitudinal invariance of a
harsh parenting construct, we employ PM-LFMs to assess sensitivity of results to assumptions
about nonignorable missingness. Software implementation and recommendations for practice
are discussed.

Keywords: longitudinal factor model, longitudinal invariance, nonignorable missing data,
pattern mixture model

Psychologists often are interested in assessing whether
repeatedly measured manifest indicators (e.g., biting and
threatening) represent an underlying construct (e.g., aggres-
sion) equally well across time (e.g., Horn & McArdle, 1992;
Liu et al., 2016; Pitts, West, & Tein, 1996; Widaman, Ferrer,
& Conger, 2010). This kind of assessment is important
because unrecognized qualitative change in the relations
between measure(s) and their underlying construct can inter-
fere with the interpretation and assessment of quantitative
change and stability in the construct (e.g., Edwards & Wirth,
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2009; Leite, 2007; Widaman, 1991; Wirth, 2008). A com-
mon way to assess whether measures are indeed tapping the
same underlying (i.e., latent) construct across time, to the
same degree, is through assessing longitudinal measurement
invariance (MI) using a longitudinal factor model (e.g.,
Tisak & Meredith, 1991).

A review of recent psychology applications involving
invariance testing using longitudinal factor models indi-
cates that these applications often use few time points
(e.g., three) that are chronologically spaced quite far apart
(e.g., several years) and accompanied by high rates of
dropout. For instance, approximate dropout percentages
based on reported information were: Brydges, Fox, Reid,
and Anderson (2014) had 41%; Fagerstrom, Lindwall,
Ingeborg, and Rennemark (2012) 53%; King (2011) 27%;
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Mason, Lauterbach, McKibben, Lawrence, and Fauerbach
(2013) 43%; Mogos et al. (2015) 40%; Richerson, Watkins,
and Beaujean (2014) 23%; Small, Hertzog, Hultsch, and
Dixon (2003) 54%; Varni, Limbers, Newman, and Seid
(2008) 52%; Wang, Elhai, Daic, and Yao (2012) 17%;
and Wang and Su (2013) 56%. Indeed, dropout (attrition)
was the most common form of missingness in these
longitudinal factor modeling applications. Furthermore,
these applications all assumed that the missingness
mechanism was ignorable. Under an ignorable missingness
mechanism, the process that generates the outcomes (e.g.,
the aggression symptoms) and the process that generates
the missingness are independent or conditionally
independent—conditional on observed variables in the
model (Rubin, 1976).

Considered in the particular context of longitudinal
invariance testing, the ignorability assumption implies,
among other things, that the measurement parameters
relating the outcomes to their underlying construct are
the same across missingness pattern (e.g., patterns of no
dropout, dropout at Time 2, or dropout at Time 3, etc.).
This assumption might be plausible in some substantive
contexts. However, when studying the stability of cogni-
tive ability in older adults, for instance, it could be that
those who drop out or die before the end of the study
have more unstable item—construct relations (factor load-
ings) because of undetected, unfolding disease processes.
As another example, when studying the stability of psy-
chopathological syndromes across adolescence, it could be
that more severely ill adolescents with higher symptom
levels (item intercepts) are also more likely to drop out
because their symptoms interfere with their ability to
make appointments. Or, when studying language compre-
hension throughout high school, it could be that students
for whom comprehension is more poorly measured (e.g.,
nonnative English speakers and students with inattention
problems) are also more prone to drop out of high school.
These scenarios are examples of nonignorable missingness
mechanisms. Under a nonignorable missingness mechan-
ism, the process that generated the outcomes and the
process that generated the missingness are conditionally
dependent and must be jointly modeled (Rubin, 1976). In
the presence of a nonignorable missingness mechanism,
simply fitting a conventional longitudinal factor model to
the repeatedly measured outcomes to assess invariance
could yield biased parameter estimates and misleading
inferences about the level of invariance supported.

Unfortunately, there exists no general test of whether
the missingness mechanism is ignorable versus nonignor-
able (e.g., Little & Rubin, 2002). Hence, methodologists
have widely and increasingly suggested employing sen-
sitivity analyses to quantify the impact of uncertainty
about the missingness mechanism on key results (e.g.,
AKkl et al., 2015; Jones, Mishra, & Dobson, 2015; Little et al.,

2012; Mallinckrodt, Lin, & Molenberghs, 2013; Minini &
Chavance, 2004; Molenberghs & Kenward, 2007; Nguyen,
Lee, & Carlin, 2015; O’Kelly & Ratitch, 2014; Rombach,
Rivero-Arias, Gray, Jenkinson, & Burke, 2016; Rubin, 1977,
Schafer & Graham, 2002; Souza et al., 2016; Thomas, Harel, &
Little, 2016; Verbeke, Molenbergs, & Beunckens, 2008). To
date, such sensitivity analysis methods have mainly concerned
models for univariate repeated outcomes, such as univariate
growth models (e.g., Enders, 2011; Feldman & Rabe-Hesketh,
2012; Gottfredson, Bauer, & Baldwin, 2014; Hedeker &
Gibbons, 1997, Molenberghs & Verbeke, 2001; Muthén,
Asparouhov, Hunter, & Leuchter, 2011; Sterba & Gottfredson,
2015; Xu & Blozis, 2011; Yang & Maxwell, 2014). For
instance, these methods have often been geared toward asses-
sing how departures from the assumption of ignorable missing-
ness affect estimates of the mean intercept and slope of time in
univariate growth models. However, multivariate, rather than
univariate, repeated outcomes data are used in testing long-
itudinal MI. Such data pose unique challenges (described
later) that interfere with the extension of some of these methods
from the context of univariate to multivariate repeated mea-
sures. Of the few sensitivity analysis approaches developed to
quantify the impact of missingness mechanism uncertainty on
multivariate longitudinal data analyses (e.g., Hafez, Moustaki,
& Kuha, 2015; Sterba, 2016), none have been geared toward
assessing sensitivity to results of invariance testing—a main
objective of applying longitudinal factor models.

The purpose of this article is to develop and demon-
strate pattern mixture (PM) models for quantifying uncer-
tainty in longitudinal invariance testing results that is due
to an unknown but potentially-nonignorable dropout
mechanism. Following a brief review of the conventional
longitudinal factor model and its use for longitudinal
invariance testing, we describe alternative modeling
approaches that could be used to allow for nonignorable
dropout in this context. We introduce and motivate a
family of PM models for this purpose and describe their
advantages over alternative modeling approaches. Next,
we employ PM longitudinal factor models (PM-LFMs)
in a simulation to demonstrate that when nonignorable
missingness is not investigated, it is troublingly possible
to, for instance, find evidence of measurement noninvar-
iance when in the overall population invariance holds.
Subsequently, we use an example to empirically illustrate
the application of PM-LFMs to quantify missing-data
uncertainty in longitudinal invariance testing involving a
harsh parenting construct. We also use this empirical
example to explain when a researcher could consider
extending PM models (which have observed groups, as
in multiple-group models; Joreskog, 1971) to latent miss-
ingness class models (which have unobserved groups, as
in the conventional mixture models [McLachlan & Peel,
2000] that are discussed throughout this special issue of
Structural Equation Modeling). Finally, we empirically



contrast the performance of PM and latent missingness
class approaches and draw practical implications from
this contrast. In the discussion we describe recommenda-
tions, software implementation, and future directions. Note
that, although both PM and latent missingness class
approaches allow pattern-specific inferences or marginal
(i.e., pooled across pattern) inferences about longitudinal
invariance, here we focus on marginal inferences. This
focus is conventional for PM applications (see Little,
1993, 1995) and is akin to an indirect application of
mixtures (McLachlan & Peel, 2000).

REVIEW OF THE LONGITUDINAL FACTOR MODEL

We begin with a review of the conventional longitudinal
factor model (LFM; e.g., Tisak & Meredith, 1991) and its
use for testing MI across time points £= 1 ... 7. We initially
do not introduce missing data. At time point ¢ there are J
manifest indicators (f = 1 ... J) measured on N persons.
The response vector for person i (i = 1 ... N) at time point ¢
specifically is y, = (vi1,...vus)'. The full response vector for
person i is then y; = (y';...Y,;r). At time point ¢, the
manifest indicators in y,, are represented as a linear combi-
nation of indicator-specific intercepts in 1, (J % 1) plus p
underlying latent variables (factors) in m;, (p x 1) that are
weighted by indicator-specific slopes (factor loadings) in A,
(J % p), plus indicator-specific residuals in g; (J X 1). For
all time points taken together, this yields:

yi=T+An +sg

where
Yi T A 00 N
= 1o .0
Yir 17 0 0 Ar||my
€1
+ (1)
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The factor(s) at time ¢, n,;,, have means in p, (p x 1) and
individual-specific deviations from the mean in §;, (p x 1) .
For all time points taken together this yields:

n=pn+g
where
M 1y G
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Individual-specific deviations are typically assumed nor-
mally distributed and are allowed to covary within and
across time (such that ¥ is unstructured), as follows:

QiNN(O? ‘P)
where
1 0 Y1 - Yir
SN s : 3
Gir 0 Yr1 - ¥rr

Indicator-specific residuals at time point ¢, g;, are typically
assumed normally distributed and are conventionally not
allowed to covary within time (®,, is diagonal). If addi-
tionally indicator-specific residuals are not allowed to cov-
ary across time, then @ is also diagonal. The latter
assumption can be relaxed if, for instance, the residuals
for the jth indicator at consecutive time points are theore-
tically anticipated to covary due to shared method variance
(i.e., cov(gj, &j+1))#0; e.g., Pitts et al., 1996). For all
time points taken together, this yields:

8{"N(07 @)
where
&l 0 O, - Or
SN e “4)
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In the foregoing, for simplicity we consider a typical
scenario where there is only p = 1 latent factor at each
time point (thus replacing m;, w,, §;, and ¥, with n;, p,
i and vy, ). This LFM is diagrammed in Figure 1. In
general, the number of latent factors at each time point
would be determined by substantive theory in a fully
confirmatory approach or could be informed by model fit
comparisons involving alternate p. The extension to multi-
ple latent factors at each time point is not integral to the
present developments.

For model identification, we must set the location and
scale of each latent factor. Here this is accomplished by
constraining the intercept of one referent indicator (here,
the first indicator) at each time point to 0 (i.e.,1;,= 0) and
constraining the variance of the latent factor at each time
point to 1 (y,,= 1). See Vandenberg and Lance (2000) for
implications of referent indicator choice. Whereas these
constraints alone are sufficient to allow fitting the model
and obtaining a unique solution for parameter estimates,
they do not guarantee that we are measuring the same
construct across time.
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Where:

y
e21 631 e41 612 622

88 8888

Weak longitudinal invariance assuming ignorable dropout requires: A\, =\, , for allj

Strong longitudinal invariance assuming ignorable dropout also requires: 7, =7, , for all j

Strict longitudinal invariance assuming ignorable dropout also requires: ¢ , =6 ,

FIGURE 1
Indicator-specific residual covariances (if present) are not shown.

REVIEW OF ASSESSING LONGITUDINAL
MEASUREMENT INVARIANCE

To investigate the extent to which we are indeed measuring the
same construct over time we can assess longitudinal MI, which
typically proceeds in the following steps (e.g., Meredith, 1993;
Meredith & Horn, 2001; Widaman et al., 2010). First we can
assess whether the LFM with the same J manifest items serving
as indicators of the same latent factor(s) at each time point has
adequate fit (configurally invariant LFM). If so, we can then
assess whether the indicator—construct relationships are con-
stant across time. We can do so by testing whether the factor
loading for each indicator is equal across time (i.e.,
A = ... = Ar; called testing weak invariance). Specifically,
we compare the more invariant model (imposing this equality
constraint) to a less invariant model (freeing this equality con-
straint) using model selection indexes such as information
criteria (e.g., Bayesian information criterion) or a ° difference
test. If model selection indexes prefer the more constrained
model (i.e., fit does not meaningfully deteriorate relative to the
number of parameter constraints imposed), we can proceed to
successively test across-time equality constraints on other types
of measurement parameters: indicator-specific intercepts (i.e.,
T = ... = 17, called testing strong invariance), and then indi-
cator-specific ~ residual  variances  (Diag(®;;) = ... =
Diag(®7 1), called testing strict invariance). See Figure 1 for
a summary of these consecutive steps.

, for all j

Conventional longitudinal factor model (LFM), assuming ignorable dropout. Note. Shown with p = 1 and J = 4 and T = 3 for illustration.

If at least strong MI holds, change or stability in structural
parameters (e.g., factor means and covariances) can be unam-
biguously interpreted as capturing quantitative change or sta-
bility in the construct rather than qualitative change in the
meaning of the construct over time. If model selection indexes
indicate that a given set of across-time constraints is not
warranted, one convention is to stop MI testing and report
that invariance at the previous level of testing was achieved.
Another approach is to examine whether there is support for
imposing further levels of MI, but only for a subset of
manifest indicators (called partial invariance; see Byrne,
Shavelson, & Muthén, 1989; Vandenberg & Lance, 2000;
Edwards & Wirth, 2009).

APPROACHES FOR JOINTLY MODELING
OUTCOME AND MISSINGNESS PROCESSES IN
THE CONTEXT OF LONGITUDINAL FACTOR
ANALYSIS

Presently we focus on missingness due to dropout, not only
because it was by far the most common kind of missingness
found in our review of LFM applications, but also because it
is often considered to pose the greatest risk of nonignorable
missingness (e.g., Hedeker & Gibbons, 1997; Muthén et al.,
2011). Intermittent missingness, if present, would still be
assumed ignorable so long as conventional full information



maximum likelihood (FIML) estimation methods are used
for model fitting. Also, in subsequent examples we consider
the scenario where there is no dropout at Time 1, as that
scenario was typical of applications in our literature review.

Designate a (7' — 1) x 1 vector m; of dropout indicators
where element m;; = 1 if person i dropped out at time ¢, m;; =0 if
person i has not yet dropped out, and m;,= . if person i dropped
out at a previous time point. As mentioned earlier, nonignorable
dropout implies conditional dependence between y; and m; that
would need to be modeled to prevent bias in outcome-model
parameter estimates and inferences. Three general approaches
for jointly modeling outcome and dropout processes are selec-
tion models, random coefficient selection models, and PM
models. To date, these approaches have been used mainly in
the context of univariate repeated measures, and there are
obstacles to extending some to multivariate repeated measures.
Selection models accommodate dependence between y; and m;
by allowing dropout indicators to directly depend on values of
the repeated outcomes (e.g., regressing m; on y, and on
Yit—1))- However, selection models would entail impractical
computational burden in the context of multivariate repeated
measures with sizable J, 7, or both. Specifically, this approach
would require J x (T — 1) dimensions of integration (because
obtaining the joint likelihood of outcomes and missingness
indicators for such a model requires integration over missing
y; variables). For instance, eight dimensions of integration
would be required for the situation in Figure 1. In contrast,
this approach can be practical for univariate repeated measure
settings, where J = 1 (e.g., Diggle & Kenward, 1994). A
variation on a selection model called a random coefficient
selection model (e.g., Wu & Carroll, 1988) is more computa-
tionally tractable for multivariate repeated measures because it
instead accommodates conditional dependence between y; and
m; by allowing dropout indicators to depend on the latent
factors (e.g., regressing m;; on n; and on 1;,_;); e.g., Hafez
et al., 2015). This approach would instead require 2 x (7 — 1)
dimensions of integration when p = 1.

An alternative approach, the PM? model (e.g., Little, 1993,
1995; Thijs, Molenberghs, Michiels, Verbeke, & Curran, 2002),
is a kind of manifest multiple group model that accommodates
conditional dependence between y,; and m; by allowing para-
meters governing the distribution of y, to vary across observed
missingness patterns (here, dropout patterns) implied by m;. Let
d; denote a manifest grouping variable that can take on values
g=1... G, for G dropout patterns. For instance, G = 3 dropout
patterns might be: complete case, dropout at Time 3, dropout at

! Note that Hafez et al.’s (2015) model regresses m;, only on Ni—1) and
involves p = 1, thus requiring 7 — 1 dimensions of integration.

2 Although we use the term pattern mixture model here to be consistent
with prior literature, note that the groups in this model are observed, rather
than latent, unlike the conventional mixture models discussed later in this
article and elsewhere in this special issue.

PATTERN MIXTURE MODELS 287

Time 2. The marginal distribution of y;, denoted f(y,), is a
weighted average of pattern-specific distributions:

G
) =Y _S(yildi = g)p(d; = g) (%)

Here p(d; = g) is the observed probability of membership in
the gth dropout pattern. Previously PMs had been applied
mainly in the context where f(y;|d; = g) is a multivariate
normal density implied by a growth model specific to group
g (e.g., Enders, 2010, 2011; Hedeker & Gibbons, 1997,
Muthén et al., 2011; Yang & Maxwell, 2014). Here, / (y;|d; =
g) is a multivariate normal density implied by an LFM spe-
cific to group g (potentially with group-specific parameters;
e.g., A 18 @®), n®), P as discussed later). Hence we
refer to this as a PM-LFM. An illustrative PM-LFM is dia-
grammed in Figure 2.

PM-LFMs afford pragmatic advantages for investigating
nonignorable dropout in the context of longitudinal MI test-
ing. Unlike selection and random coefficient selection mod-
els, PM-LFMs are not computationally burdensome, as they
do not require numerical integration. PM-LFMs also readily
allow investigation of the sensitivity of longitudinal invar-
iance results to manipulation of missingness assumptions
about each kind of measurement parameter separately (pro-
cedures discussed next). In contrast, random coefficient
selection models assume that the dependency between miss-
ingness and outcomes arises solely from the structural (latent
variable) level, rather than in the measurement submodel.

PATTERN MIXTURE MODELS FOR
INVESTIGATING THE IMPACT OF MISSINGNESS
MECHANISM UNCERTAINTY IN LONGITUDINAL

MI TESTING

Nonignorable missingness corresponds with any parameter
(measurement or structural) differing across dropout pattern
in the PM-LFM. Hence, ignorable missingness corresponds
with all parameters being held equal across dropout pattern.’
PM-LFMs can be used to investigate and pinpoint sensitivity to
departures from ignorable missingness with respect to each
kind of parameter. Of particular interest in this context is
investigating sensitivity to departures from ignorable missing-
ness with respect to loadings (Is A = = A(G)?), item
intercepts (Is 1) = ... = 1(99), or residual variances (Is
0 = .. = 0'99), but similar investigations could be done
for structural parameters as well. Most important, with respect
to our goal of longitudinal MI testing, we can examine whether
marginal (aggregated across dropout pattern) results of each

3 Imposing this equality constraint parallels the approach of Allison
(1987), which has been employed previously in other modeling contexts.
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Where, marginally (pooling across missingness-pattern):

Weak longitudinal invariance allowing for nonignorable dropout requires:

G

YA pd =g)= Z)\(g)p(d g), forall j

g=1

Strong 10ngitudinal invariance allowing for nonignorable dropout also requires:
G

ZT@ (d,=g)=27¥p(d,=g) , forallj
g=1

Strict longitudinal invariance allowing for nonignorable dropout also requires:

Zﬁ(g)p(d g)= ZH(g)p(d g), forallj

g=1

FIGURE 2 Pattern-mixture longitudinal factor model (PM-LFM), allowing for nonignorable dropout. Note. Shown with p = 1, J = 4, and T = 3 for

illustration. g = dropout pattern (g =1 ...
differ across dropout pattern, although this is not shown.

level of testing (e.g., weak, strong, strict) are sensitive to
departures from ignorable missingness. In other words, we
can see whether testing results for weak, strong, and strict MI
differ under the assumption of ignorable versus nonignorable
missingness. Allowing for nonignorable missingness, we test
each level of longitudinal MI of marginal parameters (aggre-
gated across dropout pattern) using PM-LFM by testing the
following equalities consecutively.

Weak longitudinal invariance allowing for nonignorable
dropout requires

G

G
ZAig)P(d ZAT pldi =

g=1 g=1

Strong longitudinal invariance allowing for nonignorable
dropout also requires

G). Indicator-specific residual covariances (if present) are not shown. Structural parameters could be allowed to

G
Zrlpd =g) Z

g=1

Strict longitudinal invariance allowing for nonignorable
dropout also requires:

G
>~ Diag(®))p(d; = g) =

g=1
c (2)
= Diag(@F})p(d; = g).
g=1

Standard errors for the marginal estimates (aggregated
across pattern) can be obtained via the delta method (e.g.,
Little, 1993, 1995; Raykov & Marcoulides, 2004). As



illustrated in the online Appendix” syntax, this can be accom-
plished using the model constraint command option in Mplus
(Muthén & Muthén, 1998-2016). Although our focus in this
article is on marginal parameters, PM-LFMs also allow
researchers the opportunity to inspect pattern-specific parameter
estimate results. Pattern-specific results may be useful for parti-
cular substantive purposes to understand how different risk
factors and processes might manifest across pattern groups.’

Number of Patterns, G, in the PM-LFM

PM models require a small enough number of dropout patterns
G to support estimation of pattern-specific parameters. Thus,
PM models are well suited to LFM applications because in our
review these applications had few time points 7 (typically
three), and thus few dropout patterns. In other modeling con-
texts where 7' might be larger (e.g., univariate growth modeling
applications) or where intermittent missingness is considered
nonignorable, methodologists have suggested creating sum-
mary pattern indicators, which entails the assumption that
persons within summary pattern are interchangeable (see
Enders, 2011; Gottfredson et al., 2014; Hedeker & Gibbons,
1997; Rose, von Davier, & Xu, 2010; Roy, 2007).

Identification Considerations for the PM-LFM:
Choosing Identifying Constraints

Unlike selection models and random coefficient selection mod-
els, PM-LFMs do not require the researcher to provide a para-
metric model specification relating the outcome-generating
process and missingness-generating process. For selection
models, these parametric specifications typically include pos-
ited logistic regressions relating m; and y;, and for random
coefficient selection models typically include posited logistic
regressions relating m; and ;. Such specifications are known to
lack robustness to small departures from their parametric
assumptions (for reviews, see Beunckens, Molenberghs, Thijs,
& Verbeke, 2007; Sterba & Gottfredson, 2015; Verbeke et al.,
2008) and it is difficult to systematically manipulate these
assumptions. Fundamental departures from these parametric
assumptions might be impossible to detect because they rest
on data and processes that are unobserved. Without such para-
metric assumptions, however, these models would be
inestimable.

“The online Appendix is available at http://www.vanderbilt.edu/pea
body/sterba/.

5 Many recent applications of invariance testing using LFM continue
to analyze only complete-case data despite the fact that the FIML estima-
tion methods used did not require this (e.g., Brydges et al., 2014; King,
2011; Mason et al., 2013; Mogos et al., 2015; Richerson et al., 2014; Varni
et al., 2008; Wang et al., 2012; Wang & Su, 2013). This is akin to looking
at results for only one specific missingness pattern-group and, as such,
these authors would be unaware of whether results differ across missing-
ness pattern-group.
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Although PM-LFMs do not require explicit specification
of parametric relationships between m; and y,, they do
require the explicit imposition of constraints (so-called iden-
tifying restrictions; Little, 1993, 1995) to enable estimating
particular pattern-group-specific parameters. For instance,
without imposing some constraints on the model it would
not be possible to estimate measurement parameters at Time
3 for the pattern-group that dropped out at Time 2. There are
different options for identifying constraints, and implement-
ing these different options could be conceptualized as imple-
menting  slightly different assumptions about the
missingness process. Hence, a compelling strength of the
PM modeling framework is that it is straightforward to
define a range of different missingness assumptions, trans-
late them into model constraints, and manipulate them in the
context of a sensitivity analysis. This makes the missingness
assumptions investigated in a PM model sensitivity analysis
more transparent and explicitly operationalized than for
selection models and random-coefficient selection models
(Enders, 2010, 2011; Little, 1993, 1995).

There are many possible identifying constraints that
could be employed in our PM-LFM. Because these identi-
fying constraints impose different assumptions about the
missingness process, none can be ruled out using fit to the
observed data; in fact, they will have identical xz-based fit
indexes. Parameter estimates will be most accurate for the
identifying constraint that is most consistent with the popu-
lation outcome-generating process and missingness-gener-
ating process (e.g., Demirtas & Schafer, 2003; Yang &
Maxwell, 2014). An often-recommended approach is to
consider several alternative identifying constraints.
Constraints might be chosen because they, for instance,
(a) reflect substantive theory about the missingness process,
and/or (b) have been conventionally used in PM versions of
other fitted models. We describe five illustrative identifying
constraints that allow for nonignorable missingness. We
contrast these with a sixth constraint, which assumes ignor-
able missingness. Here ¢, generically represents a vector of
all estimated parameters at time ¢.

1. Nearest neighbor (NN) identifying constraint.
Constrain inestimable parameters at time ¢ in pattern
g to their values in the most similar (i.e., nearest
neighbor) pattern %2 where those parameters are
estimable; that is, (p£g> = ¢§h). (This is an across-
group within-time restriction.)

2. Complete case (CC) identifying constraint.
Constrain inestimable parameters at time ¢ in pattern
g to their values in the pattern with complete case
data, here designated as pattern 1: q)gg) = (p,(l). (This
is an across-group within-time restriction.)

3. Available case (AC) identifying constraint. Constrain
inestimable parameters at time ¢ in pattern g to the
weighted average of their values in all other patterns
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where they are estimable at time ¢. The AC constraint
considered here corresponds with the use of the term in
Demirtas and Schafer (2003) and Enders (2011). (This
is an across-group within-time restriction.)

4. Last observation carried forward (LOCF) identifying
constraint. Constrain inestimable parameters at
time # in pattern g to their values in the same pattern

g at the previous time point, where estimable:

(pg g — (p, 1 (This is a within-group across-time

restriction.) The LOCF constraint considered here
corresponds with the use of the term in Little (2008).

5. Nearest neighbor difference (NND) identifying con-
straint. Constrain inestimable arameters at time ¢
in pattern g to (pg 8 — (pg )1 ((p, | (pg >) where 4 is
the nearest neighbor pattern. Note that if the para-
meter estimates are the same at the previous two time
points in pattern 4 this simplifies to LOCF. Note that
this is a variation on an identification constraint in
Little (2008), tailored to the current context.

6. Ignorable missingness constraint. Constrain all

parameters at time ¢ equal across G patterns

¢§g> = @,. Note that this constraint is more restrictive

than what is minimally needed for identification and
thus will yield different model fit than the first five
constraints, which all allow nonignorable missing-
ness. (This is an across-group within-time restriction.)

By inspecting this illustrative set of constraint options, we
can see that it is not possible to simultaneously allow for full
measurement noninvariance across missingness pattern-
group and allow measurement noninvariance across time.
For identification purposes, we either have to impose some
degree of parameter invariance within time across missing-
ness pattern-group (NN, CC, AC), which in exchange
affords us greater ability to test longitudinal invariance
across time, or we have to impose some degree of parameter
invariance across time within missingness pattern (LOCF,
NND), which in exchange affords us greater ability to test
invariance across missingness pattern-group.

Sensitivity Analysis Strategies for the PM-LFM

One sensitivity analysis strategy is to (a) specify multiple
PM-LFMs under alternative identifying constraints, (b)
compute marginal (aggregated across pattern) parameter
estimates for each PM-LFM, and (c) test longitudinal MI
of marginal parameters using each PM-LFM (see Figure 2).
Then it can be reported whether parameter estimates and MI
testing results differ among nonignorable PM-LFMs and
whether any and all results differ from fitting a conventional
LFM (that assumes ignorable missingness; see Figure 1).
Currently, researchers fitting a conventional LFM using
FIML estimation assume ignorable missingness as a default
approach, often without contemplating theoretically why it

would be plausible. As noted earlier, the ignorability assump-
tion in a conventional LFM is equivalent to a special case
constraint on the PM-LFM (i.e., the last constraint earlier)
that is more restrictive than the constraints needed to identify
a PM-LFM allowing for nonignorable missingness. Hence, this
ignorability constraint does imply a particular missingness
generation theory, which might or might not be valid, just as
the first five constraints imply different missingness generation
theories. Thus, the ignorability constraint can be considered just
one of many possible constraints that could be imposed. Our
perspective is that researchers should either justify theoretically
why only this particular ignorability constraint is plausible,
rather than automatically adopting it as a default, or be
compelled to also consider alternative constraints.

SIMULATION DEMONSTRATION

In this section we use a simulation demonstration to illus-
trate the benefits of sensitivity analysis using PM-LFM to
quantify missingness-mechanism uncertainty. Specifically,
we illustrate four main points.

1. If a conventional LFM is fit in the presence of non-
ignorable missingness, it is possible that non-MI
across missingness patterns can masquerade, margin-
ally, as non-MI across time.’

2. If PM-LFMs are fit unnecessarily in the presence of
ignorable missingness, non-MI across time can still
be correctly detected.

3. If PM-LFMs are fit unnecessarily in the presence of
ignorable missingness, MI across time can still be
correctly supported.

4. The ability of PM-LFMs to improve on the perfor-
mance of the conventional LFM in the presence of
nonignorable missingness depends on the realism of
their identifying constraints.

In our simulation demonstration there are four different
generating conditions, described later. Points 1 and 4 will
be illustrated using generating Conditions 1 and 4 whereas
points 2 and 3 will be illustrated using generating
Conditions 2 and 3.

Simulation Design

We focus our invariance testing illustration on testing weak
MI (i.e., of factor loadings); however, our same points
could be illustrated by testing a different level of MI, or

¢ Although not demonstrated here, when fitting a conventional LFM in
the presence of nonignorable missingness, it would also be possible for
non-MI across missingness group to masquerade marginally as MI across
time.



testing multiple levels of MI, or even testing structural
invariance. The test of weak invariance is the most com-
monly conducted test in empirical applications investigat-
ing MI, according to Vandenberg and Lance (2000). In this
simulation we do not include observed covariates because
longitudinal MI testing applications in our review almost
always used unconditional LFMs. We use a T and J typical
of applications in our literature review (7' = 3, J = 4). We
use a baseline N near the median with respect to our
literature review (N = 750). Although, in SEM applications
more generally, small sample sizes are common (e.g.,
<N = 150; MacCallum & Austin, 2000), we found that
LFM applications typically involved secondary data analy-
sis of large data sets (e.g., N = 1,402 [Fagerstrom et al.,
2012], N =730 [Wu, 2015], N = 5,991 [Varni et al., 2008],
N =560 [Wang et al., 2012], N = 299 [Mason et al., 2013],
N = 2,001 [Mogos et al., 2015], N = 484 [Small et al,,
2003], N = 24,599 [Wang & Su, 2013], N = 228 [Brydges
et al., 2014], N = 457 [Richerson et al., 2014], N = 2,022
[King, 2011]). Furthermore, we used dropout patterns of
64.5% complete case, 17.7% dropout at Time 3, and 17.7%
dropout at Time 2; this degree of dropout was conservative
with respect to our literature review (as described earlier).

Four alternative generating LFMs were considered that
differed in their generating factor loading values (Conditions
1-4 next). In each generating model, item residual variances
were chosen in concert with their respective loading values to
ensure that each item had a total variance of 1.0. For simplicity,
the models do not include residual covariances within item
across time; however, the empirical example presented later
does include such residual covariances for illustration pur-
poses. In each generating model, there was longitudinal MI
of item intercepts T;, = 0, 1p;=13,=14,=1 and there were
increasing factor means over time p,=.5,W,=1,p,=1.5.
Additionally, in each generating model y, | = y,, = y33 =
1 and y,,=.35,y,3=.50,y, ;=.25. Allowing more para-
meters to differ across missingness pattern in the generating
model would simply amount to greater departures from ignor-
able missingness and thus greater potential for misleading test
results from a fitted conventional LFM. The four generating
conditions differed in their factor loadings in the following
manner.

e Condition 1: Loadings were MI across time margin-
ally but non-MI across missingness pattern.

o Condition 2: Loadings were non-MI across time mar-
ginally but MI across missingness pattern.

e Condition 3: Loadings were MI across time margin-
ally and MI across missingness pattern.

o Condition 4: Loadings were MI across time margin-
ally but non-MI across missingness pattern.
Additionally, loadings were non-MI across time within
missingness pattern.
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The generating loading values from these four condi-
tions are given in Table 1. Conditions 1 and 4 entail non-
ignorable missingness mechanisms. Conditions 2 and 3
entail ignorable missingness mechanisms.

Five hundred data sets were generated conforming to each
condition; data generation was done in Mplus 7.4 and SAS
9.4. Each data set was analyzed with a pair of alternative
specifications of each of six fitted models. The pair of alter-
native specifications either relaxed weak MI (i.e., marginal
loadings freely estimated across time) or imposed weak MI
(i.e., marginal loadings constrained equal across time). The
six fitted models were: a conventional LFM (i.e., constraint
(6) from earlier) and five PM-LFMs (imposing each of the
constraints (1)-(5) from earlier). For each fitted model, the fit
of the MI versus non-MI specifications were compared using
a likelihood ratio test (LRT). Data analysis used Mplus 7.4.

Simulation Results

The proportion of samples where weak MI was rejected is
given in Table 2. Columns 1 through 4 of Table 2 provide
results from generating Conditions 1 through 4, respec-
tively. Rows of Table 2 provide results for each fitted
model type. Due to the different generating conditions,
results in Columns 1, 3, and 4 are Type I error rates,
whereas results in Column 2 are power. The first point
illustrated by Table 2 is that when missingness is nonignor-
able, fitting a conventional LFM can lead to detecting non-
MI across time when in fact MI holds across time; this
happened 20% of the time in Condition 1 (bottom of
Column 1) and 71% of the time in Condition 4 (bottom
of Column 4). The second point illustrated by Table 2 is
that when missingness is ignorable, unnecessarily fitting a
PM-LFM can correctly detect non-MI as often as does the
conventional LFM; this happened 100% of the time in
Condition 2 (see Column 2). The third point illustrated by
Table 2 is that when missingness is ignorable, unnecessa-
rily fitting a PM-LFM can correctly detect MI approxi-
mately as often as does the conventional LFM; this
happened 93% to 96% of the time in Condition 3 (see
Column 3). The last point illustrated by Table 2 is that—
consistent with Demirtas and Schafer (2003), Enders
(2011), and Yang and Maxwell (2014)—when missingness
is nonignorable, fitting a PM-LFM can substantially
improve on the performance of an LFM for invariance
testing if its identifying constraints are more reflective of
the generating process; however, a PM-LFM can perform
similarly or slightly worse than a conventional LFM if its
identifying constraints are not reflective of the generating
process. For instance, in Condition 1, compared to the 20%
Type I error rate for LFM, there was a Type I error rate of
5% for PM-LFM with NND constraints but a Type I error
rate of 29% for PM-LFM with AC constraints. Likewise, in
Condition 4, compared to the 71% Type I error rate for
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TABLE 2
Simulation Results: Proportion of Samples out of 500 Where M| Rejected

Condition 1: Nonignorable

(Type I Error Rate Shown)

Condition 2: Ignorable
Missingness, Marginal MI ~ Missingness, Marginal Non-MI
(Power Shown)

Condition 4: Nonignorable
Missingness, Marginal MI
(Type I Error Rate Shown)

Condition 3: Ignorable
Missingness, Marginal MI
(Type I Error Rate Shown)

Pattern mixture-LFM 284 1.00
nearest neighbor
constraint

Pattern mixture-LFM 314 1.00
complete case constraint

Pattern mixture-LFM 292 1.00
available case constraint

Pattern mixture-LFM .058 1.00

last observation carried
forward constraint
Pattern mixture-LFM .046 1.00
Nearest neighbor
difference constraint
Conventional LFM 202 1.00

.046 .078
.050 167
.074 173
.054 .562
.042 430
.042 714

Note. M1 = measurement invariant (here, weak); LFM = longitudinal factor model. Conventional LFM assumes ignorable missingness. Pattern mixture-

LFM allows nonignorable missingness.

LFM, there was a Type I error rate of 8% for PM-LFM with
NN constraints but a Type I error rate of 56% for PM-LFM
with LOCF constraints.

Additionally, note that results for parameter estimate
bias mirror these testing results. That is, when missing-
ness was ignorable (Conditions 2 and 3), percent abso-
lute relative bias of parameter estimates was largely
trivial (e.g., 1% or less) regardless of whether a con-
ventional LFM or any PM-LFM were fit. When miss-
ingness was nonignorable (Conditions 1 and 4), percent
absolute relative bias was trivial when fitting a PM-
LFM with identifying constraints that were more realis-
tic, but could be similarly nontrivial (e.g., > 10%) when
fitting either a conventional LFM or a PM-LFM with
identifying constraints that were not reflective of the
missingness process. (Percent absolute relative bias for
parameter estimates when fitting the non-MI model are
provided in the Appendix for each of the six fitted
models, in each of the four generating conditions.)

Implications of the Simulation

In practice, researchers would not know definitively if
their missingness was ignorable or nonignorable. It is
reassuring that, in the presence of ignorable missingness,
unnecessarily fitting PM-LFMs did not provide mislead-
ing conclusions with respect to longitudinal invariance
testing. It is also important to know that, in the presence
of nonignorable missingness, fitting PM-LFMs can sub-
stantially improve on a conventional LFM when the
identifying constraints imposed by the PM-LFM are
more reflective of the generating process, but can also
do slightly worse than the conventional LFM if these

identifying constraints are least realistic. This simulation
illustration underscores the utility of considering several
PM identification constraints; if results are similar
regardless of choice of identifying constraint (as in our
later empirical example), we can be confident of the
insensitivity of results to departures from the ignorabil-
ity assumption. This simulation demonstration also
underscores the utility of substantively informing the
choice of identification constraints. Identifying con-
straints need to be imposed mainly at later time points
because that is where more patterns have missing data.
Hence, differences in parameter estimates across
pattern groups at earlier time points can suggest and
inform substantive decisions about what constraints to
impose at later time points.

EMPIRICAL EXAMPLE

In this section we illustrate an empirical investigation of
the sensitivity of MI testing to departures from the ignor-
able missingness assumption. Our substantive interest lies
in assessing MI of a harsh or poor parenting construct
across early childhood. This illustration uses observation-
ally coded parenting quality data from the 14-, 24-, and
36-month home visits of the Early Head Start Research
and Evaluation Study (EHSRES; Administration for
Children and Families, 2002). At each visit the focal
parent (here, mother) and child were observed in a semi-
structured videotaped play session and aspects of parent-
ing quality were rated using 7-point scales by teams of
coders trained to a criterion level of 85% agreement. Here
we consider three manifest indicators of harsh parenting:
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unsupportive behavior, detached behavior, and negative
regard. Unsupportive behavior includes lack of respon-
sivity to the child’s signals or needs; negative regard
refers to expressing disapproval or rejection of the
child; and detachment refers to being perfunctory or
indifferent toward the child.

Data from 2,382 families’ were present for at least one
of the three time points. The most common type of miss-
ingness was dropout; 26% of families dropped out—12%
dropped out at Time 2 and 14% dropped out at Time 3.
Although there were small amounts of intermittent miss-
ingness, presently we assume these to be ignorable; how-
ever, this assumption is revisited later. Prior studies have
expressed concern over the implications of dropout in the
EHSRES (e.g., Carlson, 2009) and suggested that parents
who were less engaged and more distracted during study
visits were more likely to drop out (Roggman, Cook,
Peterson, & Raikes, 2008). It is also possible that these
parents who drop out are more self-conscious and dis-
tracted by being videotaped interacting with their child
and so exhibit less naturalistic behavior during this task.
This could imply that they exhibit weaker loadings relating
parenting quality indicators to the underlying construct,
compared to parents who do not drop out. Hence, here we
investigate potential sensitivity of MI testing results across
dropout pattern using an unconditional LFM with three
indicators at each time point. Residuals were allowed to
covary within item across consecutive time points.

First a configurally invariant conventional LFM was fit
assuming ignorable missingness. This model had adequate
to fair fit (comparative fit index [CFI] = .959, standardized
root mean square residual [SRMR] = .039, root mean
square error of approximation [RMSEA] = .064, CI [.056,
.072]). Weak longitudinal invariance was then imposed on
this conventional LFM; an LRT rejected the null hypothesis
of loading invariance, ¥*(6) = 196.7, p < .05, and the CFI
(.914), SRMR (.119), and RMSEA (.080) no longer indi-
cated adequate fit. Hence, further invariance testing was not
warranted in this case. Consistent with this finding, Table 3
shows a decrease in some item loadings across time in this
conventional LFM. Hence, when interpreting the factor
mean change and factor correlation change over time we
cannot unambiguously determine whether apparent struc-
tural changes are actually due to instability in the measure-
ment of the harsh parenting construct across 14 to
36 months. Such instability might arise, for instance, if
detachment and negative regard are less indicative of poor
parenting in some situations for older children, as compared
to infants. For older children, some parental detachment
might be constructive, in providing flexibility for the child’s

7Note that families came from 17 sites, but site codes were not made
available in the data file “due to confidentiality concerns.” See http://doi.
org/10.3886/ICPSR03804.v5.

active and independent exploring, and some parental nega-
tive regard might be needed in a dangerous situation to
prevent an accident.

To examine the sensitivity of these findings to the ignor-
able dropout assumption, five PM-LFMs were then fit with
the alternative identifying constraints discussed previously.
Item loadings, intercepts, residual variances, and residual
covariances were allowed to differ across dropout-pattern
aside from the constraints imposed for identification. Note
that CC identifying constraints on residual covariances
were used to facilitate model convergence. These five
PM-LFMs all had RMSEA = .076 and CFI = .962.

As in the conventional LFM, for each PM-LFM, weak
invariance could be rejected (LRT statistics ranged from
(6) = 142.7-197.7, p < .05. When imposing weak invar-
iance, RMSEA increased from .076 to between .095 and
.103 (depending on the PM-LFM identification method)
and CFI decreased from .962 to between .916 and .929
(again depending on the PM-LFM identification method).
Consistent with this finding, Table 3 shows a decrease in
some marginal loadings (pooled across missingness pat-
tern) over time. This means that our substantive conclusion
about the level of MI met by the harsh parenting construct
is not sensitive to this perturbation of the ignorable dropout
assumption. It is the case, however, that some loading
estimates are lower for all PM-LFMs (regardless of identi-
fying constraint), as compared to the conventional LFM.
Specifically, Table 3 shows that the PM-LFMs have lower
loadings than the conventional LFM for negative regard at
all time points and for detachment and unsupportiveness at
later time points. The conventional LFM weights indivi-
duals with complete data more heavily than in the PM-LFM
(e.g., Yang & Maxwell, 2014), perhaps leading to this
discrepancy. If MI testing or other results had been parti-
cularly sensitive to the relaxation of the ignorable dropout
assumption, we could then try to explain and examine
whether membership in dropout pattern groups is distin-
guished by particular observed covariates, such as whether
families were assigned to receive services fostering child
development.

OVERALL DISCUSSION

Across the psychology, medical, public health, and statistics
literatures there have been increasingly widespread calls for
researchers to conduct sensitivity analyses investigating the
robustness of results to departures from ignorable missing-
ness. In some cases these recommendations have been made
by oversight committees such as the National Research
Council (2010), who stated explicitly, “Examining sensitivity
to the assumptions about the missing data mechanism should
be a mandatory component of reporting” (p. 111). Heeding
this recommendation requires the development of sensitivity
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TABLE 3
Parameter Estimates From Empirical Example Sensitivity Analyses

. Pattern Mixture LFMs
Conventional

Parm LFM NN cc AC  LOCF  NND
I 92 96 96 96 96 96
Jay .64 64 64 64 .64 64
Jai 42 33 33 33 33 33
I 96 98 98 97 98 98
Jon 59 51 50 50 53 53
I3 41 34 34 33 34 34
. 89 83 83 83 87 83
Jos 51 30 30 30 39 34
I3 39 24 24 24 27 24
01, 16 19 19 19 19 19
03, 59 59 59 59 59 59
05, 83 52 52 52 52 52
015 08 .09 .08 .08 .09 .08
03> .65 50 48 48 50 50
03, 83 57 56 56 56 59
03 21 18 18 18 17 18
03 74 26 26 26 35 30
033 85 32 32 32 39 36
o) -1.06 -1.08 -1.08 -1.08 -1.08 —1.08
o .08 .07 .07 .07 07 07
T ~74 -65  -62 -2 -70 -70
3 .06 .05 .05 .05 04 .06
s ~45 -26  -26 -26  —46  -37
3 16 .10 .10 .10 07 .10
K1 421 423 423 423 423 423
K 4.11 4.11 4.11 4.11 4.11 4.11
K 495 495 495 4095 4.95 4.95
Via 61 61 61 61 61 61
w13 62 61 61 61 61 61
Vs 53 52 52 52 52 52
01112 .05 01 01 01 01 01
6122 20 11 11 10 11 11
03132 16 .08 .08 .08 .08 .08
01213 -0l .00 .00 .00 .00 .00
62223 19 .07 .07 .07 .07 07
03233 30 13 13 13 13 13

Note. y,, = unsupportiveness; y,, = detachment; y;; = negative regard;
LFM = longitudinal factor model; Parm = parameter; NN = nearest neigh-
bor identifying constraint; CC = complete case identifying constraint;
AC = available case identifying constraint; LOCF = last observation
carried forward identifying constraint; NND = nearest neighbor difference
identifying constraint.

analysis methods applicable to common longitudinal analytic
goals and also requires the dissemination of strengths and
limitations of these sensitivity analysis methods. A common
analytic goal is to test longitudinal invariance of relations
between symptom items and an underlying construct to deter-
mine whether a measure can be used to represent the same
construct across age. Although psychology studies employing
longitudinal factor analysis for testing invariance often are
characterized by high rates of dropout, psychologists lacked
methods for investigating the sensitivity of their results to
potentially nonignorable dropout.
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To fill this gap, this article first presented a family of PM-
LFMs that allow for nonignorable dropout. We suggested an
approach to sensitivity analysis that entailed comparing MI
testing results while imposing varying assumptions about the
dropout process—including ignorable dropout (a conventional
LFM) as well as different kinds of nonignorable dropout oper-
ationalized as different “identifying constraints” on the PM-
LFM. Additionally, we used a simulation to demonstrate that,
reassuringly, applying PM-LFM can provide MI testing results
similar to a conventional LFM when missingness is ignorable.
This simulation also showed that PM-LFM might provide more
accurate MI testing results than a conventional LFM when
missingness is nonignorable; however, the amount of improve-
ment greatly depended on the realism of the identifying con-
straints imposed on the PM-LFM. Under unrealistic identifying
constraints, PM-LFM can perform as poorly as a conventional
LFM (relatedly, see Enders, 2011; Yang & Maxwell, 2014).
Syntax (in Mplus) for fitting each PM-LFM discussed in this
article is provided in the online Appendix.

Previously, PM models had been rarely applied outside
the context of univariate growth modeling. However, we
explained why PM models are particularly well suited to
the context of LFM analyses because typically 7' is small
and dropout is a predominant source of missingness. We
explained why alternative methods for accommodating
nonignorable missingness pose some practical drawbacks
in this setting. In the remaining subsections we discuss
limitations, extensions, and overall take-home points.

Limitations

Several limitations of this study can be noted, which serve as
directions for future research. First, structural parameters also
could be subject to bias from nonignorable missingness, for
instance, if they differ depending on missingness pattern, but a
conventional LFM were fit. This was not demonstrated here but
could also be addressed by application of the PM-LFM.
Second, a researcher could use substantive theory to formulate
PM-LFM identifying constraints other than the five we listed
and illustrated here (see also Little, 2008). Third, researchers
could incorporate covariates into the PM-LFM, for instance, by
regressing the factors on covariates. Researchers could then
decide whether to allow these slopes to differ across missing-
ness pattern in the PM-LFM. Fourth, obtaining marginal para-
meter estimates from the PM-LFM requires computing
weighted averages of pattern-specific parameter estimates. As
mentioned previously, this is straightforward to do using, for
instance, the model constraint command in Mplus. However, it
also would be possible to obtain these marginal parameter
estimates without having to explicitly do these computations
if one first multiply imputes missing data from a PM-LFM and
then fits a conventional LFM to the imputed data. Such a
multiple imputation approach has been used occasionally
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when implementing PM models in the growth modeling con-
text (e.g., Demirtas & Schafer, 2003).

Fifth, the simulation and empirical example relied on only
one approach—a traditional null hypothesis significance testing
(NHST) approach—for assessing configural, weak, strong, and
strict invariance. Nonetheless, it is important to note that the
modeling developments in this article can still be employed if
one chooses instead to assess longitudinal MI using a newer
equivalence testing approach (Yuan & Chan, 2016) rather than
an NHST approach. Specifically, when assessing longitudinal
MI using either approach, researchers can employ PM-LFMs
with the five alternative identification constraints from Table 2
and can use the definitions of marginal weak, strong, and strict
invariance from Figure 2, that allow for nonignorable dropout.
Equivalence testing (Yuan & Chan, 2016; Yuan, Chan,
Marcoulides, & Bentler, 2016) involves testing whether the
misfit in the configurally invariant model exceeds a user-speci-
fied tolerance amount, and then testing whether the difference in
fit between subsequent models (weak, strong, and strict)
exceeds another user-specified tolerance. Yuan and Chan
(2016) showed that equivalence testing provides better control
of Type I error rates than NHST under many conditions and they
suggested potential tolerance amounts for practice; however,
because conclusions about the level of MI supported would
differ depending on the tolerance amount chosen, note that the
choice of tolerance could itself be a worthwhile focus of sensi-
tivity analysis.

Extension: Pattern Mixture Versus Latent Mixture
Approaches for Investigating Missingness Mechanism
Uncertainty in Longitudinal MI Testing

Sometimes researchers concerned about nonignorable drop-
out might have sparse dropout patterns. Other times research-
ers also might be concerned about nonignorable intermittent
(i.e., nonmonotonic) missingness for the set of Jitems. In such
circumstances, researchers might consider methods that effec-
tively replace a larger number of manifest missingness pattern-
groups with a typically small number of latent (unobserved)
classes that each draw cases from different missingness pat-
terns—as has been done in the context of growth modeling
(e.g., Haviland, Jones, & Nagin, 2011; Lin, McCulloch, &
Rosenheck, 2004; Tsonaka, Verbeke, & Lesaffre, 2009). For
instance, to specify a latent missingness class LFM we can let
¢; represent a latent classification variable with latent classes
k=1... Kand let the m; missingness indicators serve as effect
indicators of ¢;.* Endorsement probabilities for the m;

8Here we continue to define m; as consisting of 7 — 1 dropout
indicators, for consistency with the earlier presentation. If we were con-
sidering intermittent missingness for the set of J items, we could redefine
our vector m; of binary missingness indicators to be of dimension 7' x 1
where element m; = 1 when y; is missing and m; = 0 when y, is
observed. (Similar results for the latent missingness class approach were
obtained when m; did vs. did not include intermittent missingness.)

missingness indicators can vary across latent class.
Measurement parameters (e.g., loadings) governing the out-
come process can also vary across latent class. The outcome
and missingness processes are assumed conditionally indepen-
dent—conditional on latent missingness class:

K

Slynm) =Y fyle; = k)f (mile; = k)p(c; = k) (6)

k=1

The class membership probabilities p(c; = k) can be
obtained using a multinomial logistic specification (see,
e.g., Sterba, 2013). Marginal parameters of f(y;) can be
obtained as weighted sums across latent classes. Whereas
this extension from manifest to latent missingness classes
has some compelling motivation, it also poses extra issues
and complexities vis-a-vis the PM-LFM. Three issues—
involving the number, interpretation, and identification of
classes—are summarized next.

Regarding the number of classes and patterns, in the PM
approach G is explicitly determined by the known number
of dropout patterns or dropout pattern summaries. In the
latent missingness class approach, K can be selected using
model selection indexes (such as the Bayesian information
criterion). However, there is ambiguity about what level of
longitudinal MI to impose on the within-class LFM when
selecting K. The decision about selecting K could affect the
decision about what level of longitudinal MI is supported
for marginal LFM parameters. These decisions are inter-
dependent. Specifically, simulations on related latent mix-
tures (e.g., Lubke & Neale, 2006) suggest that using an
overly constrained within-class model when selecting K
could lead to overextracting K, whereas using an under-
constrained within-class model when selecting K could lead
to underextracting K. Researchers might elect to select K
using a less constrained (configurally invariant) LFM
within-class if their greatest concern was avoiding over-
extracting K. This was done in the extended empirical
illustration described later.

Regarding the interpretation of classes and patterns, just
as having G > 1 in the PM approach itself does not imply a
departure from ignorable missingness, merely selecting
K > 1 in the latent missingness class approach also does
not imply a departure from ignorable missingness. In the
latent missingness class approach, multiple classes could be
distinguished by class separation exclusively on outcome
process parameter estimates (for a variety of reasons,
including simply violating distributional assumptions, e.g.,
Bauer, 2007) even when missingness probabilities are simi-
lar across classes. Indeed, when the latent missingness class
approach was applied to the empirical example data set,

Finally, note that we are not discussing item-specific intermittent missing-
ness here (e.g., missingness on Item 3 but not on Items 1, 2, and 4 at time
t). This kind of missingness, if present, would still be assumed ignorable.



K > 1 was preferred by the BIC despite the fact that dropout
probabilities were quite similar across the K classes.
Specifically, K = 3 had the lowest BIC without encounter-
ing convergence problems, and probabilities of dropout at
Times 2 and 3 were similar across classes (.14 and .19 for
K=1,.12 and .13 for K =2, and .19 and .16 for K = 3).
Using these K = 3 latent classes, marginal LFM parameters
were computed after either imposing or relaxing weak MI.
Consistent with our previous empirical results using the
manifest PM-LFM, when applying the latent missingness
class LFM, weak longitudinal invariance of marginal para-
meters could again be rejected. Thus, MI testing results
were again found to be insensitive to allowing for non-
ignorable missingness.

Regarding identification, beyond fixing the scale and
location of each factor in the within-class LFM, identifica-
tion considerations differ in the PM-LFM versus the latent
missingness class LFM. For the PM-LFM, identifying con-
straints (AC, CC, LOCF, NN, NND, etc.) can be decided on
in advance and the implications of each are clear based on
their definitions. For the latent missingness class approach,
a variety of additional constraints might be needed to
ensure empirical identification (see McLachlan & Peel,
2000), ranging from reducing K to placing across-class
equality constraints on particular parameters. For instance,
our empirical implementation of the latent missingness
class LFM encountered estimation problems if K > 3
because then there was no variability in one or more miss-
ingness indicators within class; also, we needed to constrain
all parameters other than loadings to be equal across latent
class to achieve convergence. Taken together, this entailed
imposing more across-class constraints than in the PM-
LFM. Additionally, in the PM-LFM approach it is conven-
tional to investigate variation in results across different
identifying constraints. A similar sensitivity analysis using
the latent missingness class LFM could entail investigating
variation in results across K under different minimally
sufficient sets of constraints.

In summary, from practical and interpretational stand-
points, the PM-LFM and latent missingness class LFM
approaches have different strengths and weaknesses for
investigating sensitivity of MI testing to departures from
nonignorable missingness. The definition of a pattern and
the interpretation of across-pattern variation in parameter
estimates are more straightforward under the PM-LFM.
The operationalization of alternative identifying constraints
is more explicit in the PM-LFM, rendering it arguably
straightforward to inspect how results vary across alterna-
tive choices. When researchers are interested in investigat-
ing the possibility of intermittent nonignorable missingness,
rather than nonignorable dropout, however, the latent miss-
ingness class approach may be preferable.
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Overall Take-Home Points

When fitting conventional LFMs with FIML to test M1, ignor-
able missingness is assumed. We have discussed that this
assumption amounts to requiring that parameter estimates be
constrained equal across missingness pattern. This require-
ment can be conceptualized as a special case constraint on the
PM-LFM. We encourage researchers to also consider the
substantive plausibility of alternative kinds of PM-LFM con-
straints that allow for nonignorable missingness (e.g., the first
five identifying constraints listed earlier). When—as in our
empirical example on harsh parenting—the same conclusions
about MI are reached despite allowing for departures from
ignorable missingness, we gain confidence in the robustness
of our MI testing results. It might instead be the case—as in
some cells of our simulation design—that the same conclu-
sions about MI are not reached when allowing for departures
from ignorable missingness. If so, we can report this source
and extent of uncertainty in results and also can choose to
focus interpretation on those PM-LFM specifications that are
most substantively reasonable.
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APPENDIX

Percent Absolute Relative Bias for Parameter Estimates From Simulation
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Note. LFM = longitudinal factor model; PM-LFM = pattern-mixture longitudinal factor model; NN = nearest neighbor identifying constraint; CC = complete case identifying constraint;

nearest neighbor difference identifying constraint.

last observation carried forward identifying constraint; NND

available case identifying constraint; LOCF =

AC =
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