
psychometrika—vol. 81, no. 2, 506–534
June 2016
doi: 10.1007/s11336-015-9442-4

A LATENT TRANSITION ANALYSIS MODEL FOR LATENT-STATE-DEPENDENT
NONIGNORABLE MISSINGNESS
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Psychologists often use latent transition analysis (LTA) to investigate state-to-state change in discrete
latent constructs involving delinquent or risky behaviors. In this setting, latent-state-dependent nonig-
norable missingness is a potential concern. For some longitudinal models (e.g., growth models), a large
literature has addressed extensions to accommodate nonignorable missingness. In contrast, little research
has addressed how to extend the LTA to accommodate nonignorable missingness. Here we present a shared
parameter LTA that can reduce bias due to latent-state-dependent nonignorable missingness: a parallel-
process missing-not-at-random (MNAR-PP) LTA. The MNAR-PP LTA allows outcome process parameters
to be interpreted as in the conventional LTA, which facilitates sensitivity analyses assessing changes in
estimates between LTA and MNAR-PP LTA. In a sensitivity analysis for our empirical example, previous
and current membership in high-delinquency states predicted adolescents’ membership in missingness
states that had high nonresponse probabilities for some or all items. A conventional LTA overestimated the
proportion of adolescents ending up in a low-delinquency state, compared to an MNAR-PP LTA.

Key words: nonignorable missing data, latent transition analysis, missing not at random, shared parameter
model, mixture model.

Psychologists are often interested in modeling stage-sequential change in a discrete latent
construct over time. For instance, Velicer, Martin, and Collins, (1996) were interested in model-
ing individuals’ patterns of change across latent states of addiction recovery: precontemplation,
contemplation, preparation, action, and maintenance. When the discrete latent construct (e.g.,
addiction recovery) is measured by multiple observed indicators at each timepoint, a latent tran-
sition analysis1 (LTA) model can be used to address research questions about latent state-to-state
change (for reviews, see Collins & Lanza, 2010; Collins & Wugalter, 1992, Langeheine & Van
de Pol, 1990, Reboussin, Reboussin, Liang, & Anthony, 1998). Specific research questions that
LTA can address involve the number of latent states per timepoint, the proportion of persons in
each latent state per timepoint, and the nature of change across states (forward-only, backward-
only, no-change, etc.). Recent applications of LTA have investigated stage-sequential change in
latent constructs such as peer victimization (Nylund, Asparouhov, & Muthén, 2006; Williford,
Boulton, & Jenson, 2014), sexual risk behavior (Lanza & Collins, 2008; Mackesy-Amiti et al.,
2014), underage or high-risk drinking (Cleveland, Lanza, Ray, Turrisi, & Mallet, 2012; Cochran,
Field, & Caetano, 2013), pre-adolescent drug use (Hopfer, Hecht, Lanza, Tan, & Xu, 2013), and
intimate partner violence (Bair-Merritt, Ghazarian, Burrell, & Duggan, 2012).

Psychology researchers considering the application of LTA must contend with missing
responses in their longitudinal, multivariate data. Fortunately, some kinds of missing data are
accommodated by full information maximum likelihood estimation methods conventionally
employed to fit LTA models, typically using the Expectation-Maximization (EM) algorithm (see,
e.g., Lee & Song, 2003; McLachlan & Peel, 2000). For instance, such methods accommodate
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outcome missingness that is at-random (MAR, Rubin, 1976). Under MAR, the probability of
missingness for a given outcome at time t can depend on observed variables (such as observed
outcomes at time t − 1), but not on unobservables in the outcome-generating model (such as
current or previous ‘addiction recovery’ latent state). These methods also can accommodate out-
come missingness that is completely-at-random (MCAR), wherein the probability of missingness
depends neither on such observables nor unobservables. When missing outcomes are MAR or
MCAR, all cases are retained when fitting a LTA model using the EM algorithm, and no parameter
bias is incurred. On the other hand, conventional estimation methods for LTA do not accommodate
outcome missingness that is not-at-random (MNAR), such as if the probability of missingness for a
given outcome at time t depended on ‘addiction recovery’ latent state at time t or t −1, or directly
depended on the score of that or another missing outcome at time t . When missing outcomes
are MNAR—also called nonignorably missing (e.g., Molenberghs & Kenward, 2007)—avoiding
parameter bias requires constructing a joint model for the outcomes of substantive interest and
the missingness indicators (e.g., observed binary indicators of missingness for all repeated out-
comes), as they are interdependent. In other words, a joint MNAR model must be constructed for
the outcome-generating mechanism of substantive interest and the missingness-generating mech-
anism (Little & Rubin, 2002). A sensitivity analysis may then be employed to assess changes
in parameter estimates when fitting a joint MNAR model versus a model only for the outcome-
generating mechanism under MAR assumptions (e.g., Committee on National Statistics, 2010;
Little & Rubin, 1999; Molenberghs & Verbeke, 2005).

Some popular longitudinal outcome models—predominately, growth models—have already
been extended to form joint models for accommodating nonignorable missingness (e.g., multilevel
growth models, groups-based trajectory models, and growth mixture models; Diggle & Kenward,
1994; Haviland, Jones, & Nagin, 2011; Roy, 2003; Wu & Carroll, 1988). Application of joint
MNAR specifications for growth models has been increasing in the psychology literature (e.g.,
Enders, 2010, 2011; Feldman & Rabe-Hesketh, 2012; Hedeker & Gibbons, 1997; Lu & Zhang,
2014; Lu, Zhang, & Lubke, 2011; Muthén, Asparouhov, Hunter, & Leuchter, 2011; Sterba &
Gottfredson, 2014; Xu & Blozis, 2011; Yang & Maxwell, 2014). In contrast, there has been little
attention to the handling of nonignorable missingness in the context of LTA (see Sect. 3). The lack
of attention to joint MNAR specifications for LTA is an important gap because substantive contexts
in which LTA is applied in psychology can present an elevated risk of nonignorable missingness
(Groves, Dillman, Eltinge, & Little, 2002). For instance, LTA is often applied in substance abuse
research (e.g., Cleveland et al., 2012; Cochran et al., 2013) where there is the risk of missingness
due to current membership in a ‘high-substance-use’ latent state and/or due to a latent pattern
of improvement, even after conditioning on observables (Albert & Follmann, 2003; Little et al.,
2012). Also, psychologists often apply LTA to outcomes that are illicit or socially undesirable,
such as intimate partner violence, sexual risk behavior, and peer victimization (e.g., Mackesy-
Amiti et al., 2014; Bair-Merritt et al., 2012). This raises the possibility that participants currently
in a ‘high-risk’ latent outcome state have a greater propensity for intermittent missingness just on
sensitive outcomes.

In this Case Study we develop a joint MNAR LTA model to accommodate intermittent miss-
ingness that may occur in combination with dropout. This model was motivated by our empirical
application, in which the aim was to model state-to-state change in a discrete latent conduct prob-
lem construct in adolescents from the foster care system. This empirical application involves a
combination of intermittent missingness and dropout. For substantive reasons, missingness was
suspected to be latent-state dependent (described subsequently).

The remainder of this manuscript is organized as follows. First, we review alternative frame-
works for joint MNAR models that have been described outside the context of LTA—selection,
pattern-mixture, and shared parameter varieties. Second, we review the conventional LTA model.
Third, we develop a particular kind of shared parameter joint MNAR model for LTA that accommo-
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dates latent-state-dependent missingness—here termed a parallel-process MNAR LTA (MNAR-
PP LTA). We relate this model to existing joint MNAR models used outside the context of LTA.
Fourth, we convey the necessity for the MNAR-PP LTA through a simulation demonstration. The
proposed MNAR-PP LTA is shown to be able to avert bias in LTA parameters under a plausible
MNAR mechanism where the latent missingness state at time t depends on the latent outcome
state at time t and/or t−1 (and on the latent missingness state at time t−1). Importantly, even if the
MNAR-PP LTA is mistakenly/unnecessarily applied under an MAR mechanism, the MNAR-PP
LTA can recover parameters as well as does a conventional LTA, on average. Fifth, we implement
the MNAR-PP LTA in an empirical example on conduct problems in adolescents leaving foster
care, and we interpret MNAR-PP LTA results in the context of a sensitivity analysis. We conclude
with a discussion of extensions and future directions.

1. Alternative Frameworks for Joint MNAR Modeling

Let yi t be person i ′s (i = 1 . . . N ) vector of responses to J outcomes ( j = 1 . . . J ) measured
at time t , where yi t = (yi1t . . . yi J t )′. For univariate repeated measures, J = 1; for multivariate
repeated measures J > 1. Let yi correspond with person i ′s vector of J outcome scores repeated
at timepoints t = 1 . . . T , that is yi = {y′

i1 . . . y′
iT }′. The vector yi may be partially unobserved

for person i . We use a period as a missing data code such that yi j t = . indicates that the j th
outcome at time t for person i is unobserved. The missingness pattern of yi can be represented by
a vector of missingness indicators mi , where mi = {m′

i1 . . .m′
iT }′ and mi t = (mi1t . . .mi Jt )

′.
Let element mi jt = 1 if yi j t = . and let mi jt = 0 if yi j t is observed. Denote the joint distribution
of the outcomes and missingness indicators by f (yi ,mi |θ). Let θ = {θy, θm} where θy is a vector
of parameters of substantive interest describing the outcome-generating mechanism and θm is a
vector of (typically nuisance) parameters describing the missingness mechanism. Several general
MNAR modeling frameworks have been proposed which entail different factorizations of this
joint distribution. These different factorizations correspond to different conceptualizations of the
missingness-generating process—as follows.

One framework, employed in outcome-dependent selection models (e.g., Diggle & Ken-
ward, 1994), allows missingness indicators to depend directly on the values of the repeated
measures: f (yi ,mi |θ) = f (yi |θy) f (mi |yi , θm). This approach is often employed to model
dropout (where mi jt = . if dropout already occurred) rather than intermittent missingness or
their combination (e.g., Little, 1995). Another framework, employed in pattern mixture mod-
els (e.g., Little, 2008; Thijs, Molenberghs, Michiels, Verbeke, & Curran, 2002), uses a different
factorization, f (yi ,mi |θ) = f (yi |mi , θy) f (mi |θm), which specifies the distribution of repeated
outcomes to vary across missingness patterns. The marginal distribution of the repeated mea-
sures is a weighted average of pattern-specific distributions. This approach is also often used to
model dropout. A third framework, shared parameter models, is often used to model intermittent
missingness and/or dropout. In this framework, yi and mi are conditionally independent, given
one or more shared latent variables. The shared latent variables, here generically denoted bi ,
could be continuously distributed random effect(s) (e.g., Molenberghs & Kenward, 2007; Ten
Have et al., 1998) or discretely distributed latent classification variable(s) (e.g., Haviland et al.,
2011) leading to a factorization such as f (yi ,mi ,bi |θ) = f (yi |bi , θy) f (mi |bi , θm) f (bi |θb). It
can be integrated or summed (respectively) across bi to obtain f (yi ,mi |θ). Furthermore, instead
of assuming yi and mi depend on the same set of latent variables, a less restrictive option is
to assume yi and mi are conditionally independent given a set of associated latent variables
(e.g., Lin, Liu, & Zhou, 2010; Muthén et al., 2011; Rizopoulos, Verbeke, Lessafre, & Van-
renterghem, 2008). We develop the latter kind of shared parameter MNAR model for LTA in
Sect. 3.
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2. Conventional Latent Transition Analysis (LTA) Model

Having now introduced several joint MNAR modeling frameworks in general terms, we turn
next to a review of the conventional LTA (assuming MAR) before presenting the proposed joint
MNAR model for LTA. In this section, we assume complete case data. Furthermore, we focus on
LTAs with binary outcomes because the vast majority of LTA applications in psychology employ
binary outcomes (see Collins & Lanza, 2010). Similarly, because of its common use in practice,
we focus on LTAs with a first-order Markov structure, wherein discrete latent states at time t are
regressed only on latent states at time t − 1 (and not at times t − 2, t−3, etc.).

For the j th binary outcome measured on person i at time t , let yi j t = 1 if endorsed and
yi j t = 0 if not endorsed. At time t, the J outcomes for person i are indicators of a categorical
latent variable, cyit , at time t . Denote the response pattern for person i as yi = (y′

i1 . . . y′
iT )′ where

yi t = (yi1t ...yi J t )′. At time t there are Kt discrete latent states for the categorical latent variable
cyit , where kt = 1 . . . Kt . Typically, in empirical applications Kt = K , which corresponds to
configural invariance of the discrete latent construct across time. K can be chosen using a model
selection approach, where the fit of LTA models positing alternate K is compared. For instance,
the Bayesian Information Criterion (BIC; Schwarz, 1978) is one model selection index often used
in selecting the number of latent states or classes in mixture models (e.g., Nagin, 2005; Nylund,
Asparouhov, & Muthén, 2007; Tofighi & Enders, 2007).

The LTA model implies that the probability of obtaining response pattern yi for person i is

p(yi |θy) =
K1∑

k1=1

· · ·
KT∑

kT =1

πk1

(
T∏

t=2

τkt |kt−1

)
T∏

t=1

J∏

j=1

(
ρ
yi j t
y j t |kt (1 − ρy j t |kt )1−yi j t

)
. (1)

In Eq. (1), πk1 is the marginal probability of membership in initial latent state k1 of cyi1, which
can be obtained via the following multinomial logistic specification:

πk1 = exp(ωk1)
/ K1∑

k̇1=1

exp(ωk̇1
), (2)

where ωk1 is a multinomial intercept. For identification purposes, ωK1 = 0 for reference state K1.
In Eq. (1), τkt |kt−1 is a transition probability from time t − 1 to time t latent state. Psychologists
applying LTA are often most substantively interested in these transition probabilities, which
describe latent stage-sequential change. For t ≥ 2, the probability of transitioning from latent
state kt−1 of cyit−1 to latent state kt of cyit can be obtained from the following multinomial logistic
specification (e.g., Reboussin et al., 1998):

τkt |kt−1 =
exp

(
αkt + β′

kt |cyt−1
dikt−1

)

Kt∑

k̇t=1

exp
(
αk̇t + β′

k̇t |cyt−1
dikt−1

) , where t ≥ 2 (3)

For identification purposes, αKt = 0 and βKt |cyt−1
= 0 for the outcome reference state Kt . αkt is a

multinomial intercept and βkt |cyt−1
is a (Kt−1 − 1) × 1 vector of multinomial slopes for Kt−1 − 1

dummy codes in dikt−1 ; these dummy codes represent the latent states of cyit−1 at time t − 1. The
reference category for the dummy codes is the Kt−1 latent state. For example, to compute the
probability of transitioning from cyit−1 = 1 to cyit = 2 where Kt−1 = Kt = 3, we would have

β′
kt |cyt−1

=
[
β2|cyt−1=1 β2|cyt−1=2

]
in Eq. (3). The interpretation of exp(β2|cyt−1=1) is as an odds ratio
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Figure 1.
Conventional latent transition analysis (LTA) model that requires assuming MAR (Eq. 1). Shown for T = 3 and J =4.
Notes Circles represent latent classification variables and they are connected by directed arrows representing regression
paths. Squares represent measured variable indicators of latent classification variables. MAR missingness at random.

(OR). Specifically, it is the multiplicative change in the odds of being in state 2 (vs. Kt ) at time
t due to being in state 1 (rather than state Kt−1) at time t − 1. Marginal latent state probabilities
for t >1 can be computed using probabilities from previous timepoints. For example,

πkt =
Kt−1∑

kt−1=1

πkt−1τkt |kt−1 where t > 1. (4)

Also in Eq. (1), ρy j t |kt is the endorsement probability for the j th outcome at time t for persons in
state kt . ρy j t |kt is obtained from the following specification:

ρy j t |kt = 1/(1 + exp(vy j t |kt )). (5)

In Eq. (5), vy j t |kt is an estimated threshold parameter for the j th outcome at time t for persons in
state kt . Because ρy j t |kt describes the relationship between a manifest outcome and a categorical
latent variable, it is a measurement parameter; Eq. (5) may be considered a measurement submodel.
In contrast, πk1 and τkt |kt−1 are structural parameters describing relationships among categorical
latent variables; Eqs. (2) and (3) may be considered the structural submodel. Often measurement
invariance is assumed, wherein thresholds are constrained equal across time within state. In LTA,
the J outcomes at time t are assumed locally independent conditional on latent state kt . This
assumption is reflected in Eq. (1) in that, for members of state kt , the joint probability of response
pattern yi t is the product of response probabilities for outcomes j = 1 . . . J .

Finally, θy is a vector of all estimated model parameters discussed above. This vector
includes ωk1=1 . . . ωk1=(K1−1). For all t ≥ 2, this vector also includes {αkt=1 . . . αkt=(Kt−1)}
and {βkt=1|cyt−1

. . . βkt=(Kt−1)|cyt−1
}. For all j and t , this vector also includes {vy j t |kt=1 . . .

vy j t |kt=Kt }. A heuristic path diagram of the Eq. (1) conventional LTA is provided in Fig. 1.

3. Joint MNAR Model for LTA

3.1. Background

To date, there has been scant attention to expanding the LTA into a joint model suitable for
accommodating nonignorable missingness. An exception is White and Erosheva (2013) who, in
the context of modeling rolling enrollment, employed a model conceptually related to a pattern-
mixture model with a LTA specification for the outcome-generating process. However, their
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model applied only to monotone missingness, required time homogeneity of item endorsement
probabilities and transition probabilities, and could not be fit with standard mixture modeling
software. None of those restrictions will be necessary in the model developed here.

Although there has been some attention to expanding single-indicator,manifest Markov mod-
els into joint MNAR models, we do not directly extend any of these specifications in constructing
our (multiple-indicator) joint MNAR LTA because interpretational and/or practical drawbacks
arise. For instance, one existing MNAR model involves a single-indicator Markov submodel
for outcomes and a selection submodel for outcome-dependent missingness (e.g., Albert, 2000;
Chen, Yi & Cook, 2011; Cole, Bonetti, Zaslavsky, & Gelber, 2005; Kurland & Heagerty, 2004; Liu,
Waternaux & Petkova, 1999). For such an MNAR specification, computational burden is a func-
tion of the number of timepoints with missing data. However, if extended from univariate repeated
measures (a single-indicator Markov submodel for outcomes) to multivariate repeated measures
(a LTA submodel for outcomes), computational burden can quickly become impractical—
increasing multiplicatively according to J× the number of timepoints with missing data. Specif-
ically, obtaining the joint likelihood of outcomes and missingness indicators for such a model
requires integration over missing y variables. For the empirical example discussed later (with 8
repeated outcomes each measured at 3 timepoints, where missingness starts at time 2), such a
model would require 16 dimensions of integration. In contrast, the joint MNAR LTA proposed
here does not require integration.

Another existing MNAR model involves a single-indicator Markov submodel for outcomes
along with continuously distributed random coefficient(s) (i.e., latent factor(s)) as shared parame-
ter(s) in the outcome and missingness submodels (e.g., Albert & Follmann, 2003; Yang, Shoptaw,
Liu & Belin, 2007). We chose not to extend this approach because the conventional LTA does
not involve latent factors within-state in the outcome-generating model. Adding latent factor(s)
within-state at time t relaxes the LTA’s local independence assumption, which would change and
complicate substantive interpretation of latent outcome states (see Sterba, 2013). Outcome process
parameters would not retain the same interpretation as in LTA. In contrast, the joint MNAR LTA
proposed here retains the LTA’s local independence assumption for the outcome process.

3.2. Overview of the Parallel-Process MNAR LTA (MNAR-PP LTA)

First we provide an overview of major features of the MNAR-PP LTA. Later, its specification
is described in detail. When responses in yi are missing, corresponding elements of mi are 1 (else,
0). Intermittent missingness or dropout may occur only for one or a subset of the J outcomes at
time t (e.g., a sensitive or socially undesirable outcome) and can also occur for all J outcomes
at time t . The MNAR-PP LTA accommodates the combination of both, which is most typical of
practice.

The MNAR-PP LTA employs a measurement submodel for the missingness indicators
wherein elements of mi t are indicators of a categorical latent variable at time t, cmit . At time
t, cmit can have Qt latent missingness states, where qt = 1 . . . Qt . Associations among missing-
ness indicators at time t are explained by between-state differences in propensities for missingness
at time t . Researchers may typically choose to constrain Qt = Q, which affords configural invari-
ance of the latent states across time. Model-building strategies involving the selection of Q will
be discussed later; it is also possible for Q to be specified a priori based on theory.

The MNAR-PP LTA extends the conventional LTA by relating the outcome-generating mech-
anism from the LTA to a missingness mechanism in the following manner. The MNAR-PP LTA
allows membership in latent missingness states of cmit at time t to depend on membership in latent
outcome states at times t and t − 1 (i.e., cyit and cyit−1), as well as latent missingness states at
time t − 1, cmit−1. There are no direct dependencies between mi t and yi t in the measurement
submodels; rather, all dependencies between mi t and yi t arise indirectly through structural rela-
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tions among latent missingness states and latent outcome states. In the MNAR-PP LTA, there
is conditional independence of mi t and yi t given current and prior latent outcome states. For an
outcome-generating process involving stage-sequential change among latent states of, for instance,
antisocial or victimization behavior, the MNAR-PP LTA posits a highly substantively plausible
missingness mechanism. Later, in Sect. 4, it is demonstrated that the application of MNAR-PP
LTA can, on average, prevent the increase in bias in LTA parameters when missingness depends on
time t and t −1 latent outcome states. Importantly, the MNAR-PP LTA and the conventional LTA
allow the same interpretation of parameters pertaining to the outcome-generating mechanism.

The MNAR-PP LTA can be related to the taxonomy of joint MNAR modeling frameworks
from Sect. 1. Specifically, the MNAR-PP LTA can be considered a kind of shared parameter
MNAR model because mi t and yi t are conditionally independent given (current and prior) latent
outcome states. Additionally, this MNAR-PP LTA can be viewed as an extension of parallel-
process growth trajectory MNAR models (e.g., Lin et al., 2009) to the context of discrete, stage-
sequential latent change. From another vantage point, the MNAR-PP LTA can be viewed as an
extension of a constrained parallel-process LTA (e.g., Flaherty, 2008; Sterba, 2013) to the MNAR
context, where one process represents missingness. Next, the MNAR-PP LTA model specification
is presented in detail.

3.3. Specification of the MNAR-PP LTA

First we present a specification of the MNAR-PP LTA, Eq. (6), suited for the common situation
where there is no missingness at time 1; this situation is encountered in our empirical example.
(An alternative more general specification, presented later in Eq. (11), accommodates missingness
starting at time 1.)

p(yi ,mi |θ) =
K1∑

k1=1

. . .

KT∑

kT =1

Q2∑

q2=1

. . .

QT∑

qT =1

πk1τq2|k1,k2

(
T∏

t=2

τkt |kt−1

) (
T∏

t=3

τqt |kt−1,kt ,qt−1

)

×
J∏

j=1

((
T∏

t=1

ρ
yi j t
y j t |kt (1 − ρy j t |kt )1−yi j t

)(
T∏

t=2

ρ
mi jt
m jt |qt (1 − ρmjt |qt )1−mi jt

))
(6)

The sample full data log likelihood can be obtained by taking the log of Eq. (6) then summing
across i = 1 . . . N , assuming independence across individuals. A heuristic path diagram of the
Eq. (6) MNAR-PP LTA is presented in Fig. 2 Panel A, where J = 4 and T = 3. In Fig. 2, circles
represent latent classification variables and they are connected by directed arrows representing
regression paths. Squares represent measured variable indicators of latent classification variables.

As in the conventional LTA, in Eq. (6) at time t there are Kt latent outcome states, where
kt = 1 . . . Kt . The quantities of substantive interest for interpretation in the outcome-generating
submodel— πkt , τkt |kt−1 , and ρ j t |kt —are computed and interpreted as in the conventional LTA
(see Eqs. 2–5). The new quantities τq2|k1,k2 , τqt |kt−1,kt ,qt−1 , and ρmjt |qt are defined next.

In Eq. (6), for each timepoint t > 1 there are Qt latent missingness states of cmit where
qt = 1 . . . Qt . Variation in missing data patterns mi t across persons is a prerequisite for fitting
the MNAR-PP LTA. In Eq. (6), τq2|k1,k2 is the probability of transitioning into latent missingness
state q2 at time 2 given membership in latent outcome state k1 at time 1 and k2 at time 2. τq2|k1,k2

is obtained from the following multinomial logistic regression specification:

τq2|k1,k2 =
exp(αq2 + β′

q2|cy1dik1 + β′
q2|cy2dik2)

Q2∑
q̇2=1

exp(αq̇2 + β′
q̇2|cy1dik1 + β′

q̇2|cy2dik2)

. (7)
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Panel B MNAR-PP LTA with missingness starting at time 1 (Eq. 11)

Panel A MNAR-PP LTA with missingness starting at time 2 (Eq. 6)

Figure 2.
Missing-not-at-random parallel-process latent transition analysis (MNAR-PP LTA) model. Shown for T = 3 and J = 4.
Notes See Fig. 1 notes.

Here, αq2 is a multinomial intercept, βq2|cy1 is a vector of multinomial slopes for the K1 −1 dummy

codes in dik1 (reference category =K1) representing time 1 latent outcome states of cyi1, and βq2|cy2
is a vector of multinomial slopes for the K2 − 1 dummy codes in dik2 (reference category =K2)
representing time 2 latent outcome states of cyi2. For identification, αQ2 = 0, βQ2|cy1 = 0, and
βQ2|cy2 = 0.

In Eq. (6), when t ≥ 3, τqt |kt−1,kt ,qt−1 is the probability of transitioning into the time t latent
missingness state qt conditional on membership in latent outcome states kt−1 and kt at times
t − 1 and t , and conditional on membership in latent missingness state qt−1 at time t − 1. Again,
τqt |kt−1,kt ,qt−1 is obtained from a multinomial logistic regression specification:
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τqt |kt−1,kt ,qt−1 =
exp

(
αqt + β′

qt |cyt−1
dikt−1 + β′

qt |cyt dikt + β′
qt |cmt−1

diqt−1

)

Qt∑
q̇t=1

exp
(
αq̇t + β′

q̇t |cyt−1
dikt−1 + β′

q̇t |cyt dikt + β′
q̇t |cmt−1

diqt−1

) , where t ≥ 3.

(8)
Here, αqt is a multinomial intercept and βqt |cyt−1

, βqt |cyt , and βqt |cmt−1
are vectors of multinomial

slopes for dummy codes in dikt−1 (reference category =Kt−1),dikt (reference category = Kt ), and

diqt−1 (reference category =Qt−1). These, respectively, represent outcome states of cyit−1, outcome
states of cyit , and missingness states of cmit−1. For identification, αQt = 0, βQt |cyt−1

= 0, βQt |cyt = 0,
and βQt |cmt−1

= 0.
In Eq. (6), ρmjt |qt is the probability that mi jt = 1(i.e., the probability that yi j t = .) given

membership in latent missingness state qt at time t . It is obtained from

ρmjt |qt = 1/(1 + exp(vmjt |qt )), (9)

vmjt |qt is an estimated threshold parameter for the j th missingness indicator at time t in
missingness state qt . Measurement invariance of these thresholds across time within-state,
vmjt |qt = vmj |qt , can be imposed for parsimony; this is done later to allow latent missingness
states to have the same interpretation across time. At time t , elements of mi t are assumed locally
independent conditional on latent state qt in Eq. (6).

Finally, θ on the left-hand side of Eq. (6) is a vector containing all estimated model parameters,
where θ = {θy, θm}. Parameters in θy are familiar from the conventional LTA and now contain
parameters of the outcome-generating submodel in the MNAR-PP LTA. All remaining MNAR-PP
LTA parameters are contained in θm , and they constitute parameters of the missingness-generating
submodel. The θy are the focus of substantive interpretation.

3.4. Other Probabilities of Interest in the Missingness Submodel of the MNAR-PP LTA

Certain latent state probabilities in the missingness-generating submodel of the MNAR-PP
LTA are not directly represented in Eq. (6) but may nevertheless be of interpretive interest. Here
we discuss how several key examples—πqt , τqt |qt−1 , and τqt |kt —are computed from already-
presented probabilities.

Some latent missingness states likely will be more prevalent than others at time t . πqt is the
marginal probability of membership in latent missingness state qt . Table 1, row 1, illustrates the
computation of πq2 , πq3 , and πqz , where z ≥ 4.

Another kind of probability of potential interpretive interest is τqt |qt−1 , the conditional prob-
ability of transitioning into latent missingness state qt from latent missingness state qt−1. Exam-
ining τqt |qt−1 allows assessment of stability in the prevalence of missingness states across time.
Sequential change in latent missingness states can also be assessed—for instance, from a state
with elevated missingness probabilities only for illicit drug use outcomes to a state with high miss-
ingness probability for all outcomes. Table 1, row 2, provides formulas for computing transition
probabilities τq3|q2 , τq4|q3 , and τqz |qz−1 (where z ≥ 5).

Finally, although the MNAR-PP LTA expression in Eq. (6) already contains latent missingness
state probabilities conditional on both current and prior latent outcome states, the probability of
latent missingness state qt given only current latent outcome state kt , τqz |kz , may also be of interest.
For example, we may wish to learn which missingness states at time t are implied by the model to
be highly associated with a high-risk outcome state at time t . Table 1, row 3, shows how transition
probabilities τq2|k2 , τq3|k3 , and τqz |kz (where z ≥ 4) are computed.
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Table 1.
Calculating probabilities of interest in the missingness submodel of the MNAR-PP LTA that are not directly represented
in Eq. (6).

πqt , probability of membership in latent missingness state qt

At time 2: πq2 =
K1∑

k1=1

K2∑
k2=1

πk1τq2|k1,k2τk2|k1

At time 3: πq3 =
K1∑

k1=1
...

K3∑
k3=1

Q2∑
q2=1

πk1τq2|k1,k2

(
3∏

t=2
τkt |kt−1

)
τq3|k2,k3,q2

At time z :
(where z ≥ 4)

πqz =
K1∑

k1=1
...

Kz∑
kz=1

Q2∑
q2=1

...
Qz−1∑

qz−1=1
πk1τq2|k1,k2

(
z∏

t=2
τkt |kt−1

) (
z∏

t=3
τqt |kt−1,kt ,qt−1

)

τqt |qt−1 , probability of transitioning to latent missingness state qt from latent missingness state qt−1

From time 2 to 3: τq3|q2 =
(

K1∑
k1=1

...
K3∑

k3=1
πk1τq2|k1,k2

(
3∏

t=2
τkt |kt−1

)
τq3|k2,k3,q2

)/
πq2

From time 3 to 4: τq4|q3 =
(

K1∑
k1=1

...
K4∑

k4=1

Q2∑
q2=1

πk1τq2|k1,k2

(
4∏

t=2
τkt |kt−1

)(
4∏

t=3
τqt |kt−1,kt ,qt−1

)) /
πq3

From time z − 1
to z: (where z ≥ 5)

τqz |qz−1 =
(

K1∑
k1=1

...
Kz∑

kz=1

Q2∑
q2=1

...
Qz−2∑

qz−2=1
πk1τq2|k1,k2

(
z∏

t=2
τkt |kt−1

) (
z∏

t=3
τqt |kt−1,kt ,qt−1

))/
πqz−1

τqz |kz , probability of membership in latent missing state qt given only current latent outcome state kt

At time 2: τq2|k2 =
(

K1∑
k1=1

πk1τq2|k1,k2τk2|k1

)/
πk2

At time 3: τq3|k3 =
(

K1∑
k1=1

...
K2∑

k2=1

Q2∑
q2=1

πk1τq2|k1,k2

(
3∏

t=2
τkt |kt−1

)
τq3|k2,k3,q2

)/
πk3

At time z:
(where z ≥ 4)

τqz |kz =
(

K1∑
k1=1

...
Kz−1∑

kz−1=1

Q2∑
q2=1

...
Qz−1∑

qz−1=1
πk1τq2|k1,k2

(
z∏

t=2
τkt |kt−1

)(
z∏

t=3
τqt |kt−1,kt ,qt−1

))/
πkz−1

MNAR-PP LTA Missing-not-at-random parallel-process LTA.

3.5. A MAR LTA as a Constrained Special Case of the MNAR-PP LTA

Constraints can be placed on the MNAR-PP LTA in order to yield a LTA that requires assuming
MAR when fit with, for instance, the EM algorithm. If Eq. (6) is modified such that τq2|k1,k2 = πq2

and modified such that, for t > 2, τqt |kt−1,kt ,qt−1 = τqt |qt−1 , then submodels for the missingness
mechanism and outcome-generating mechanism would no longer be associated. This is shown in
Eq. (10).
p(yi ,mi |θ) =

K1∑

k1=1

· · ·
KT∑

kT =1

Q2∑

q2=1

· · ·
QT∑

qT =1

πk1πq2

(
T∏

t=2

τkt |kt−1

) (
T∏

t=3

τqt |qt−1

)

×
J∏

j=1

((
T∏

t=1

ρ
yi j t
y j t |kt (1 − ρy j t |kt )1−yi j t

)(
T∏

t=2

ρ
mi jt
m jt |qt (1 − ρmjt |qt )1−mi jt

))
(10)

That is, current latent outcome state membership (kt ) would depend only on prior latent outcome
state membership (kt−1), and current latent missingness state membership (qt ) would depend
only on prior latent missingness state membership (qt−1). Here ρmjt |qt depends neither directly
nor indirectly on unobservables in the outcome-generating process; this is consistent with MAR.

Since the MAR LTA in Eq. (10) and the MNAR-PP LTA in Eq. (6) have the same set of
dependent variables, it would be possible to compare their fit as part of a sensitivity analysis.
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(In contrast, the conventional LTA in Eq. (1) does not have the same set of dependent variables
as Eq. (6) so the fit of these models could not be compared.) Of course a MAR versus MNAR-
PP LTA model fit comparison should not be considered a general test of MNAR because the
MNAR-PP LTA posits only one substantively plausible MNAR mechanism out of many possible
MNAR mechanisms. Indeed, for this reason no MNAR model specification allows a general test
of MNAR (Little & Rubin, 2002). Additionally, there is a debate over the usefulness of MAR
versus MNAR model fit comparisons in general because fit is being compared only with respect
to the observed data (see Ibrahim, Chen, Lipsitz, & Herring, 2005; Jansen, Hens, & Molenberghs,
2006; Muthén et al., 2011; Sterba & Gottfredson, 2014). Here, in later examples, we conservatively
elect to only compare parameter estimates across MAR versus MNAR-PP LTA specifications, as
this is always a main feature of sensitivity analyses pertaining to missingness mechanisms.

3.6. Additional Specifications of the MNAR-PP LTA

The MNAR-PP-LTA specification in Eq. (6) accommodated missingness beginning at time
2; this is an extremely common situation in practice. In Eq. (11) an additional specification of the
MNAR-PP LTA is presented where missingness begins at time 1.

p(yi ,mi |θ) =
K1∑

k1=1

Q1∑

q1=1

· · ·
KT∑

kT =1

QT∑

qT =1

πk1τq1|k1

(
T∏

t=2

τkt |kt−1τqt |kt−1,kt ,qt−1

)

×
T∏

t=1

J∏

j=1

(
ρ
yi j t
y j t |kt (1 − ρy j t |kt )1−yi j tρ

mi jt
m jt |qt (1 − ρmjt |qt )1−mi jt

)
(11)

Even if the baseline occasion in a study (for instance, grade 4) contains complete data, this
additional MNAR-PP LTA specification can be relevant if the timepoints used in an analysis (for
instance, grades 7, 8, and 9) do not include the baseline occasion (e.g., Rodgers et al., 2013).
Figure 2 Panel B gives a heuristic path diagram of Eq. (11) MNAR-PP LTA for J = 4 and T = 3.

4. Simulation Demonstration

Now that the MNAR-PP LTA has been described, we use a small simulation as a proof-of-
concept demonstration of the following two points. (1) As compared to fitting a conventional LTA
assuming MAR, the MNAR-PP LTA can reduce bias in LTA parameters when there is latent-state-
dependent missingness (e.g., latent missingness state at time t that depends on latent outcome
states at t and/or t−1). (2) When a researcher suspects MNAR missingness, but in fact missingness
is MAR, unnecessarily fitting a MNAR-PP LTA can still allow parameters to be recovered as well
as if a conventional LTA were fit, on average.

First we review which parameters are at risk of bias when the missingness mechanism is latent-
state-dependent MNAR, but a MAR LTA is fit instead. Outcome process structural coefficients are
at little risk of bias due to MNAR when they involve timepoints at which there is no missingness.
For instance, if MNAR missingness begins at t = 2, multinomial coefficients used in computing
τkt |kt−1 and πkt for t ≥ 2 are at greatest risk of bias, whereas those used in computing πk1 are at
little risk of bias because there is no missingness at t =1. (If missingness begins at t = 1—not
considered here—multinomial intercepts used to compute πk1 can also be meaningfully biased).
Measurement parameters ρy j t |kt should show little bias on average since the dependency between
outcome-generating and missingness mechanisms occurs in the structural model.
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Table 2.
Simulation results: percent absolute relative bias (%ARB) for multinomial coefficient structural parameters in the outcome
process.

Parameter Pop.
value

MNAR missingness mechanism MAR missingness mechanism

Fit MNAR-PP
LTA

Fit conventional
LTA

Fit MNAR-PP
LTA

Fit conventional
LTA

Avg. Est. %ARB Avg. Est. %ARB Avg. Est. %ARB Avg. Est. %ARB

ωk1=1 −1.2 −1.198 0.14 −1.248 3.99 −1.203 0.23 −1.204 0.29
ωk1=2 −0.9 −0.884 1.76 −0.902 0.27 −0.890 1.16 −0.890 1.11

αk2=1 −1.2 −1.203 0.24 −1.316 9.63 −1.207 0.57 −1.206 0.52
αk2=2 −0.9 −0.901 0.16 −0.985 9.40 −0.879 2.32 −0.878 2.49
αk3=1 −1.2 −1.204 0.35 −1.382 15.13 −1.211 0.94 −1.213 1.09
αk3=2 −0.9 −0.896 0.49 −0.965 7.19 −0.902 0.20 −0.899 0.13
βk2=1|cy1=1 2.0 2.017 0.87 1.816 9.20 2.018 0.92 2.019 0.97

βk2=1|cy1=2 1.0 1.005 0.49 0.768 23.20 1.003 0.28 1.002 0.23

βk2=2|cy1=1 1.0 0.985 1.52 0.716 28.44 0.990 1.02 0.991 0.89

βk2=2|cy1=2 1.5 1.517 1.13 1.301 13.25 1.501 0.08 1.504 0.27

βk3=1|cy2=1 1.75 1.768 1.03 1.656 5.35 1.780 1.69 1.780 1.70

βk3=1|cy2=2 1.0 1.001 0.11 0.760 23.98 1.010 0.98 1.011 1.12

βk3=2|cy2 =1 1.0 1.002 0.23 0.765 23.52 1.011 1.13 1.012 1.20

βk3=2|cy2 =2 1.5 1.509 0.61 1.292 13.89 1.509 0.61 1.510 0.67

LTA latent transition analysis, MNAR-PP LTA missing-not-at-random parallel-process LTA, Pop. value pop-
ulation parameter value, MAR missing-at-random, Avg. Est. average estimate.

4.1. Methods

In this simulation demonstration, 500 samples with T = 3 and J = 5 were generated;
these T and J are typical of LTA applications in psychology (e.g., Cain, Epler, Steinley, &
Sher 2012; Catts, Compton, Tomblin, & Bridges, 2012; Collins & Lanza, 2010; Rodgers et al.,
2013; Witkiewitz, 2008). Repeated measures and missingness were generated from the MNAR-
PP LTA in Eq. (6) and the MAR LTA in Eq. (10). In both population models, outcome indicators
and missingness indicators were measurement invariant over time and latent outcome states and
latent missingness states were configurally invariant over time (K = 3, Q = 2). Complete case
data consisted of N = 5,000 cases per sample. Similar N ′s are common in LTA applications
(e.g., recently Baggio et al., 2014, Cook, Pflieger, Connell, & Connell, 2014, and Kroesen, 2014).

In both population models, parameters for the outcome submodel were the same. For the out-
come submodel, structural parameters are given in Table 2 (column 1). Measurement parameters,
in Table 3 (column 1), were chosen to be similar to Nylund et al. (2006).

In both population models, parameters for the missingness submodel implied no missingness
at t = 1, on average 25.5 % missingness at t = 2, and on average 34.5 % missingness at t = 3.
These missingness proportions are similar to those in the empirical example described later. In
both population models, measurement parameters for the missingness submodel were the same:

[vmjt |qt=1...vmJt |qt=1] = [−.76,−.46,−.92,−.60,−.65];
[vmjt |qt=2...vmJt |qt=2] = [1.62, 2.25, 1.77, 2.50, 2.00].
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Table 3.
Simulation results: percent absolute relative bias (%ARB) for threshold measurement parameters in the outcome process.

Parameter Pop.
value

MNAR missingness mechanism MAR missingness mechanism

Fit MNAR-PP
LTA

Fit conventional
LTA

Fit MNAR-PP
LTA

Fit conventional
LTA

Avg. Est. %ARB Avg. Est. %ARB Avg. Est. %ARB Avg. Est. %ARB

vy1t |kt=1 −0.90 −0.905 0.58 −0.944 4.91 −0.904 0.46 −0.904 0.48
vy2t |kt=1 −1.69 −1.709 1.13 −1.785 5.63 −1.714 1.43 −1.716 1.51
vy3t |kt=1 −2.20 −2.217 0.79 −2.276 3.45 −2.209 0.42 −2.210 0.45
vy4t |kt=1 −1.25 −1.244 0.49 −1.296 3.66 −1.251 0.10 −1.252 0.14
vy5t |kt=1 −1.48 −1.487 0.44 −1.543 4.26 −1.492 0.81 −1.493 0.84
vy1t |kt=2 0.32 0.332 3.63 0.293 8.47 0.327 2.09 0.326 1.81
vy2t |kt=2 0.95 0.962 1.22 0.896 5.67 0.960 1.09 0.959 0.97
vy3t |kt=2 −0.20 −0.188 5.90 −0.225 12.45 −0.201 0.30 −0.202 0.80
vy4t |kt=2 0.15 0.152 1.20 0.106 29.33 0.151 0.87 0.151 0.40
vy5t |kt=2 0.55 0.560 1.89 0.512 6.93 0.553 0.62 0.553 0.45
vy1t |kt=3 2.10 2.107 0.35 2.083 0.80 2.107 0.31 2.106 0.30
vy2t |kt=3 2.67 2.679 0.32 2.647 0.86 2.671 0.05 2.671 0.04
vy3t |kt=3 1.80 1.807 0.37 1.782 0.99 1.810 0.53 1.809 0.52
vy4t |kt=3 2.55 2.566 0.61 2.538 0.48 2.571 0.82 2.570 0.78
vy5t |kt=3 2.30 2.302 0.08 2.274 1.12 2.311 0.49 2.311 0.47

LTA latent transition analysis, MNAR-PP LTA missing-not-at-random parallel-process LTA, Pop. value pop-
ulation parameter value, MAR missing-at-random, Avg. Est. average estimate.

They imply that in state 1 at time t missingness across the J items averaged 66 % and in state 2 at
time t missingness averaged 12 %. In the generating MNAR-PP LTA from Eq. (6), structural para-
meters for the missingness submodel were αq2=1 = −4, β′

q2=1|cy1 = [2.75, 2.00], β′
q2=1|cy2 =

[2.50, 2.00], αq3=1 = −3.25, β′
q3=1|cy2 = [2.75, 1.75], β′

q3=1|cy3 = [2.75, 1.75] and β′
q3=1|cm2 =

[0.5]. For the generating MAR LTA in Eq. (10), structural parameters for the missingness sub-
model were αq2=1 = −1.08, αq3=1 = −0.47, β′

q3=1|cm2 = [0.5]. Mplus 7.11 (Muthén & Muthén,
1998-2014) and SAS 9.3 were used for generation.

Each sample (generated from either the MNAR-PP LTA or the [MAR] LTA) was then fit
with both the MNAR-PP LTA in Eq. (6) and the conventional (MAR) LTA in Eq. (1). Hence,
for each sample, one fitted model is true and the other fitted model has a misspecified missing-
ness mechanism. (Here, a misspecified missingness mechanism arises when a MNAR mecha-
nism is specified but missingness is actually MAR, or when a MAR mechanism is specified but
missingness is actually MNAR.) Model fitting employed the EM algorithm (Dempster, Laird,
& Rubin, 1977) in Mplus 7.11. See Song and Lee 2003 for a description of the EM for mix-
ture models with missing outcomes. For a generic parameter ϑ , percent absolute relative bias

(%ARB) was computed as
∣∣∣
(
(
¯̂
ϑ − ϑ)/ϑ

)
× 100

∣∣∣. Though not a focus of the simulation demon-

stration, results for standard error bias
∣∣(SEϑ − SDϑ)/SDϑ

) × 100
∣∣ will also be briefly dis-

cussed (with full results in the Online Appendix). Here, SEϑ is the average analytic standard
error for the generic parameter ϑ , and SDϑ is its empirical repeated sampling standard devia-
tion.
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Table 4.
Simulation results: percent absolute relative bias (%ARB) for multinomial coefficient structural parameters and threshold
measurement parameters in the missingness process (available only when MNAR-PP LTA is fit).

Parameter MNAR missingness mechanism MAR missingness mechanism

Fit MNAR-PP LTA Fit MNAR-PP LTA

Pop. value Avg. Est. %ARB Pop. value Avg. Est. %ARB

αq2=1 −4.00 −4.083 2.07 −1.08 −1.078 0.19
αq3=1 −3.25 −3.349 3.04 −0.47 −0.473 0.66
βq2=1|cy1=1 2.75 2.792 1.52 0 0.003 *

βq2=1|cy1=2 2.00 2.038 1.90 0 0.005 *

βq2=1|cy2=1 2.50 2.553 2.12 0 −0.019 *

βq2=1|cy2=2 2.00 2.036 1.80 0 −0.032 *

βq3=1|cm2 =1 0.50 0.513 2.54 0.50 0.508 1.54

βq3=1|cy2 =1 2.75 2.782 1.17 0 0.003 *

βq3=1|cy2 =2 1.75 1.767 0.99 0 0.002 *

βq3=1|cy3 =1 2.75 2.836 3.11 0 0.000 *

βq3=1|cy3 =2 1.75 1.827 4.41 0 −0.022 *

vm1t |qt=1 −0.76 −0.760 0.01 −0.76 −0.761 0.16
vm2t |qt=1 −0.46 −0.458 0.48 −0.46 −0.457 0.59
vm3t |qt=1 −0.92 −0.921 0.05 −0.92 −0.920 0.01
vm4t |qt=1 −0.60 −0.600 0.08 −0.60 −0.599 0.17
vm5t |qt=1 −0.65 −0.651 0.15 −0.65 −0.653 0.42
vm1t |qt=2 1.62 1.622 0.12 1.62 1.623 0.17
vm2t |qt=2 2.25 2.250 0.01 2.25 2.251 0.06
vm3t |qt=2 1.77 1.773 0.18 1.77 1.770 0.02
vm4t |qt=2 2.50 2.501 0.06 2.50 2.504 0.17
vm5t |qt=2 2.00 2.004 0.19 2.00 2.004 0.18

* Cannot calculate %ARB for this cell because the population parameter is 0 and we cannot divide by 0.
MNAR-PP LTA missing-not-at-random parallel-process LTA, Pop. value population parameter value, MAR
missing-at-random, Avg. Est. average estimate.

4.2. Results

Average estimates for multinomial coefficients and thresholds are given in Tables 2, 3, 4. They
were converted into probabilities provided in supplementary material (Online Appendix Tables
OA.3-OA.6). For instance, in the outcome process, multinomial coefficient results from Table 2
were used to compute the probabilities τk2|k1, τk3|k2 , πk1 , πk2 , and πk3 given in Online Appendix
Table OA.3. In the missingness process, many different probabilities can be constructed from
multinomial coefficient estimates in Table 4, depending on the substantive interest of the researcher
(see Sects 3.3, 3.4). Online Appendix Table OA.5 provides a subset of these probabilities: τq2|k1,k2

and τq3|k2,k3,q2 .
More than 99 % of samples converged without estimation problems. The result of main

interest was %ARB for the multinomial coefficient structural parameters in the conventional LTA
that pertain to timepoints ≥2 (since there was no missingness at t = 1 and thus little to no
possibility for MNAR missingness to bias ωk1).

When the missingness mechanism is latent-state-dependent MNAR for missingness starting
at t = 2, Table 2 shows that simply fitting a conventional LTA yields an average of 15 % ARB
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for structural parameters of the outcome process pertaining to timepoints ≥ 2; however, fitting
a MNAR-PP LTA reduces this bias to <1 % on average. As expected, measurement parameters
in the outcome process had less bias than structural parameters when fitting a conventional LTA
under this latent-state-dependent MNAR—on average, 6 % ARB in Table 3. This bias was again
reduced by fitting a MNAR-PP LTA (to 1 % ARB on average in Table 3).

When the missingness mechanism is actually MAR, for missingness starting at t = 2,
mistakenly /unnecessarily fitting a MNAR-PP LTA resulted in equivalent parameter recovery
to fitting a conventional LTA. Under MAR, both the fitted MNAR-PP LTA and conventional LTA
yielded on average <1 % ARB for structural parameters, in Table 2, and measurement parameters,
in Table 3.

Furthermore, Table 4 shows accurate recovery of missingness process parameters when fitting
a MNAR-PP LTA. When missingness was MNAR, fitting the MNAR-PP LTA yielded average
%ARB of 2 % for structural parameters of the missingness process and <1 % for measurement
parameters of the missingness process. When missingness was MAR, multinomial slopes relating
missingness and outcome processes were correctly estimated to be near-zero in the fitted MNAR-
PP LTA (see Table 4).

Though not the focus of the simulation demonstration, for each estimated parameter, the
average analytic standard error, empirical standard deviation, and standard error bias are provided
in Online Appendix Tables OA.7, OA.8, and OA.9. Coverage of nominal 95 % interval estimates
is provided in Online Appendix Tables OA.10, OA.11, and OA.12. Recall that the conventional
LTA and MNAR-PP LTA both retain all available cases; thus, neither suffers from efficiency loss
that would be expected due to listwise deletion. Standard error bias was similar across cells of the
design–regardless of generating and fitted models. For measurement parameters of the outcome
or missingness process %ARB for standard errors ranged from 3 to 4 %. For structural parameters
of the outcome or missingness process, %ARB for standard errors ranged from 2 to 4 %.

4.3. Summary of Simulation Results

This simulation demonstration illustrated two points. (1) Latent-state-dependent MNAR
missingness can induce an increase in bias for a conventional LTA, mainly in structural parame-
ters, and this increase in bias can be averted by fitting a MNAR-PP LTA. (2) When missingness
is truly MAR, mistakenly/unnecessarily fitting a MNAR-PP LTA can still allow LTA parameters
to be recovered as well as in the conventional LTA, on average. That is, under MAR missingness,
there was little change in outcome process parameter estimates between fitting a conventional
LTA versus MNAR-PP LTA. This simulation suggests that if a researcher substantively suspects
missingness to be dependent on time t or t − 1 outcome states, a sensitivity analysis comparing
estimates from a MNAR-PP LTA and a conventional (MAR) LTA model could be helpful.

Regarding generalizability, when fitting a conventional (MAR) LTA to the MNAR-PP LTA
generated data, parameter bias would have been larger if, for instance, latent missingness states
were more separated and/or latent outcome and missingness states were more highly related.
Latent missingness states are more separated when there are greater differences in the probability
of missingness for item j, ρmjt |qt , across latent missingness states at time t .

4.4. Extensions

The focus of this simulation demonstration was on the two points mentioned in the above
summary section. This subsection briefly considers four extension topics to the simulation demon-
stration: the selection of K and Q; the implications of misspecifying Q; the implications of fitting
the MNAR-PP LTA when missingness state at time t depends on outcome state only at time t (not
at time t − 1); and an alternate N .
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First we consider the selection of K and Q. A two-step model-building approach is commonly
used in constructing parallel-process longitudinal mixtures in other contexts (e.g., Bray, Lanza,
& Collins, 2010; Flaherty, 2008; Jackson, Sher, & Schulenberg, 2005; Nagin, 2005; Nagin &
Tremblay, 2001; Sterba, 2013; Witkiewitz & Villarroel, 2009). In this two-step strategy, first, the
number of latent states is selected in each process separately and, next, the best-fitting single-
process models are combined into a final parallel-process model. Under the latent-state-dependent
MNAR mechanism considered here, departures from MAR arise at the structural level, not at the
measurement (i.e., within-state submodel) level. This fact could aid the performance of such two-
step model-building strategies for the MNAR-PP LTA. Here we empirically examine recovery of
correct K and Q when the best-fitting K and best-fitting Q are separately determined using single-
process models. For this examination, we use data from the earlier simulation demonstration
generated from a K = 3 Q = 2 MNAR-PP LTA. The best-fitting K and Q were separately
determined from single-process models using a within-sample ranking of BIC and AIC (Akaike,
1974) (lower is better). K = 2, 3, and 4 and Q = 1, 2, 3, and 4 were considered.2 Among the
≥ 495 samples that converged across all numbers of states, BIC preferred K = 3 and Q = 2
in ≥99 % of samples whereas AIC preferred K = 3 in 82 % of samples and Q = 2 in 76 %
of samples (in remaining samples, AIC preferred K = 4 and Q = 3). In sum, the two-stage
model-building approach shows promise for constructing MNAR-PP LTAs.

Second, we consider the implications of misspecifying the number of latent missingness states
(Q) for recovering outcome process parameters. In the context of the simulation demonstration
provided earlier, underspecifying Q (i.e., Q = 1) should provide results similar to assuming MAR.
(Multinomial coefficients relating outcome and missingness processes cannot be estimated when
Q = 1). Thus, underspecifying Q could interfere with recovering outcome process parameters.
On the other hand, overspecifying Q would not necessarily interfere with recovering outcome
process parameters because the overspecified Q, if estimable, could still approximate the dominant
patterns of latent missingness state differences. We fit a misspecified K = 3, Q = 3 MNAR-PP
LTA to data generated from the K = 3, Q = 2 MNAR-PP LTA from the original demonstration.
For structural and measurement parameters of the outcome process, %ARB is provided in Tables 5
and 6 (left columns), and is computed using samples that converged without estimation errors
(77 %). Average %ARB for structural and measurement parameters (1 %) was comparable to
simulation results presented earlier.

Next, we consider consequences of fitting the MNAR-PP LTA under another misspecification
of the missingness mechanism. Specifically, suppose that missingness state at time t depends
on outcome state at time t but does not depend on outcome state at t − 1—even though such
dependency is allowed by the MNAR-PP LTA. Tables 5 and 6 (right-side columns) provide results
from fitting our K = 3, Q = 2 MNAR-PP LTA when, in actuality, missingness state at time t
does not depend on outcome state at time t − 1. %ARB was comparable to the earlier presented
simulation results (on average 1 %ARB) because here the true model is a more restrictive version
of the MNAR-PP LTA being fit. βq2=1|cy1=1, βq2=1|cy1=2, βq3=1|cy2=1, and βq3=1|cy2=2 paths were
estimated at near-zero values (on average, .008, .011, −.009, and .022, respectively). In sum,
the MNAR-PP LTA displays some robustness when the specified missingness submodel is more
general than the latent-state-dependent mechanism which generated the missingness.

Finally, we consider an alternative number of cases, N = 1,000, that is also commonly used
in LTA applications (e.g., recently Lee & Vondracek, 2014; Meier et al., 2013; Soto-Ramirez
et al., 2013; Williford et al., 2014). We kept the same generating parameters and missingness
proportions as in the original simulation. Results relevant to the two demonstration points of
our original simulation are tabled in the Online Appendix (Tables OA.1 and OA.2). We found

2 The Q = 1 state model necessarily has a different structure; it simply consists of estimating a set of missingness
indicator thresholds for that single class.
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Table 5.
Simulation extension under two alternative misspecifications of the missingness process: percent absolute relative bias
(%ARB) for multinomial coefficient structural parameters in the outcome process.

Parameter Pop. value MNAR missingness mechanism

Fit MNAR-PP LTA Fit MNAR-PP LTA

Misspecification: in population,
Q = 3

Misspecification: in population,
qt does not depend on kt−1

Avg. Est. %ARB Avg. Est. %ARB

ωk1=1 −1.2 −1.200 0.03 −1.196 0.30
ωk1=2 −0.9 −0.881 2.11 −0.888 1.36

αk2=1 −1.2 −1.205 0.45 −1.200 0.02
αk2=2 −0.9 −0.900 0.05 −0.905 0.57
αk3=1 −1.2 −1.203 0.27 −1.202 0.17
αk3=2 −0.9 −0.897 0.28 −0.905 0.57
βk2=1|cy1=1 2.0 2.018 0.92 2.015 0.73

βk2=1|cy1=2 1.0 1.001 0.14 1.002 0.17

βk2=2|cy1=1 1.0 0.989 1.14 0.986 1.37

βk2=2|cy1=2 1.5 1.531 2.08 1.526 1.73

βk3=1|cy2=1 1.75 1.767 0.94 1.763 0.71

βk3=1|cy2=2 1.0 0.988 1.18 1.011 1.12

βk3=2|cy2 =1 1.0 0.958 4.17 1.010 1.04

βk3=2|cy2 =2 1.5 1.525 1.65 1.523 1.56

LTA latent transition analysis, MNAR-PP LTA missing-not-at-random parallel-process LTA, Pop. value pop-
ulation parameter value, MAR missing-at-random, Avg. Est. average estimate.

a similar overall pattern of results to the original simulation, as follows. Regarding point (1),
when missingness was MNAR, fitting a conventional LTA instead of a MNAR-PP LTA again,
on average, entailed larger %ARB (3 times larger) for structural parameters of the outcome
process and also larger %ARB for measurement parameters, on average. Regarding point (2),
when missingness was MAR, structural and measurement parameters of the outcome process
again had approximately the same amount of bias, on average, when fitting the conventional LTA
versus MNAR-PP LTA. A difference compared to the original simulation demonstration was that
more samples encountered estimation problems (such as singularity of the information matrix),
and this was the case regardless of which model was fit (conventional LTA or MNAR-PP LTA).
Samples generated with MAR missingness, rather than MNAR missingness, encountered fewer
estimation problems. As with other kinds of MAR and joint MNAR models, a general point is that
different combinations of rates of missingness, missingness mechanism parameters, and overall
N could impact the chance of incurring estimation problems, even for a properly specified model.

5. Empirical Application

An empirical example is employed to illustrate the implementation and interpretation of the
MNAR-PP LTA. In Sect. 5.1, we begin by describing substantive background for our research
questions. Although our research questions can be addressed with a conventional LTA, we motivate
the need for a sensitivity analysis comparing the conventional LTA and MNAR-PP LTA results
due to a suspected latent-state-dependent MNAR missingness mechanism. In sensitivity analyses
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Table 6.
Simulation extension under two alternative misspecifications of the missingness process: percent absolute relative bias
(%ARB) for threshold measurement parameters in outcome process.

Parameter Pop. value MNAR Missingness mechanism

Fit MNAR-PP LTA Fit MNAR-PP LTA

Misspecification: In population,
Q = 3

Misspecification: In population,
qt does not depend on kt−1

Avg. Est. %ARB Avg. Est. %ARB

vy1t |kt=1 −0.90 −0.907 0.74 −0.902 0.27
vy2t |kt=1 −1.69 −1.716 1.54 −1.700 0.58
vy3t |kt=1 −2.20 −2.216 0.71 −2.209 0.42
vy4t |kt=1 −1.25 −1.245 0.41 −1.243 0.53
vy5t |kt=1 −1.48 −1.491 0.74 −1.484 0.25
vy1t |kt=2 0.32 0.332 3.60 0.328 2.34
vy2t |kt=2 0.95 0.960 1.06 0.960 1.00
vy3t |kt=2 −0.20 −0.191 4.27 −0.189 5.70
vy4t |kt=2 0.15 0.152 1.35 0.150 0.27
vy5t |kt=2 0.55 0.559 1.55 0.562 2.11
vy1t |kt=3 2.10 2.106 0.31 2.109 0.45
vy2t |kt=3 2.67 2.678 0.28 2.679 0.35
vy3t |kt=3 1.80 1.809 0.52 1.806 0.34
vy4t |kt=3 2.55 2.566 0.63 2.568 0.71
vy5t |kt=3 2.30 2.303 0.12 2.300 0.01

LTA latent transition analysis, MNAR-PP LTA missing-not-at-random parallel-process LTA, Pop. value pop-
ulation parameter value, MAR missing-at-random, Avg. Est. average estimate.

comparing outcome process parameter estimates between a MAR versus joint MNAR model,
little or no change is often viewed as consistent with a MAR mechanism (e.g., Feldman & Rabe-
Hesketh, 2012; Verbeke et al., 2001; Xu & Blozis, 2011). But, since we can never completely
rule out MNAR when analyzing empirical data, it is most conservative to view estimates with
little change simply as robust to perturbation of the missingness assumptions. Greater change
in outcome process parameter estimates between a MAR versus joint MNAR model may be
due to the missingness mechanism being MNAR (as was the case in Sect. 4 simulation) but
could possibly arise for other reasons when using empirical data (e.g., model misspecifications
or influential case(s); Molenberghs & Verbeke, 2005).

5.1. Background and Research Questions

Conduct problems have been conceptualized as a stage-sequential latent construct wherein
adolescents can progress to more severe or multi-domain delinquency through different sequences
—for instance, sequences starting with authority resistance/drug use behaviors versus starting with
property damage/shoplifting behaviors versus starting with bullying/fighting behaviors (see, e.g.,
Hinshaw, Lahey, & Hart, 1993; Lahey & Loeber, 1994; Loeber, Keenan, & Zhang, 1997; Moffitt
et al., 2008). Other adolescents may stay in a stable state (or remit) instead of progressing to more
severe behaviors. In this empirical example, interest lies in using LTA to investigate developmental
stage-sequential change in a latent ‘conduct problems’ construct for late adolescents leaving the
foster care system. Late adolescents emerging from the foster care system are at heightened
risk of conduct problems (McMillen et al., 2005). However, little is known about the conduct
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problem symptom profiles exhibited by adolescents in foster care. Also, little is known about the
proportion of adolescents from foster care who progress into more serious states as they enter
young adulthood, or regress into less serious states. These research topics can be investigated with
LTA.

5.2. Sample and Outcome Variables

Our empirical example analysis dataset consists of N = 730 late adolescents (age 18–19)
who had participated in foster care in the Midwestern United States (see Courtney & Cusick,
2007 for further details). Starting in 2002, these late adolescents were interviewed about their
delinquent behavior every two years, for 3 occasions. The conduct problems latent construct is
here measured by J = 8 binary indicators: deliberate property damage, petty theft, selling drugs,
hurting someone enough to require medical care, breaking and entering, group fighting, stealing
>$50, and pulling a gun or knife on someone.

5.3. Missing Data

Only 396 of the 730 cases had complete data for all three timepoints. 93 cases dropped out on
all J items at t = 2. Also, 123 cases dropped out on all J items at t = 3; 58 cases had missingness
on some—but not all—of the J items at a given timepoint; and 60 cases had intermittent missing
data for all J items at t = 2. Substantively, latent-state-dependent nonignorable missingness was
considered plausible for the following reasons. Persons in an elevated conduct problems latent
state may be more likely to skip the interview or even drop out. Also, persons in a latent state
displaying some illegal behavior (e.g., selling drugs) may be more likely to provide a pattern of
intermittent item-specific missingness for sensitive questions related to the illegal behavior, due
to social desirability concerns or fear of reprisal (Groves et al., 2002). To explore the impact of
accounting for potential latent-state-dependent missingness, a sensitivity analysis was performed
comparing estimates from a conventional LTA versus MNAR-PP LTA.

5.4. Analysis Plan

Our model-building approach for the MNAR-PP LTA was to, first, select the number of
latent states using separate single-process models for the outcome process and missingness
process. An alternative approach would be to specify a full parallel-process model and select
K and Q simultaneously (but see Nagin & Tremblay, 2001, p. 26 for practical drawbacks of
this alternative). Configural invariance was imposed for latent states over time in both processes
(as in Collins & Lanza, 2010). Second, we tested for measurement invariance in each single-
process model. Third, we combined the best-fitting single-process K -state outcome model and
Q-state missingness model into a final parallel-process MNAR-PP LTA. BIC was used for model
comparisons (following, e.g., Nagin, 2005). Mplus 7.11 was employed for model fitting, using
the EM algorithm. Multiple sets of random starts were used to decrease the possibility of local
solutions. Mplus syntax for the MNAR-PP LTA is provided in the Online Appendix.

5.5. Results and Sensitivity Analysis

For the T = 3 outcome process, K = 4 latent (‘conduct problem’) outcome states (BIC
= 10166.8) were selected as better fitting compared to K = 2 (BIC = 10470.3), K = 3 (BIC
= 10269.8), and K =5 (BIC =10224.4). Furthermore, for K = 4, measurement invariance was
imposed because it led to better fit (BIC =10166.8, from above) than when allowing for mea-
surement non-invariance (BIC =10340.1). For the missingness process (at timepoints 2 and 3),
Q = 2 latent missingness states (BIC = 2563.1) and Q = 3 (BIC = 2563.5) fit nearly equally
well, and much better than Q = 4 (BIC = 2630.2). Since the Q = 2 and Q = 3 BICs were
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Figure 3.
Empirical example measurement parameter results (for both MNAR-PP LTA and LTA): plot of conduct outcome item
endorsement probabilities per state at time t . Notes Measurement invariance was imposed, so this plot would look the
same at t = 1, 2, 3. The marginal probability of membership in each state at at time t is given in Table 8 for both the
MNAR-PP LTA and LTA.

essentially undifferentiable according to Raftery’s (1995) criteria (see also Sterba & Pek, 2012),
AIC was consulted to see if these two models could be discriminated based on generalizability;
AIC strongly preferred Q = 3 (AIC = 2416.567) to Q = 2 (AIC = 2475.8). Q = 3 was selected.
Furthermore, for Q = 3, measurement invariance was imposed because it led to better fit (BIC =
2563.5, from above) than when allowing for measurement non-invariance (BIC = 2670.0).

The K = 4, Q = 3 MNAR-PP LTA was constructed by combining the best-fitting outcome
and missingness process models described above. First, we describe the measurement parameter
results from the MNAR-PP LTA. Next, we describe the structural parameter results from the
MNAR-PP LTA. Finally, we compare these results to the conventional LTA. For ease of interpre-
tation, results are reported after converting thresholds and multinomial coefficient estimates into
item probabilities and latent state/transition probabilities, using formulas presented earlier.

5.5.1. Defining Latent Outcome States in the Conventional LTA versus MNAR-PP LTA
The conduct item endorsement probabilities for the conventional LTA were virtually identical
to the MNAR-PP LTA (differing by an average of < .01 [range: 0-.025]); this consistency is
expected under a latent-state-dependent MNAR mechanism, which mainly can affect structural
parameters. Thus, only one plot of conduct item endorsement probabilities per outcome latent
state at time t is provided for both models, in Fig. 3. In Fig. 3, State 4 (labeled “multi”) has
high endorsement probabilities for all conduct items. State 3 (labeled “low”) is nondelinquent.
State 2 (labeled “theft”) had high endorsement probability for theft. State 1 (labeled “fight”)
had high endorsement probabilities for fighting and hurting others. Hence, States 1 and 2 each
manifest single-domain delinquency (theft versus fight) whereas State 4 manifests multi-domain
delinquency.

5.5.2. Defining Latent Missingness States for MNAR-PP LTA Missingness latent State 3
(here, labeled "drug") had an elevated item-specific missingness probability, .40, for one sensitive
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Table 7.
Empirical example sensitivity analysis results. Missingness process structural parameter probabilities from the MNAR-PP
LTA.

Element probability MNAR-PP LTA

πq2

Miss Present Drug[ ]
.22 .75 .03

πq3

Miss Present Drug[ ]
.31 .66 .03

τq3|q2

Miss Present Drug
[ ]Miss .59 .38 .03

Present .22 .75 .03
Drug .54 .46 .00

τq2|k2

Miss Present Drug
⎡

⎢⎣

⎤

⎥⎦

Fight .35 .57 .08
Theft .21 .75 .04
Low .11 .89 .00
Multi .59 .41 .00

τq3|k3

Miss Present Drug
⎡

⎢⎣

⎤

⎥⎦

Fight .47 .41 .13
Theft .67 .30 .02
Low .17 .82 .01
Multi .20 .80 .00

MNAR-PP LTA missing-not-at-random parallel-process latent transition analysis, Miss, present, and drug
are names given to latent missingness states in the text. Fight, theft, low, and multi are names given to latent
outcome states in the text.

item (drug dealing), but lower missingness probabilities for all other items (.04–.20). Persons
in this state may be involved with drugs at time t but are hesitant to report this due to social
desirability concerns or fear of criminal prosecution. Missingness State 2 (here labeled “present”)
had ≤.01 missingness probability for all J items and State 3 (here labeled “miss”) had >.99
missingness probability on all J items.

5.5.3. Structural Parameters of the Missingness Process for MNAR-PP LTA Table 7 pro-
vides latent state and transition probabilities for the missingness process of the MNAR-PP LTA.
Table 7 marginal probabilities (πq2 and πq3 ) show that, from times 2 to 3, the marginal probability
increases for the miss state (.22 to .31), decreases for the present state (.75 to .66), and remains
stable for the social-desirability drug state. Table 7 transition probabilities τq3|q2 show that there
is greatest stability in membership in the present state (those present at time 2 have .75 probability
of being present at time 3), whereas the social-desirability drug state is least stable.

To conserve space, Table 7 does not list all conditional probabilities relating missingness and
outcome processes from Eq. (6). Instead, we show τq2|k2 and τq3|k3 (calculated using formulas in
Table 1, row 3) and give some examples of how these change when also conditioning on other
latent states. Table 7 shows that persons in the low conduct problems state at time t have the
highest probability of being in the present state at time t : .89 at time 2 (τq2=2|k2=3) and .82 at
time 3 (τq3=2|k3=3). The latter probability would increase from .82 to .86 for those who were in
the low conduct state at both times 2 and 3 and the present state at time 2 (τq3=2|k2=3,k3=3,q2=2).
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Table 8.
Empirical example sensitivity analysis results. Outcome process structural parameter probabilities: LTA versus MNAR-PP
LTA.

Element
probability

Conventional LTA MNAR-PP LTA

πk1

Fight Theft Low Multi
[ ].37 .24 .29 .10

Fight Theft Low Multi
[ ].35 .26 .29 .10

πk2

Fight Theft Low Multi
[ ].24 .11 .61 .03

Fight Theft Low Multi
[ ].28 .12 .54 .06

πk3

Fight Theft Low Multi
[ ].11 .09 .77 .02

Fight Theft Low Multi
[ ].14 .19 .65 .02

τk2|k1

Fight Theft Low Multi
⎡

⎢⎣

⎤

⎥⎦

Fight .53 .01 .44 .02
Theft .00 .35 .64 .01
Low .00 .01 .98 .01
Multi .48 .22 .09 .22

Fight Theft Low Multi
⎡

⎢⎣

⎤

⎥⎦

Fight .62 .02 .35 .01
Theft .00 .33 .52 .14
Low .00 .03 .97 .00
Multi .59 .18 .06 .18

τk3|k2

Fight Theft Low Multi
⎡

⎢⎣

⎤

⎥⎦

Fight .45 .01 .51 .03
Theft .00 .44 .48 .08
Low .00 .04 .97 .00
Multi .16 .52 .14 .18

Fight Theft Low Multi
⎡

⎢⎣

⎤

⎥⎦

Fight .49 .04 .45 .02
Theft .00 .58 .36 .06
Low .00 .12 .88 .00
Multi .13 .80 .00 .07

When a probability differs by ≥.10 across models, both values are bolded.
LTA latent transition analysis, MNAR-PP LTA missing-not-at-random parallel-process LTA. Fight, theft, low,
and multi are names given to latent outcome states in the text.

In contrast, persons in each delinquent conduct state (multi,theft, or fight) at time t have elevated
probabilities of being in the miss missingness state at time t . For instance, members of the multi
conduct state at time 2 have a .59 probability of being in the miss state at time 2—compared with
.11 for those in the low conduct state. Similarly, members of the theft conduct state at time 3
have a .67 probability of being in the miss state at time 3—compared with .27 for those in the
low conduct state. This probability of being in miss at t = 3 would, for instance, increase from
.67 to .84 for those who were in the theft state at both t = 3 and t = 2 and in the miss state at
t = 2. Finally, those in the fight outcome state consistently have the highest probability of being
in the drug missingness state. In sum, Table 7 suggests an overall pattern where membership
in latent conduct states evidencing delinquent behavior is associated with membership in latent
missingness states that have higher probabilities of nonresponse for all or some items. Next we
investigate the impact that allowing for these associations across missingness and outcome states
has on the structural parameters of substantive interest, in the outcome process.

5.5.4. Structural Parameters of the Outcome Process for Conventional LTA versus MNAR-
PP LTA Table 8 juxtaposes latent outcome state probabilities from the Conventional LTA (left
column) versus MNAR-PP LTA (right column). For ease of visualization, when a probability
differs by ≥ .10 across models, both values are bolded in Table 8.

Regarding marginal probabilities, the time 1 latent conduct state probabilities (πk1) are very
similar across models in Table 8, reflecting the lack of missing data at time 1. At times 2 and 3,
both models agree that the low state is most prevalent, followed by fight, theft, and then multi.
However, at times 2 and 3, MNAR-PP LTA usually implies higher marginal probabilities (πk2 , πk3)
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for delinquent conduct states (particularly theft), whereas the conventional LTA implies a higher
probability for the low conduct state.

Regarding transition probabilities (τk2|k1 and τk3|k2 ) in Table 8, both models agree that the
vast majority of persons starting in the low conduct state stay in the low conduct state. However,
compared to the conventional LTA, the MNAR-PP LTA implies a lower probability of transferring
from any delinquent state into the low state. Instead, the MNAR-PP LTA implies more persons
transfer frommulti to fight from t = 1 to 2 and more persons transfer frommulti to theft from t = 2
to 3; the MNAR-PP LTA also implies more stability from t = 2 to 3 in theft state membership.

5.5.5. Summary of Sensitivity Analysis Results In sum, the above analysis suggests that
current and previous membership in delinquent states (fight, theft, ormulti) is associated with
membership in missingness states with higher nonresponse probabilities for some/all items (miss,
drug). To summarize answers to our substantive research questions, conduct problems in foster
care adolescents could be characterized by two single-domain delinquency states (fight andtheft),
one multi-domain delinquency state (multi), and a nondelinquent state (low). If foster care youth
are in the low state in late adolescence, their conduct is unlikely to worsen through early adulthood.
It is more common for adolescents exhibiting single-domain delinquency (theft or fight) to progress
tomulti-domain delinquency or regress to low across early adulthood, but rare for foster care youth
to improve from multi-domain to low conduct problems states across a 2-year span. Some key
LTA results were robust to varying the missingness assumptions between MAR (a conventional
LTA) versus latent-state-dependent MNAR (a MNAR-PP LTA), but other results were sensitive.
In particular, the definition of fight, theft, multi, and low latent outcome states in Fig. 3, the rank
order of latent outcome state prevalences at time t , and the stability of low state membership over
time for those starting in low were robust. However, the prevalence of the theft state and the rate
of transition into and out of the theft state were particularly sensitive to missingness assumptions.
Overall, due to the extent and nature of missing data, we are less sure about the developmental
course of theft for foster care participants, as compared to other domains of delinquent behavior.

6. Discussion

When missingness is nonrandom (MNAR), exclusively modeling the outcome-generating
mechanism risks parameter bias. Joint models can be used to represent the dependency between
the outcome-generating process and missingness mechanism. In the psychology literature, there
has been increasing application of joint MNAR models where the outcome-generating mech-
anism is specified as a growth trajectory model (including multilevel growth, growth mixture,
or groups-based trajectory models; Enders, 2011; Feldman & Rabe-Hesketh, 2012; Hedeker &
Gibbons, 1997; Lu et al., 2011; Muthén et al., 2011). However, another popular longitudinal out-
come model used by psychologists—LTA—has not been extended into a joint MNAR model for
accommodating intermittent missingness and dropout. This is an important gap because LTA is
often used to model stage-sequential change in sensitive, antisocial, delinquent, and victimization
constructs (e.g., Bair-Merritt et al., 2012; Cleveland et al., 2012; Cochran et al., 2013; Hopfer et
al., 2013; Lanza & Collins, 2008; Mackesy-Amiti et al., 2014; Williford et al., 2014) which may
present a greater risk of MNAR missingness (Groves et al., 2002; Little et al., 2012).

In this Case Study, we presented a parallel-process MNAR model for LTA (MNAR-PP LTA)
in which missingness indicators at time t define latent missingness states at time t and these latent
missingness states at time t are allowed to depend on latent outcome states at times t and t −1 (as
well as on missingness state at t−1). The MNAR-PP LTA is a kind of shared parameter joint MNAR
model since mi t and yi t are conditionally independent given current and previous latent outcome
states. We used an empirical investigation of stage-sequential change in conduct problems among
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foster care adolescents to illustrate the utility of the MNAR-PP LTA. In this empirical example
(Sect. 5), previous and current membership in high conduct problem states (theft, fight, multi)
predicted membership in missingness states having high nonresponse probabilities for all/some
items (miss, drug). This finding is consistent with sensitivity analyses results from other studies
where participants currently and previously experiencing greater psychiatric problems and/or
disability were more likely to have missing responses (e.g., Beunckens, Molenberghs, Thijs, &
Verbeke, 2007; Haviland et al., 2011; Kurland & Heagerty, 2004; Muthén et al., 2011; Roy, 2003).
This finding could be used to improve study design; for instance, psychologists may want to tailor
retention efforts to adolescents who are at greatest risk of conduct problems.

After accounting for these latent state dependencies between outcome and missingness
processes using a MNAR-PP LTA, we compared results to a conventional LTA. The MNAR-
PP LTA implied higher marginal probabilities for delinquent conduct states at times 2 and 3 and
lower transition probabilities from these delinquent conduct states into the low problems state.
Hence, our sensitivity analysis revealed that the conventional LTA may overestimate the propor-
tion of foster care youth who end up in a low conduct problems state. Importantly, overestimating
how many adolescents desist from delinquent behaviors could lead policymakers to allocate fewer
therapeutic resources to support the well-being of adolescents as they transition out of state care
and into adulthood.

Five strengths of the MNAR-PP LTA are summarized here. (1) The MNAR-PP LTA allows
LTA parameters for the outcome process (θy) to be interpreted as in the conventional LTA, which
facilitates using a sensitivity analysis to assess how their estimates change between conventional
LTA versus MNAR-PP LTA. (2) The MNAR-PP LTA flexibly accommodates a realistic com-
bination of intermittent missingness and/or dropout, some of which may occur for all J items
or for just item j . (3) Although the MNAR-PP LTA, like other MNAR models, embodies only
one possible MNAR mechanism out of many, it accommodates a substantively plausible MNAR
mechanism for stage-sequential outcome processes: latent-state-dependent nonignorable miss-
ingness. As demonstrated in the Sect. 4 simulation, fitting a conventional LTA in the presence
of latent-state-dependent nonignorable missingness biases primarily structural parameters of the
LTA, and this bias can be reduced by applying MNAR-PP LTA. (4) When missingness is truly
MAR (unbeknownst to the researcher) mistakenly/unnecessarily fitting a MNAR-PP LTA may
have little downside; the Sect. 4 simulation demonstrated that under this circumstance, MNAR-
PP LTA can recover LTA parameters as well as does the conventional LTA, on average. (5)
The MNAR-PP LTA can be implemented in available commercial software (see Online Appendix
syntax).

6.1. Conceptualizing the MNAR-PP LTA within a sensitivity analysis framework

Other joint MNAR models share the MNAR-PP LTA’s ability to recover outcome process
parameter estimates—when MAR missingness holds—and also reduce bias—when their stipu-
lated MNAR missingness mechanism holds (e.g., National Research Council, 2010; Gottfredson,
Bauer, & Baldwin, 2014; Yang & Maxwell, 2014; Zhang & Wang, 2012). Nevertheless, the pre-
vailing recommendation in the missing data literature is not that one should fit a joint MNAR
model by default, without ever fitting a MAR model. Instead, joint MNAR models are recom-
mended for use in comparison with MAR models, in the context of sensitivity analyses (e.g.,
Beunckens et al., 2007; Enders, 2011; Feldman & Rabe-Hesketh, 2012; Molenberghs & Ken-
ward, 2007; Little & Rubin, 1999; Lu et al., 2011; Mallinckrodt et al., 2003; Muthén et al., 2011;
National Research Council, 2010; Roy, 2003; Roznitsky et al., 1998; Schafer & Graham, 2002;
Verbeke et al., 2001; Xu & Blozis, 2011).

One reason for this recommendation is as follows. If missingness is nonignorable, fitting a
seriously misspecified joint MNAR model may (e.g., Gottfredson et al., 2014; Yang & Maxwell,
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Figure 4.
An alternative MNAR specification: missing-not-at-random single-process latent transition analysis (MNAR-SP LTA)
model. Shown where missingness starts at time 1. See Sect. 6.2 for limitations of this MNAR-SP LTA relative to the
MNAR-PP LTA from Fig. 2 Panel B. Notes In this path diagram, T = 3, J = 4, and K = Q. SP single process, PP
parallel process.

2014) but is not guaranteed to (e.g., Minini & Chavance, 2003; Yang & Maxwell, 2014) provide
better estimates than fitting a MAR model. As summarized by Molenberghs and Verbeke (2005,
p. 575) “A sensible compromise between blindly shifting to MNAR models or ignoring them
altogether is to make them a component of a sensitivity analysis. It is important to consider
the effect on key parameters….In many instances a sensitivity analysis can strengthen one’s
confidence in the MAR model”. Such sensitivity analyses typically consider the MAR model as
the “primary analysis” (Little et al., 2012, p. 1358) and use scientifically plausible joint MNAR
model results to form an “envelope of conclusions” (Carpenter, Pocock, & Lamm 2002, p. 1049)
around the MAR results. This approach was used in our empirical example.

6.2. Alternatives to the MNAR-PP LTA

As part of their own sensitivity analysis, researchers may be interested in fitting not one but
several LTA models that each allow for nonignorable missingness under alternative assumptions.
As discussed previously in Sect. 3.1, there are key limitations to specifying outcome-dependent
selection or random-coefficient-dependent joint MNAR models in the context of LTA. Instead, one
possibility is to investigate the sensitivity of outcome submodel parameter estimates to alternative
specifications of the missingness submodel in the MNAR-PP LTA. For instance, researchers could
specify a different choice of Q, as done in Sect. 4.4. Also, the MNAR-PP LTA specification in
Eqs. (6) and (11) could be extended to allow missingness state at time t to depend on latent
outcome states before t − 1 (e.g., t − 2), providing that there was a substantive rationale to do so.
Alternatively, the missingness process could be extended from first- to second-order Markov in
the MNAR-PP LTA (although this does sacrifice parsimony).

Another possibility is to consider a different shared parameter MNAR model which is actually
a special case of the MNAR-PP LTA. In this special case, mi t and yi t would depend on the exact
same latent states at time t—rather than mi t and yi t each depending on different latent states,
which are then associated at the structural level. A path diagram of this single-process model (here
termed MNAR-SP LTA) is provided in Fig. 4. When Qt = Kt, this special case would arise by
placing constraints τqt |kt−1,kt ,qt−1 = τqt |kt , and τqt |kt = 1 in the Eq. (11) MNAR-PP LTA, when
qt = kt . Researchers could compare results between MNAR-PP LTA and MNAR-SP LTA.

However, this special case MNAR-SP LTA has the following three disadvantages compared
with the MNAR-PP LTAs presented earlier. First, this special case model is more restrictive than
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the Eq. (11) MNAR-PP LTA in that it requires Qt = Kt , which may not always hold in practice.
(This requirement was, for instance, not met in the empirical example.) Second, when missingness
begins at t ≥ 2, the special case MNAR-SP LTA encounters conceptual difficulties that are not
encountered when using the Eq. (6) MNAR-PP LTA. Had missingness begun at time 2, this
MNAR-SP LTA would have a different set of indicators of state membership at time 1 (i.e., yi t )
versus after time 1 (i.e., yi t and mi t ). In turn, this would violate measurement invariance of latent
outcome states and complicate the substantive interpretation of latent transition probabilities. That
is, we would no longer be able to interpret large diagonal elements of the transition probability
matrix as indicating “stability” in state membership, since the states change in substantive meaning
over time (e.g., at time 1, state 1 would represent a particular pattern of outcome behaviors but,
at time 2, state 1 would represent a pattern of missingness and outcome behaviors). Third, even
if missingness begins at time 1, the MNAR-SP LTA does not allow outcome process parameters
to be interpreted in the same way as a conventional LTA. For instance, the conventional LTA
provides initial and transition probabilities for latent outcome states, which are the focus of
substantive interest. However, the MNAR-SP LTA provides these probabilities for latent states
representing a pattern of both outcomes and missingness.3 In contrast, the proposed MNAR-PP
LTA allows researchers to interpret outcome parameters in the same way as with the conventional
LTA. Because of these three disadvantages, this special case MNAR-SP LTA was not a focus of
the current article, but it could potentially be useful in particular substantive settings. Therefore,
we provide software syntax for one way to fit the MNAR-SP LTA in the Online Appendix.

Note that this special case MNAR-SP LTA has conceptual similarities to Haviland et al.
(2011). In a growth trajectory modeling framework, they allowed missingness indicators as well
as univariate repeated measure outcomes to depend on the exact same latent classes.

6.3. Future Directions and Limitations

Several potential extensions of this study and of the MNAR-PP LTA could serve as topics for
future research. First, the MNAR-PP LTA in Eqs. (6) and (11) could be extended to accommodate
ordinal rather than binary outcomes. Second, future simulation research could compare alternative
model-building strategies (e.g., picking K and Q in separate preliminary single-process models
versus simultaneously in a full MNAR-PP LTA). Third, future simulation research could assess
the performance of the MNAR-PP LTA under other conditions and model misspecifications.

As another extension, observed covariates can be added to the structural submodels of the
MNAR-PP LTA to predict previous or current outcome state membership and/or missingness
state membership. Observed covariates can also be added to the measurement submodels of the
MNAR-PP LTA to predict outcome indicators within outcome state and/or missingness indica-
tors within missingness state. These interesting possibilities for including covariates represent
a straightforward extension of the logistic parameterization of the MNAR-PP LTA presented
here. We simply need to add observed predictors (and accompanying slopes) to our multinomial
or binary logistic regression equations (e.g., see Eqs. 2, 3, 5, 7–9) which we had already been
using to calculate item, initial latent state, and latent transition probabilities. After doing so, these
probabilities for person i will be conditional also on person i ′s values on the observed covariates.

6.4. Conclusions

This article was motivated by an examination of stage-sequential change in a discrete latent
conduct problems construct, where a latent-state-dependent nonignorable missingness mechanism

3Suppose the MNAR-SP LTA results indicated that a particular state at time t evidenced a high probability of violent
behavior and a high probability of missingness. Persons might obtain a similarly high posterior probability of assignment
to that MNAR-SP LTA state simply by endorsing many aggressive items (even if they had no missingness), or by having
many missing responses (even if they endorsed no aggressive items). Yet, substantively, researchers would want to be able
to distinguish among such persons.
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was suspected. We developed a joint MNAR model (MNAR-PP LTA) for accommodating this
missingness mechanism, demonstrated aspects of its performance via simulation, and illustrated
its interpretation in a sensitivity analysis for our empirical example. We hope this study increases
psychologists’ understanding of how alternative missingness assumptions can impact conclusions
about stage-sequential latent change. We encourage further study and development of joint MNAR
models for LTA, given psychologists’ frequent application of LTA to assess change in illicit, risky,
and delinquent behaviors.
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