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Clinical psychology researchers studying adolescents and young adults long have been
interested in characterizing the latent categorical (classes=profiles) versus continuous
(factors) nature of p    sychological syndromes. To inform this debate, researchers some-
times compare the fit of finite mixture versus factor analysis models to symptom data.
This study explains and evaluates how missing data handling methods can impact results
of this important model fit comparison. Via simulation, we assess three missing data-
handling methods previously recommended to researchers fitting these models: multiple
imputation using a saturated multivariate normal imputation model, multiple impu-
tation using a hypothesized model, or full information maximum likelihood using the
EM algorithm (FIML-EM). Results show that, under certain conditions, the method
used to handle missing data can interfere with clinical psychologists’ ability to accurately
discriminate latent classes from continua. For instance, certain imputation methods
increase the chance of selecting latent continua when latent classes truly exist. FIML-EM
performed best overall. Recommendations for practice are discussed.

There have been long-standing debates regarding the
underlying categorical (profiles=classes) versus continu-
ous (dimensional) structure of many psychological syn-
dromes and behavioral constructs (see Sterba, 2014, for
review). Increasingly, statistical analyses have been used
to inform these debates (see Brown & Barlow, 2005;
Helzer, van den Brink, & Guth, 2006; Kraemer, Shrout,
& Rubio-Stipec, 2007; Krueger, Markon, Patrick, &
Iacono, 2005; Trull & Durrett, 2005; Widiger & Samuel,
2006). Specifically, researchers may compare the fit of
alternative discrete or continuous latent variable models
to data. Finding that a particular model is best fitting is
one piece of evidence consistent with that model repre-
senting the data-generating process, though it should
be considered in the context of power, potential model
misspecifications, and evidence of convergent and
discriminant validity (e.g., Bauer & Curran, 2004;
Lubke, 2012). Such studies, often on adolescents or

young adults, commonly pertain to externalizing
behavior (e.g., Clark et al., 2013; Krueger et al., 2008;
Walton, Ormel, & Krueger, 2011), substance use
(Gillespie, Neale, Legrand, Iacono, & McGue, 2011;
Muthén, 2006; Witkiewitz et al., 2013), attention-
deficit=hyperactivity problems (e.g., Hudziak et al.,
1998; Lubke et al., 2007), and borderline personality
(e.g., Conway, Hammen, & Brennan, 2012; Hallquist &
Pilkonis, 2012). This topic has received additional atten-
tion in the fifth edition of the Diagnostic and Statistical
Manual of Mental Disorders (DSM-V; American
Psychiatric Association, 2013).

In particular, an increasingly common model compari-
son is that between a finite mixture model (e.g., latent
profile=class model)—implying a categorical latent
syndrome—and a factor analysis model—implying a
dimensional latent syndrome (for reviews, see Lubke &
Neale, 2006, 2008; Markon & Krueger, 2006). In addition,
developmental psychopathology studies have extended
statistical comparisons of the categorical versus dimen-
sional nature of latent constructs to the longitudinal con-
text (e.g., Hirsh-Pasek & Burchinal, 2006). Such studies
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may compare latent class growth models—implying
discrete class-specific patterns of change—versus latent
factor growth models—implying continuous individual
differences in change in, say, early adolescent conduct
problems (Kreuter & Muthén, 2008) or substance use
(Feldman, Masyn, & Conger, 2009).

Several methodological aspects of such model
comparisons have been addressed (see Bauer & Curran,
2004), including how often a true (population-generating)
model for the symptoms is selected when it is one of those
being compared (e.g., Lubke, 2012; Lubke & Neale, 2006,
2008). One important aspect of such model comparisons
that has not been addressed is how they are affected by
the handling of missing data—despite the fact that miss-
ing data are ubiquitous in empirical research. This article
concerns the handling of missing data in studies where the
goal is to compare the dimensional versus categorical
nature of a latent syndrome or construct. More specifi-
cally, this article concerns missingness on outcomes
(ys); often, when selecting between the dimensional versus
categorical nature of a latent syndrome, predictors have
not been included in the model (Lubke & Muthén,
2007). Under missing-at-random (or missing-completely-
at-random) assumptions,1 two alternative procedures
have been recommended. One alternative is multiple
imputation (MI)—most commonly implemented using a
saturated multivariate normal (MVN) imputation model
(e.g., Barker et al., 2010; Biggs et al., 2010; Ingoldsby
et al., 2006; Jonkmann, Trautwein, & Ludke, 2009; Mis-
sall, Mercer, Martinez, & Casebeer, 2012; West, Hill,
Hewison, Knapp, & House, 2010).2 Another alternative
is full information maximum likelihood estimation
using the iterative expectation-maximization algorithm
(FIML-EM). When fitting mixture models, FIML-EM
often is used for a different purpose—to handle indivi-
duals’ unknown latent class memberships (McLachlan
& Peel, 2000).

Some prior recommendations have included MI as an
option for missing data handling with finite mixtures
(e.g., Asparouhov & Muthén, 2010; Collins & Lanza,
2010; Lanza, Coffman, & Xu, 2013). On the other hand,
others have discouraged it (Enders, 2010) based on the
potential for MI to interfere specifically with recovery
of covariate effects that differ across latent classes
(Enders & Gottschall, 2011). Enders and Gottschall’s
(2011) investigation concerned fitting a model with
the true number of classes and did not investigate how

imputation affects the class enumeration. The
consequences of MI for model selection involving
mixtures have not been clarified for applied researchers.
Clinical applications have stated uncertainty about
employing MI in this context given the lack of methodo-
logical research on this topic (Colder et al., 2001;
Costello, Dierker, Jones, & Rose, 2008).

The remainder of this article proceeds as follows.
First, we motivate three hypotheses regarding the conse-
quences of alternative missing data handling methods
for model selection between latent continua versus cate-
gories. Next, to evaluate these hypotheses, a simulation
is described in which missingness occurs on the ys and
the true, population-generating model is a categorical
latent variable model (a latent profile analysis [LPA]).
An example of such a population-generating LPA
would be if distinct etiological processes gave rise to
typical and expressive latent temperament classes in tod-
dlers, which phenotypically manifested in different pat-
terns of social fear, anger proneness, and activity level.
To test the three hypotheses, the fit of a true LPA model
is compared to the fit of a continuous latent variable
model (factor analysis [FA]) under alternative missing
data handling approaches. These hypotheses are of
interest to researchers who have missing outcomes and
yet are interested in comparing the fit of categorical ver-
sus dimensional models for their construct of interest
(e.g., toddler temperament).

HYPOTHESES

H1: When latent classes exist, imputing missing ys from
a MVN saturated model can decrease the chance
of correctly selecting latent classes (LPA) over
continua (FA).

In general (nonmixture) modeling contexts, it is thought
quite benign to impute even strongly nonnormal data
(like psychiatric symptoms) under a MVN imputation
model (Demirtas, Freels, & Yuncel, 2008; Graham &
Schafer, 1999; Rubin & Shenker, 1986; Schafer, 1997).
However, the key to being able to recover classes=
profiles, when they truly exist, is the preservation of
higher order moments (e.g., skew, kurtosis) in the symp-
tom data. Only LPA, but not FA, makes use of these
higher order moments (Molenaar & Von Eye, 1994).
Hence, when a generating LPA implies greater nonnorm-
ality in the marginal (across-class) distributions of the ys
(say, due to greater separation between class means),
LPA will tend to fit the data better than FA (Lubke &
Neale, 2006, 2008). For instance, all else equal, greater
class mean separation of latent toddler temperament
profiles would correspond with means on social fear,
anger proneness, and activity-level items that are more
distinct across profiles. As visually depicted in Figure 1

1The missing-completely-at-random assumption is that missingness

depends neither on observed variables in the model nor on unobserved

variables predictive of the outcome(s) and associated with model

variables. The missing-at-random assumption is that missingness may

depend on observed variables in the model but not on such unobserved

variables.
2Some mixture applications report using a single imputation due to

lengthy computational times.
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for a single symptom item generated from a two-class
LPA, imputing from an MVN distribution reduces non-
normality in the filled-in complete data—to the extent
that, under certain circumstances, an LPA may no longer
fit better than an FA, even when latent classes truly exist.
We hypothesize that these circumstances are (1a) when
the proportion of missing data is larger, and (1b) when
class mean separation in the generating LPA is moder-
ate. Regarding (1a), when the missingess proportion is
larger, misspecifications inherent in the imputation
model should have a larger influence on the filled-in
complete-case results (Meng, 1994; Schafer, 1997).
Regarding (1b), when class mean separation is moderate,

model selection results should be more sensitive to the
use of MVN MI than when separation is large or small.
For large class separation, profound nonnormality,
favoring LPA, remains despite MVN MI. For small class
separation (e.g., similar means across profiles on each
toddler temperament item), trivial nonnormality exists
anyway, which—even in the case of no missingness—
makes correct recovery of a generating LPA nearly
impossible (see Tueller & Lubke, 2010).

H2: Imputing missing ys from a researcher’s
hypothesized model (here, LPA or FA) instead
of a saturated MVN model also will be problem-
atic. Recovery of the true, generating model in the
data analysis will be either helped or hindered
depending on whether the imputation model is
correct.

Alternatives to saturated MVN MI have been suggested,
such as imputing from the researcher’s hypothesized
model (Asparouhov & Muthén, 2010; Merkle, 2011).
According to Asparouhov and Muthén (2010), ‘‘ground
breaking opportunities arise, such as, imputation from
LCA models and factor analysis models,’’ which could
mitigate convergence problems that may be encountered
with saturated MVN MI, and can be considered ‘‘a
viable alternative as long as the estimated model for
the imputation fits the data well’’ (p. 3). Relatedly,
Merkle (2011) asked, ‘‘If you believe that a factor analy-
sis model best describes the data, why use a saturated
multivariate normal model to impute the data?’’
(p. 461). However, the correctness of a researcher’s
hypothesized model would not be known in advance.
When the missingness proportion is larger, imputing
from an incorrect model (here, FA) should decrease the
probability of correctly selecting LPA, whereas imputing
from a correct model (here, LPA) should increase this
probability.

H3: FIML-EM can outperform MI for distinguishing
latent classes from continua in the context of
missing ys.

Prior research in other modeling contexts has shown
that when an MI model is misspecified in a manner that
makes it more restrictive than a model fitted with
FIML-EM (‘‘uncongeniality’’), parameter estimates
have greater bias under MI (Collins, Schafer, & Kam,
2001; Meng, 1994; Schafer, 2003). A MVN saturated
MI model, or for that matter a factor analysis MI model,
implies oversimplified marginal (across-class) distribu-
tions for ys. In contrast, LPA fitted with FIML-EM
allows a more flexible marginal distribution for ys. For
this reason, FIML-EM should, on average, outperform
the MI approaches—in particular, the saturated MVN
MI and factor analysis MI approaches—in recovering
the generating model through model selection.

FIGURE 1 Histogram of the marginal (across-class) distribution of

an item from a mixture model before multiple imputation (Panel 1)

and after multiple imputation (Panel 2). Note. Data for Figure 1 were

generated from a two-class latent profile model, and this plot pertains

to the first item. 50% missingness was induced for the first item under

a missing completely at random mechanism. This data set was used only

for the purpose of this pedagogical visualization. The solid line is a

superimposed normal distribution. In Panel 1, skew¼ 0, kurtosis¼
�.87; in Panel 2, skew¼ 0, kurtosis¼�.62.
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METHODS

To investigate Hypotheses 1 to 3, we generated 500
samples of data from a two-class LPA model in a fully
crossed design defined by two y-missingness proportions
and two class separations. The two y-missingness pro-
portions used, .15 and .35, have been considered realistic
for practice (Enders & Bandalos, 2001; Merkle, 2011;
Wothke, 2000). These y-missingness proportions refer
to the (.15 or .35) probability that person i is missing
the jth item. Within a condition of the simulation design,
the missingness proportion is the same for all persons
and for all items. The two class separations used (moder-
ate vs. large) have been operationalized in prior research
as a 2.0 versus 3.0 Mahalanobis distance (MD) between
profiles (Lubke & Neale, 2006, 2008). Mahalanobis
distance is a conventional measure of class separation
used in the mixture literature that is similar to a
standardized mean difference. For two classes:

MD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl1 � l2Þ

0R�1ðl1 � l2Þ
q

where R is the within-

class residual covariance matrix and lk is a vector of
means specific to class k. Hypotheses 1 to 3 could be
demonstrated with either missing at random or missing
completely at random y-missingness mechanisms. We
chose the simplest missingness mechanism, missing com-
pletely at random, to highlight the serious consequences
that can arise simply due to misspecifying the MI model,
even when missing values are ‘‘benign’’ (see Enders &
Gottschall, 2011, for a similar rationale). Results would
generalize to circumstances where outcomes are missing
at random such that, for example, the probability of
missingness on y2 (e.g., anger proneness item) depends
on the observed score of y1 (e.g., social fear item).

The generating LPA for persons i¼ 1 . . . N, items
j¼ 1 . . . J, and classes k¼ 1 . . . K of a latent classification
variable c is

f ðyiÞ ¼
XK

k¼1

pðci ¼ kÞ
YJ

j¼1

f ðyij jci ¼ kÞ

where yi is a J� 1 response vector for person i. p(ci¼ k)
is the probability of membership in class k. f(yijjci¼ k) is
a univariate normal probability density function of yij in
the kth class. Within class k, yij is normally distributed,

yij jci ¼ k � NðlðkÞj ; r2ðkÞ
j Þ, with class-specific mean lðkÞj

and variance r2ðkÞ
j . Parameters for the generating LPA

with moderate class-separation were taken from two
classes of a temperament LPA application in young chil-
dren (van den Akker, Dekovic, Prinzie, & Asscher,
2010) with three symptoms (social fear, anger proneness,
activity level). Temperament is a developmental
precursor of personality. In class 1, labeled ‘typical’,

parameters were as follows. Item means: lð1Þ1 ¼ �:35;

lð1Þ2 ¼ �:48; lð1Þ3 ¼ �:41; item variances: r2ð1Þ
j ¼ 1; class

proportion: p(ci¼ 1)¼ .8. The other class, labeled

‘‘expressive,’’ had parameters: lð2Þ1 ¼ �:08; lð2Þ2 ¼ :9;

lð2Þ3 ¼ 1; pðci ¼ 2Þ ¼ :2; r2ð2Þ
j ¼ 1. That is, the expressive

class was distinguished from the typical class predomi-
nantly by its higher activity level and higher anger
proneness. Item means in the larger class separation con-
dition were multiplied by 2.5 to achieve an MD¼ 3. This
corresponds with toddler temperament profiles which
have increased between-profile differences relative to
their within-profile variation. All generated samples
had N¼ 500, which was found to be a typical sample size
used in social science mixture applications by Sterba,
Baldasaro, and Bauer (2012).

Missingness was handled with four alternate
approaches: FIML-EM, an MI saturated imputation
model, an MI two-class LPA imputation model with
equal residual variances, or an MI one-factor confirma-
tory FA imputation model with equal residual variances.
For a given MI model, 100 imputations were drawn per
sample. MI used the MCMC algorithm with a Gibbs
sampler.3 Each generated data set was fit with four alter-
native models: three LPAs (one, two, or three classes,
each with equal residual variances) and a one-factor
confirmatory FA (also with equal residual variances).
Data were generated, imputed (where relevant), and fit-
ted with FIML-EM4 in Mplus 6.12 (Muthén & Muthén,
1998–2012).

RESULTS

The outcome of interest was which model was found best
fitting. Fitted models were compared within sample, par-
alleling analysis procedures that would be used in an
empirical application on toddler temperament, where
only one sample is available. The frequency with which
each model was selected as best fitting across samples
within cell of the simulation design was recorded. The
Bayesian Information Criterion (BIC) was used for
model selection. Of the information criteria, BIC has
typically performed best in previous mixture simulations

3Two independent chains were used after 50 identical iterations

from one chain with a maximum of 50,000 iterations. Selected sensi-

tivity analyses continuing with one chain yielded the same pattern of

results. Convergence for MI was monitored using the Gelman-Rubin

approach (with Potential Scale Reduction Factor� 1.025 for any single

parameter). Selected samples were inspected for adequate mixing and

lack of class label-switching. Procedures recommended by Cho, Cohen,

and Kim (2011) and Asparouhov and Muthén (2010) were employed

until no label switching was observed across chain (during MI), across

imputation within sample, or across repeated fitted LPAs within a cell

of the simulation design, in empirical and graphical checks.
4In other words, in all cells FIML-EM was used for model fitting.

In only one cell, FIML-EM was also used for handling missing ys (all

other cells already had imputed-y data by the analysis stage).
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(e.g., Nylund, Asparouhov, & Muthén, 2007) and has
been used for discriminating classes from continua (e.g.,
Lubke & Neale, 2006, 2008). Further, a recent review
found it to be the most common, and often the only, selec-
tion index used in certain mixture applications (Sterba
et al., 2012). For MI, the average of the BIC point esti-
mate across imputed data sets was used (also the Mplus
default). Five times more imputations than the usual rec-
ommendation (i.e., 100) were employed to maximize
precision of this result (Graham, Olchowski, & Gilreath,
2007). Applications using mixtures with MI most often
have relied solely on the across-imputation-average value
of BIC for model selection (e.g., Barker et al., 2010; Biggs
et al., 2010; Ingoldsby et al., 2006; Missall et al., 2012;
Vaughn, Shook, & McMillin, 2008; West et al., 2010).5

Convergence ranged from 95% to 100% across cells.
Table 1 shows the percentage of samples per cell best
fit by each fitted model. The most frequently selected
model per cell is in boldface.

The boldface results for FIML-EM versus saturated
MI in Table 1 are consistent with hypotheses. Specifically,
in line with Hypotheses 1 and 3, under the conditions of
moderate class separation and larger missingness propor-
tions, imputing from an MVN saturated model can make
one less likely to find evidence of unobserved hetero-
geneity compared with using FIML-EM to handle
y-missingness. That is, saturated MVN MI can make
one less likely to find evidence of latent classes over latent
continua, for a psychological construct such as tempera-
ment, when latent classes (e.g., expressive and typical
classes) truly exist. This means that an applied researcher
would be expected to incorrectly select a dimensional rep-
resentation of a truly categorical temperament construct
greater than 76% of the time when imputing from the
saturated MVN model, under these conditions.

In addition, the boldface results in Table 1 are consist-
ent with Hypotheses 2 and 3. Specifically, imputing from a
model other than the saturated MVN helps (or not)
depending on whether this alternative imputation model

5The conventional likelihood ratio test (LRT) developed for MI is

not suited for comparing models with different numbers of classes due

to the violation of regularity conditions. Conversely, adjusted versions

of the LRT (Lo-Mendell-Rubin-LRT) suited for comparing models

with different numbers of classes have not been adapted for MI. The

bootstrap LRT (and the lesser used selection index in Markon &

Krueger, 2006) also have not been adapted for MI and would be

computationally prohibitive in the present simulation.

TABLE 1

Best-Fitting Model From the Latent Profile Analysis versus Factor Analysis Comparison When y-Missingness Is Handled With FIML-EM versus

MI Using Each of Three Alternative Imputation Models

Class Separation % Missing

Fitted Model Selected

1-Factor CFA 1-Class LPA 2-Class LPA (Generating) 3-Class LPA

Missing Data Handling: EM-Algorithm (FIML)

Smaller 15 17.80% 5.20% 77.20% 0.00%

Larger 15 0.00% 0.00% 100.00% 0.00%

Smaller 35 23.40% 23.60% 53.00% 0.00%

Larger 35 0.20% 0.00% 99.80% 0.00%

Missing Data Handling: Multiple Imputation From Saturated Model

Smaller 15 34.00% 1.60% 64.40% 0.00%

Larger 15 0.00% 0.00% 100.00% 0.00%

Smaller 35 76.40% 3.80% 19.80% 0.00%

Larger 35 24.00% 0.00% 75.00% 1.00%

Missing Data Handling: Multiple Imputation From 2-Class LPA

Smaller 15 15.90% 1.41% 82.70% 0.00%

Larger 15 0.00% 0.00% 100.00% 0.00%

Smaller 35 20.75% 2.73% 76.52% 0.00%

Larger 35 0.00% 0.00% 100.00% 0.00%

Missing Data Handling: Multiple Imputation From 1-Factor CFA

Smaller 15 33.60% 2.00% 64.40% 0.00%

Larger 15 0.00% 0.00% 100.00% 0.00%

Smaller 35 73.49% 6.22% 20.28% 0.00%

Larger 35 22.40% 0.00% 76.80% 0.80%

Note. The boldface model was selecting as better fitting than competitors in the highest percentage of samples within cell, according to the Bayesian

Information Criterion. Hence the boldface model is labeled the best-fitting model. FIML-EM¼ full information maximum likelihood using the

Expectation-Maximization algorithm; MI¼multiple imputation; CFA¼ confirmatory factor analysis model; LPA¼ latent profile analysis model.
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is correctly (or incorrectly) specified—something that an
empirical researcher interested in statistically investigating
the latent structure of temperament or psychopathology
presumably would not know in advance. That is, imputing
from the correct two-class LPA improved model selection
accuracy over using FIML-EM to handle y-missingness.
But imputing from the incorrect one-factor FA was worse
than FIML-EM and about the same as imputing from the
saturated MVN model.

DISCUSSION

Results of this study suggest exercising caution regarding
the use of saturated MVN MI when the goal is to dis-
criminate the latent continuous (factor) versus categ-
orical (classes) nature of a psychological syndrome.
This goal has become increasingly relevant to debates
surrounding changes from DSM-IV to DSM-V (Regier,
Kuhn, & Kupfer, 2013). Such caution is needed, parti-
cularly in the situation when there is limited available
information to recover classes—for instance, moderate
class separation and considerable missingness. In other
situations examined, model selection results were on
average robust to the use of saturated MVN MI.
Whereas imputing from a hypothesized model can help
select the correct model when the imputed model is cor-
rect (consistent with Merkle, 2011), from this illustration
FIML-EM seems a less risky strategy overall.

Our study thus identifies a separate and additional limi-
tation of applying MVN MI in the context of mixtures,
beyond that identified by Enders and Gottschall (2011).
When exclusively fitting the generating mixture, Enders
and Gottschall noted that the application of the popular
saturated MVN MI interfered with recovery of moderated
(class-varying) effects of observed covariates—because
the imputation model oversimplified relationships
between outcomes and covariates. The present article
focused instead on demonstrating that saturated MVN
MIs oversimplified distributional assumptions about ys
lead to reduced nonnormality, which in turn can interfere
with the ability to correctly discriminate latent classes and
continua. In different ways, both articles underscore the
need to ensure the MI model is not more restrictive than
candidate data-generating processes (and missingness
mechanisms). Although our simulation used models for
cross-sectional data, results should generalize to the paral-
lel context of discriminating continuous versus categorical
variability in change, in developmental psychopathology
studies.

Limitations

Several limitations should be noted. First, the simulation
demonstrations held total sample size constant at 500; for
mixture models, even smaller sample sizes together with

substantial proportions of missing data could lead to
high rates of estimation problems and empirical
underidentification of small classes (McLachlan &
Peel, 2000), which were not a focus here. Second, we
considered saturated MVN MI in particular because of
its widespread use. In theory, nonparametric (e.g.,
approximate Bayesian bootstrap) MI approaches are
an alternative; however, they suffer from several key
practical limitations (see Molenberghs & Kenward,
2007). Third, if missingness proportions had been trivial,
the choice between missing data methods considered here
likely would be of little consequence.

Future Directions

Although our demonstrations showed that imputing
from a factor model could decrease the probability of
finding classes when classes exist, we anticipate that the
opposite problem could arise. For example, if a factor
model actually generated responses on social fear, anger
proneness, and activity level items, imputing from an
LPA might decrease the probability of correctly selecting
a dimensional representation of the temperament
construct. In addition, although our demonstrations
involved a representative but relatively simple mixture
model, related issues would be expected to apply when
hybrid models (combining both latent classes and conti-
nua; e.g., factor mixture models) are compared to models
that specify either latent classes or continua. Expanding
the focus of investigation to involve alternative generat-
ing models and fitted models could be useful for future
research. Relatedly, because this study was intended to
isolate the impact of missing data handling methods on
class versus continua model selection results, additional
conditions with known potential to affect such results
were not simultaneously introduced. For instance, the
within-class model could have been misspecified or ys
could have been ordinal but treated as continuous, as
is common in psychopathology applications. Future
research could consider the effects of a larger combi-
nation of conditions on model selection results. Finally,
note that this study did not consider taxometric methods
because they tend to perform less well than mixture mod-
els under general conditions (Lubke & Tueller, 2010) and
cannot accommodate missing data (e.g., Ruscio, 2006).

Conclusions and Recommendations

Understanding the latent structure of psychological
syndromes and constructs is a topic of great interest to
clinical psychology researchers. In recent years, statistical
comparisons of the fit of alternative latent variable models
implying categorical versus dimensional syndromes have
become more common, particularly in adolescent samples
(e.g., Conway et al., 2012; Gillespie et al., 2011). In this
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light, the present study compared two missing data
methods that could be used in such studies (saturated
MVN MI and FIML-EM) and considered some newer
MI approaches. Although MI has in the past been
described as an option for handling missing data in
mixture=latent class analyses (e.g., Asparouhov & Muthén,
2010; Collins & Lanza, 2010), its consequences had not
been previously considered. We showed that the manner
in which y-missingness is handled can under certain cir-
cumstances interfere with the ability to statistically dis-
criminate between the latent categorical (classes) versus
continuous (factors) nature of a psychological construct.
Our results suggest the use of FIML-EM during model
selection in future studies with this objective, because it
performed well under the broadest range of circumstances.

In general, if FIML estimation and the chosen MI
model impose the exact same assumptions using the same
data and analysis, they should asymptotically lead to the
same inferences. However, there are contexts in which
conventional implementations of FIML and MI models
imply meaningfully different assumptions. In this study’s
context, assumptions of conventional FIML-EM were
more appropriate than those of saturated MVN MI.
Other times, in nonmixture modeling contexts, conven-
tional MI implementations may be more realistic; for
instance, they routinely incorporate auxiliary variables
predictive of missingness, unlike typical FIML imple-
mentations (but see Graham, 2003). It is important to
move beyond recommendations that simply restate ben-
efits of both FIML and MI over, say, listwise deletion
(e.g., Croy & Novins, 2005; Jelicic, Phelps, & Lerner,
2009), to focus on choosing among alternative implemen-
tations of FIML and=or MI. In this regard, a researcher
can even conduct a sensitivity analysis to see if his or her
own model selection results are sensitive to alternative
missing data methods and assumptions. Finally,
researchers should report on the form and assumptions
of the MI (or FIML) model so others can, for instance,
‘‘judge if the imputation model can be misleading for a
particular intended analysis’’ (Meng, 1994, p. 554).
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