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When missingness is suspected to be not at random (MNAR) in longitudinal studies,
researchers sometimes compare the fit of a target model that assumes missingness at random
(here termed a MAR model) and a model that accommodates a hypothesized MNAR missing-
ness mechanism (here termed a MNAR model). It is well known that such comparisons are
only interpretable conditional on the validity of the chosen MNAR model’s assumptions about
the missingness mechanism. For that reason, researchers often perform a sensitivity analysis
comparing the MAR model to not one, but several, plausible alternative MNAR models. In the
social sciences, it is not widely known that such model comparisons can be particularly sensi-
tive to case influence, such that conclusions drawn could depend on a single case. This article
describes two convenient diagnostics suited for detecting case influence on MAR–MNAR
model comparisons. Both diagnostics require much less computational burden than global
influence diagnostics that have been used in other disciplines for MNAR sensitivity analy-
ses. We illustrate the interpretation and implementation of these diagnostics with simulated
and empirical latent growth modeling examples. It is hoped that this article increases aware-
ness of the potential for case influence on MAR–MNAR model comparisons and how it could
be detected in longitudinal social science applications.
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Missing data are a reality of longitudinal social science
research. Due to recent software advances and dissemi-
nation efforts (e.g., Enders, 2010; Graham, 2012; Little
& Rubin, 2002; Schafer & Graham, 2002), missing data
handling methods that require missing at random (MAR)
assumptions—such as full information maximum likeli-
hood (FIML) estimation—have widely replaced ad-hoc
approaches—such as listwise deletion. Under MAR, the
probability of missingness can depend on observed variables
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in the model. For instance, the probability that a repeated
measure, y, is missing at time t can depend on the observed y
score at time t–1, or on the value of an observed covariate
such as treatment—but cannot depend on unobservables,
such as a person’s underlying rate of change, or what his
or her y score at time t would have been. When MAR holds,
we need only model the process that generated the ys (here
termed the outcome-generating mechanism), and can ignore
the process that generated the missingness (here termed the
missingness mechanism).

However, the MAR assumption may not always be realis-
tic. For instance, particularly in clinical trials and treatment-
outcome settings, there is often a concern that dropout at
time t might indeed be due to an individual’s own rate of
change (latent slope) or unobserved y score at time t, even
after conditioning on observables (e.g., Carpenter, Pocock, &
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Lamm, 2002; Little et al., 2012; Lu, Zhang, & Lubke, 2011;
Michiels, Molenberghs, Bijnens, Vaneneugden, & Thijs,
2002; Muthén, Asparouhov, Hunter, & Leuchter, 2011). This
constitutes missingness that is not at random (MNAR). Some
participants may no longer feel the need to stay in the study
and adhere to its treatment regime because they are rapidly
getting better; other participants may drop out because they
are getting worse. If missingness is MNAR, to avoid biases
in parameter estimates and standard errors, we are obliged to
jointly model the outcome-generating mechanism together
with the missingness mechanism, as they are interdepen-
dent (Rubin, 1976). A variety of “MNAR models” have
been proposed to jointly model both processes, for instance,
selection models or pattern mixture models. These MNAR
models rest on different assumptions (for reviews see Enders,
2011; Hedeker & Gibbons, 2006; Little, 1995; Verbeke &
Molenberghs, 2000).

Here, we begin by explaining why longitudinal
researchers are interested in comparing the fit of a target
“MAR model”—of theoretical interest to the investigators,
such as a conventional latent growth curve model—against
the fit of MNAR model(s). Second, we describe why
many methodologists recommend conducting sensitivity
analyses (investigations of the impact of variation in data or
modeling conditions) on the results of such fit comparisons.
Third, we highlight the utility of one form of sensitivity
analysis that is underused in psychology applications: the
assessment of case influence on this model fit comparison.
The purpose of this article is to contribute to the missing
data literature by suggesting accessible diagnostics for
global case influence on MAR–MNAR fit comparisons and
by illustrating their use in empirical and simulated growth
modeling applications. These diagnostics have not been
used in this context and they are computationally simpler
than current alternatives.

COMPARISONS OF MAR VERSUS MNAR
MODELS

There is, unfortunately, no general test for the plausibil-
ity of MAR versus MNAR (e.g., Little & Rubin, 2002;
Molenberghs, Beunckens, Sotto & Kenward, 2008). Rather,
it is only possible to compare the fit (and parameter esti-
mates) of a target MAR model and a particular substan-
tively chosen MNAR model—that embodies one possible
MNAR mechanism out of many. Many studies perform
such a model fit comparison (e.g., Beunckens, Molenberghs,
Thijs, & Verbeke, 2007; Cursio, 2012; Gottfredson,
Bauer, & Baldwin, 2014; Gottfredson, Bauer, Baldwin,
& Okiishi, 2014; Hedeker & Gibbons, 1997; Kenward,
1998; Lin, McCulloch, & Rosenheck, 2004; Maruotti, 2011;
Molenberghs & Kenward, 2007; Molenberghs, Kenward, &
Lesaffre, 1997; Power et al., 2012; Roy, 2003; Van Steen,

Molenberghs, Verbeke, & Thijs, 2001; Verbeke, Lessafre, &
Spiessens, 2001; Verbeke & Molenberghs, 2000; Verbeke,
Molenberghs, Thijs, Lesaffre, & Kenward, 2001). If the
specification of the outcome-generating mechanism is cor-
rect, and the specification of the missingness mechanism
is described well by one of these models, that model
might provide a better fit. For instance, Gottfredson, Bauer,
and Baldwin (2014) found that the Bayesian information
criterion (BIC) was able to distinguish between a MAR
mechanism and a particular MNAR mechanism under a
variety of conditions. Specifically, what is being com-
pared in these applications is the fit of both models to the
observed data. So, to consider the fit ranking as support
for MAR versus the specified MNAR, we must be willing
to assume a priori the plausibility of that MNAR model’s
assumptions about the missingness mechanism (for instance,
the stipulated distribution of the missing data given the
observed data), in addition to our usual assumptions about
the outcome-generating mechanism.1

Because MAR–MNAR model fit comparisons require
these assumptions, there are alternative perspectives regard-
ing the interpretation of such fit comparisons. As summa-
rized by Ibrahim, Chen, Lipsitz, and Herring (2005):

there are two different points of view on this issue: (a) the
appropriate nonignorable [here called MNAR] model can
be determined empirically from the observed data using
such approaches as . . . the Akaike information criterion
(AIC), and (b) the data cannot decide on an appropri-
ate nonignorable model, and hence sensitivity analyses are
needed. (p. 341)

In this article we take the following middle-ground per-
spective. On the one hand, we consider the often-performed
fit comparison between a MAR and MNAR model—
conditional on the appropriateness of the MNAR model’s
assumptions—a useful additional piece of information for
researchers to consider, alongside inspecting how particu-
lar parameter estimates may change between fitting MAR
and MNAR models. On the other hand, given the strong
assumptions required by the MNAR model, we agree it is
beneficial to consider MAR–MNAR model comparisons as
part of a sensitivity analysis (e.g., Rubin, 1977). Sensitivity
analyses used in this context have been of two kinds:
either “one in which several statistical models are con-
sidered simultaneously and/or where a statistical model is
further scrutinized using specialized tools (such as diagnos-
tic measures)” (Molenberghs & Verbeke, 2001, p. 255). The
first kind of sensitivity analysis—conducting multiple model

1For instance, Verbeke, Lessafre, et al. (2001) interpreted a fit compar-
ison that yielded a better fit for the MNAR model than the MAR model as
follows: “conditional on the validity of [the] model, there is a lot of evidence
for nonrandom dropout” (p. 426).
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comparisons of a MAR model with each of several MNAR
models embodying different missingness mechanisms—has
been recently demonstrated in a number of methodologi-
cal papers (e.g., Enders, 2011; Feldman & Rabe-Hesketh,
2012; Muthén et al., 2011; Xu & Blozis, 2011). However,
the second kind of sensitivity analysis (applying diagnostics
for case influence on this model comparison) has received
little attention in the social sciences, and is the focus of this
article.

CASE INFLUENCE ON MAR VERSUS MNAR
MODEL FIT COMPARISONS

Unlike in the social sciences, the biostatistics literature has
placed emphasis on diagnosing whether the results of a
MAR–MNAR model comparison, at the sample level, are
being disproportionately influenced by single case(s) (e.g.,
Beunckens et al. 2007; Henderson, 1994; Jansen et al.,
2006; Molenberghs & Verbeke, 2001; Thijs, Molenberghs,
& Verbeke, 2000; Van Steen et al., 2001; Verbeke, Lessafre,
et al., 2001; Verbeke, Molenberghs, & Beunckens, 2008; Zhu
& Lee, 2001). For instance, it is possible that when a partic-
ular case is retained, one model fits better (e.g., a MNAR
model), whereas without that single case, the alternative
MAR model fits better (e.g., Kenward, 1998; Molenberghs
et al., 2001; Verbeke, Molenberghs, et al., 2001). If a sample-
level conclusion about model ranking can be influenced by a
single case, an applied researcher would certainly want to be
aware of this when interpreting results. Importantly, MAR–
MNAR comparisons might be especially vulnerable to such
influence (e.g., Jansen et al., 2006; Thijs et al., 2000).

In the literature on case influence in the context of
MNAR modeling, both global influence diagnostics (typi-
cally employing iterative case deletion) and local influence
diagnostics (introducing minor, subject-specific perturba-
tions to parameter(s) related to dropout), have been used to
assess influence on results such as model fit or parameter
estimates. These two kinds of diagnostics tap somewhat dif-
ferent types of influence, and characteristics of each have
been reviewed elsewhere (e.g., Chatterjee & Hadi, 1988).
One often-noted drawback to a global influence approach is
the computationally intensive nature of iterative case dele-
tion (e.g., Beunckens et al., 2007; Molenberghs & Verbeke,
2001; Thijs et al., 2000). To address this drawback, this arti-
cle suggests using computationally nonintensive global influ-
ence diagnostics (Sterba & Pek, 2012) for the MAR–MNAR
model fit comparison; these approximate true iterative case
deletion diagnostics. Because in social science applica-
tions, sensitivity analyses for case influence on MAR–
MNAR model comparisons are currently virtually nonexis-
tent, we hope that the user-friendly implementation of this
diagnostic—obtained from widely available software for any
kind of MAR and MNAR model specifications—provides
an accessible entry point. (In contrast, local influence

diagnostics for MAR–MNAR comparisons are not available
in commercial statistics packages to our knowledge.)2

The remainder of this article proceeds as follows. We first
describe Sterba and Pek’s (2012) global influence diagnos-
tics for model fit ranking, and provide practical informa-
tion regarding their interpretation. Next, we describe some
conditions that can increase the risk of case influence on
MAR–MNAR comparisons. Subsequently, we illustrate the
use of these diagnostics in two examples (one empirical and
one simulated) that each involve comparing the fit of a target
MAR latent growth curve model to a selection-type MNAR
model. Syntax for computing the diagnostics for both exam-
ple model comparisons is available in our online Appendix
at http://www.vanderbilt.edu/peabody/sterba/appxs.htm.

Selection-type MNAR models are used here in exam-
ples for several reasons. First, they are popular in empiri-
cal applications—largely because they conveniently afford
inference about the substantively interesting marginal dis-
tribution of the repeated measures,3 unlike some types of
MNAR models, such as pattern mixture models. Second,
to date, methodologists have mainly studied case influence
when selection-type MNAR models are used (e.g., Kenward,
1998; Molenberghs et al., 2001; Verbeke, Lesaffre, et al.,
2001; Verbeke, Molenberghs, et al., 2001). Maintaining this
context allows us to relate aspects of prior findings to current
results using different diagnostics. Third, the strong paramet-
ric assumptions of selection-type MNAR models have been
thought to render them particularly susceptible to case influ-
ence (Beunckens et al., 2007; Thijs et al., 2000; Verbeke,
Lesaffre, et al., 2001; Verbeke et al., 2008). Fourth, global
case influence diagnostics are designed to detect the exact
kind of influence—single case influence—that is most trou-
bling for nomothetic selection-type MNAR models, which
must represent the missingness generating process for the
entire sample. In contrast, global case influence diagnostics
in general are not designed to detect the contribution of an
entire “clump” of cases that are jointly (but perhaps not indi-
vidually) influential (Atkinson & Riani, 2008). If interest
specifically lies in accommodating unique features of a larger
clump in a MAR–MNAR model comparison, MNAR models
of the pattern mixture or latent pattern mixture variety could
be employed. These models allow change parameters to dif-
fer across (possibly latent) classes with different missingness
patterns. However, these models are still not immune to influ-
ential cases, and are subject to other limitations (Beunckens
et al., 2007) not discussed here.

2Whereas source code (e.g., in GAUSS) for local influence diagnos-
tics is available directly from authors for certain model specifications (see
Verbeke, Molenberghs, et al., 2001), in general this approach might require
substantial programming for other specifications.

3Other types of MNAR models, such as pattern mixture models, employ
different factorizations of the joint distribution of the repeated measures
and missingness indicators that do not give as ready access to inferences
involving parameters of the marginal distribution of repeated measures.

http://www.vanderbilt.edu/peabody/sterba/appxs.htm
http://www.vanderbilt.edu/peabody/sterba/appxs.htm
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GLOBAL CASE INFLUENCE DIAGNOSTICS
FOR COMPARING MAR VERSUS MNAR

MODELS

As mentioned earlier, popular selection-type MNAR mod-
els (e.g., the Diggle–Kenward [1994] model, or the Wu–
Carroll [1988] model) are often compared to a counterpart
MAR model that is obtained by imposing one or more
constraints on the MNAR model.4 The fit of these (more
restricted) MAR and (less restricted) MNAR model pairs
have been compared with likelihood-ratio difference tests
(LRTs) as well as information criteria—such as the Bayesian
information criterion (BIC) and Akaike’s information cri-
terion (AIC). However, regularity conditions for LRTs are
not met for such MAR–MNAR model comparisons (see
Hens, Aerts, Molenberghs, & Thijs, 2003; Jansen et al.,
2006; Molenberghs & Kenward, 2007). Use of information
criteria has been recommended instead (e.g., Dmitrienko,
Molenberghs, Chanung-Stein, & Offen, 2005; Maruotti,
2011; Molenberghs & Kenward, 2007; Muthén, Asparouhov,
& Hunter, 2009; Power et al., 2012; Wang & Daniels, 2011).
Thus, here we employ only BIC and AIC for fit comparisons.
A researcher could consider one or both of these indices. BIC
is intended to select the model closest to the true generating
process, whereas AIC is intended to select the most general-
izable model (see Kuha, 2004, or Vrieze, 2012, for reviews).
As such, these indices need not agree. Consider Model A the
MAR model and Model B the MNAR model. For Models A
and B, define LA and LB as their sample likelihoods and k A

and k B as their number of free parameters, respectively. For
MAR–MNAR comparisons considered here involving con-
ventional selection-type MNAR models, k A < k B. Following
Kuha (2004), in the sample, define the between-model differ-
ence in BIC and in AIC, respectively, as:

�BIC = −2(ln LA − ln LB) + ln N(k A − k B) (1)

�AIC = −2(ln LA − ln LB) + 2(k A − k B) (2)

Negative �BIC or �AIC indicate support for Model A
at the sample level (vice versa for Model B). Assuming
FIML estimation was used to fit both models, denote the
individual contributions to the likelihood for each fitted
model as LA

i and LB
i where i indicates case and i =1 . . .

N. In the longitudinal models considered later, a case (i.e.,
the highest level unit in the analysis) is a person. These

4Depending on the MNAR model, such constraints could include fix-
ing to 0 the effects of certain predictors on the probability of missingness.
These predictors could be outcome scores at the time of dropout or latent
growth coefficients from the outcome-generating model (as described later,
in Examples 1 and 2). Another possible constraint involves fixing to 0 the
covariance between random effects from the outcome-generating and the
missingness mechanisms.

individual likelihood contributions can be obtained as a by-
product of using FIML estimation to fit each model, and
can be outputted using widely available software, includ-
ing Mplus, Mx, and OpenMx (e.g., Boker et al., 2011;
Muthén & Muthén, 1998–2013; Neale, Boker, Xie, & Maes,
2003).

Sterba and Pek (2012) defined approximate influence
diagnostics for model ranking using �BIC and �AIC as:

�indBICi = −2(ln LA
i − ln LB

i ) + (kA − kB) ln (N/(N − 1))
(3)

�indAICi = −2(ln LA
i − ln LB

i ) (4)

where to compute�indBICi and�indAICi requires only a sin-
gle model fitting of each Model A and B. These�indBICi and
�indAICi diagnostics were shown to approximate their iter-
ative, exact case deletion counterparts: �BICi = �BIC −
�BIC(−i) and �AICi = �AIC −�AIC(−i). Here, �BICi
and �AICi represent the exact change in the sample-level
index associated with deleting a case, where the subscript
(–i) denotes that case i was excluded from the analysis.

Computing �BICi and �AICi for all cases requires N
jackknife iterative refittings of each the MAR and MNAR
models. Even at modern computing speeds, N refittings
of selection-type MNAR models can be computationally
demanding, despite normally distributed repeated outcomes
(see Hogan & Laird, 1997; Vonesh, Greene, & Schluchter,
2006). For instance, in the selection-type MNAR models
considered later, computational burden increases as a func-
tion of the number of random effects on which dropout
depends (in the Wu–Carroll [1988] MNAR model) or as a
function of the number of repeated outcomes with dropout
(in the Diggle–Kenward [1994] MNAR model). This is
because obtaining the joint likelihood of outcomes and
dropout indicators for these MNAR models requires inte-
grating over missing response variables in the Diggle–
Kenward MNAR model (two dimensions of integration for
Example 1 and four dimensions of integration when later
applied to Example 2) and requires integrating over the ran-
dom effects distribution in the Wu–Carroll MNAR model
(two dimensions of integration for Example 2). Monte Carlo
numerical integration (with sharp increases in total integra-
tion points required to maintain accuracy as the dimensions
of integration increase) has been recommended for esti-
mating these models (Muthén et al., 2011), together with
multiple sets of random starting values to decrease the
chance of local optima (Enders, 2011; Muthén et al., 2011).
For a given number of dimensions of integration, larger N,
more integration points, and additional sets of starting values
all increase computation time. Other kinds of selection-type
MNAR models not illustrated here can be even more compu-
tationally demanding (see examples in Muthén et al., 2011).
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Fortunately, the noniterative �indBICi and exact �BICi
provide highly consistent rank orders for cases’ influence,
as do the noniterative �indAICi and exact �AICi (e.g.,
Kendall’s Tau-b = .94–.99; Sterba & Pek, 2012; see also
Sadray, Jonsson, & Karlsson, 1999).5 Closeness of rank
order is important because it means, for instance, that
when the sample level �BIC is positive, the case with the
most positive �indBICi likely has the greatest potential for
influence according to the exact �BICi. Also, when the
sample level �BIC is negative, the case with the most neg-
ative �indBICi likely has the greatest potential for influence
according to the exact �BICi. The same holds for �indAICi

and �AICi. Hence, as a practical strategy, in the context
of MAR–MNAR model comparisons, we follow Sterba and
Pek’s recommendation to (a) first compute �indBICi and/or
�indAICi for all cases, flagging any potential influential
case; and then (b) confirm influence by calculating the exact
�BICi and/or �AICi only for a flagged case. In particu-
lar, a case would be flagged as potentially influential on
sample-level model fit ranking:

for �BIC if

{
�indBICi > �BIC when �BIC > 0
�indBICi < �BIC when �BIC < 0

(5)

for �AIC if

{
�indAICi > �AIC when �AIC > 0
�indAICi < �AIC when �AIC < 0

(6)

Under these circumstances, the presence or absence of
the case might alter the sign of the �BIC or �AIC index
at the sample level. Note that it is possible for a given
case to be influential on the sample-level �BIC fit rank-
ing but not �AIC fit ranking (or vice versa), due to the
fact that these sample-level indices (and their corresponding
case-level diagnostics) evaluate model quality differently.

Case influence could also or instead occur on the degree
of evidence for a given model. For instance, using �BIC
we could define degree of evidence according to Raftery’s
(1995) guidelines that rely on the relationship between�BIC
and Bayes factors, where |�BIC | of 0–2 is weak, 2–6 is pos-
itive, 6–10 is strong, and > 10 is very strong. Then if �BIC
was –7 but�indBICi was –5, case i would be potentially influ-
ential on the degree of evidence for Model A, from strong to
weak. See Burnham and Anderson (2002) for suggestions on
effect sizes for �AIC, which could similarly be used to flag
case(s) that might be influential on the degree of evidence in
terms of �AIC.

5�indBICi exactly equals �BICi and �indAICi exactly equals �AICi
when parameters are fixed to their estimates from the full N analyses for
Models A and B when calculating �BIC(−i) and �AIC(−i). One degener-
ate special case in which the rank orders of these indices will diverge is
discussed in Sterba and Pek (2012), but it is very unlikely to be seen in
practice.

CONDITIONS INCREASING THE RISK OF
CASE INFLUENCE ON MAR VERSUS MNAR

MODEL COMPARISONS

Conceptually, we can distinguish between general and case-
specific conditions increasing the risk of case influence
on MAR versus MNAR model fit comparisons. General
conditions can pertain to the models and sample size under
consideration. Specific conditions can pertain to characteris-
tics of a given case in relation to the specified models.

Regarding general conditions that can increase the risk of
influence, all else being equal, the risk of case influence is
increased when �BIC or �AIC (whichever is being used to
rank models) is closer to 0 at the sample level. Then it will
be easier for a given case to show influence according to the
definitions in Equations 5 and 6. For�AIC = 0, for instance,
−2(ln LA − ln LB) needs to equal –2(k A − k B), using the
definitions of LA, LB, kA, and kB provided earlier. In empir-
ical settings, −2(ln LA − ln LB) will generally increase along
with the number of cases, N, and the effect size difference
between the models. For instance, in MAR–MNAR compar-
isons in which the models differ by a single parameter (which
should be 0 when MAR is upheld), k A − k B= –1, and the
effect size difference between models can be quantified sim-
ply by the size of this parameter value. When this parameter
value is modest (neither large nor very small) and N is low,
there would be a generally higher risk of case influence on
�AIC, all else being equal. Still under low N, consider what
can happen if, instead of being modest, this parameter value
were large or very small. If this parameter value were large
(large departure from MAR), implying −2(ln LA − ln LB) >
–2(–1), the risk of influence can generally decrease. If this
parameter value were very small (tiny departure from MAR),
implying −2(ln LA − ln LB) < –2(–1), the risk of influence
can again generally decrease.

Regarding case-specific conditions that could increase the
risk of influence, all else being equal (i.e., given the cho-
sen MAR and MNAR model specifications and the total
number of cases), heterogeneity in the outcome-generating
process and/or the missingness mechanism are contribut-
ing factors. Note that heterogeneity could be defined in a
discrete or continuous distribution sense, as follows. In a
discrete distribution sense, population heterogeneity could
be defined as when a case’s outcomes and/or missingness
probabilities are literally generated from a population model
distinct from the other cases (e.g., Muthén, 1989). However,
a case literally generated from a different population might
or might not have extreme outcome scores or missingness
probabilities, as a function both of sampling variability and
of how different its generating model was, as compared to
that for the rest of the cases. Conversely, in a continuous
distribution sense, a case whose outcomes and missingness
probabilities were literally generated from the same models



DIAGNOSTICS FOR MAR VS. MNAR MODEL COMPARISONS 299

as the other cases could still have an extreme pattern sim-
ply due to continuous sampling variability. Here, in line with
prior MNAR literature on case influence, we focus on het-
erogeneity manifesting in relatively extreme patterns, from
any cause.

Prior research has found that population heterogeneity
exclusively in the outcome-generating mechanism is a risk
factor for case influence on a MAR–MNAR model compar-
ison. Perhaps unintuitively, even cases with complete data
but an anomalous longitudinal trend can have influence on
the conclusions of a MAR–MNAR model comparison. For
instance, Kenward (1998; followed by Crouchley & Ganjali,
2002; Molenberghs et al., 2001; Thijs et al., 2000; Verbeke,
Molenberghs, et al., 2001) were interested in predicting
Time 2 milk yield from Time 1 milk yield in a sample
of cows. Two ill cows had qualitatively different yield pat-
terns from the other cows. Although these two ill cows had
complete data, they were influential on the model fit com-
parison between a MAR model (that allowed dropout to
depend only on Time 1 milk yield) versus a MNAR model
(that also allowed dropout to depend on Time 2 milk yield).
The absence of these two ill cows flipped the model rank-
ing from supporting MNAR to supporting MAR.6 Although
cases with extreme or outlying observed scores are not nec-
essarily influential on fit results, and vice versa (e.g., Pek
& MacCallum, 2011), in several previous studies a case
with an extreme longitudinal trend in the outcome (e.g.,
“an unusually high profile, or a somewhat atypical serial
correlation behavior”; Jansen et al., 2006, p. 844; see also
Beunckens et al., 2007; Enders, 2011; Henderson, 1994) was
also found influential on a MAR–MNAR model compari-
son. Later, the Example 2 illustration involves a case with
complete data but an unusual outcome trend, and this case
influences conclusions of a MAR–MNAR comparison.

Population heterogeneity in the missingness mechanism,
on the other hand, is an intuitive reason for case influence
on a MAR–MNAR model comparison (e.g., Thijs et al.,
2000). However, prior research has actually found popula-
tion heterogeneity in the missingness mechanism to be a less
likely risk factor for influence (Jansen et al., 2006), except
in combination with other predisposing factors. Consider the
situation in which a single case dropped out nonrandomly
(e.g., its probability of missingness was generated by an
MNAR process), and all other cases dropped out randomly
(e.g., their probabilities of missingness were generated by,

6Previous model comparisons involving this milk yield example used an
LRT. We replicated their pattern of results using the diagnostics described
in this article. For instance, in the full sample �BIC = 1.508, favoring the
MNAR model. But Cows 4 and 5 were each flagged as potentially influ-
ential on model ranking using Equation 5: for Cow 4 �indBICi = 3.30
and for Cow 5 �indBICi = 3.28. To confirm their influence, first Cow
4 was deleted, which indeed reversed support at the sample level to the
MAR model, �BIC(−i)= –1.17; additionally, deleting Cow 5 increased
sample-level support for the MAR model from weak to strong (�BIC(−i)=
–4.63).

say, a MAR process). Prior research found that, in this sit-
uation, the single case is unlikely to be influential on a
MAR–MNAR comparison if, for instance, it dropped out at
the beginning of the study (which implies little information
contributed toward discriminating between the competing
models) and if its data deviated little from the sample mean
trajectory (Jansen et al., 2006). However, Example 1 later
illustrates that a single case that dropped out nonrandomly,
but with neither of these characteristics, can influence a
MAR–MNAR comparison.

In sum, this section reviewed some general model and
data conditions as well as some case-specific conditions that
might increase the risk of case influence on a MAR–MNAR
model fit comparison. Although these conditions tend to
increase the risk of case influence, they do not guaran-
tee the presence of influence. In an empirical setting, we
will be able to diagnose whether a case is influential, but
we may not be able to definitively determine why it is
influential. This determination might require obtaining infor-
mation beyond the diagnostics by further substantive study,
rechecking data integrity, and considering alternative model
specification(s).

EXAMPLES

In the two illustrations that follow (one simulated, one empir-
ical), we focus on comparisons of a target MAR model and a
common selection-type MNAR model. In each illustration,
there is an influential case displaying some of the case-
specific characteristics that the previous section described as
potentially increasing the risk of case influence. Although in
practice it may be useful to compare each MAR model to
more than one MNAR model (see Discussion), for now we
limit ourselves to one illustrative MNAR model per example.
A different selection-type MNAR model is applied in each
example, for theoretical reasons (following Graham, 2012;
Hedeker & Gibbons, 2006). Mplus 7.0 (Muthén & Muthén,
1998–2013) was used for example analyses.

Simulated Example

Often in published individual trajectory plots from develop-
mental studies and longitudinal treatment-outcome studies
with attrition there is a single case that (a) drops out in
the middle of the study, and (b) also deviates considerably
from the sample mean trajectory prior to dropout (i.e., some
heterogeneity in the outcome pattern). For instance, this pat-
tern is observed in data from Neri et al. (2013), Barry et al.
(2005), Pan, Rowe, Singer, and Snow (2005), Yancy et al.
(2010), and Grober et al. (2008). Example 1 is a simulated
illustration of the possibility for influence on a MAR–MNAR
model comparison when a single case of this description has
a heterogeneous missingness mechanism. Specifically, one
case is generated with an MNAR missingness mechanism
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whereas the rest of the cases adhere to a MAR missingness
mechanism. We apply the diagnostics to assess case influ-
ence in this simulated example. This simulated illustration
involves the common context of a treatment-outcome study
with dropout, although the diagnostics would apply also to
nontreatment studies and to MNAR models for intermittent
missingness (see Discussion).

In Example 1, the outcome-generating mechanism—a
Gaussian conditional latent growth model in Equation 7—
was used to generate five repeated measures for 150 cases.
For 149 cases, the missingness mechanism was the MAR
logistic dropout submodel in Equation 8. For one case, the
missingness mechanism was the MNAR Diggle–Kenward
(1994) logistic dropout submodel in Equation 9.7 In total,
18% of persons dropped out and dropout occurred at the
final two time points out of five repeated measures. Figure 1
depicts a subset of 30 trajectories from this sample. Before
cases dropped out, their trajectory line is solid; if cases
dropped out, the dashed line depicts what their y scores
would have been. Case 117, with a relatively extreme
outcome pattern due to sampling variability, dropped out
nonrandomly (MNAR). Substantive motivation for consid-
ering a Diggle–Kenward (1994) MNAR model is based on
the expectation that the probability of dropout at a given
time point might depend directly on what that person’s
unobserved y score would have been, after controlling for
observables (e.g., treatment status; y score at a previous time
point).

The MAR model is given in Equations 7 and 8 and the
MNAR model is Equations 7 and 9:

yit = η0i + η1iλt + εit

η0i = γ00 + γ01treati + ζ0i

η1i = γ10 + γ11treati + ζ1i

(7)

where εit ∼ N(0, σ 2
t ) and

[
ζ0i

ζ1i

]
∼ N

([
0
0

]
,

[
ψ00

ψ10 ψ11

])

logit(Pr(di = t|di ≥ t; yi, treati)) = α0t + α10treati + α20yit−1

(8)

logit(Pr(di = t|di ≥ t; yi, treati)) = α0t + α10treati

+ α20yit−1 + α30yit
(9)

7Parameters for the outcome-generating mechanism were: γ00 =
2; γ10 = −.5; γ01 = 0; γ11 = −1; σ 2

1 −σ 2
T = (1.4,.9,.73,.65,.6); τ00 = .8;

τ10 = .1;τ11 = .4. Parameters for the missingness mechanism included:
α04 = α05 = −2.5;α10 = .1;α20 = .2;α30 = 1. Parameters were chosen to
give rise to a pattern of observed and missing data with features related to
Neri et al. (2013), Barry et al. (2005), Pan et al. (2005), Yancy et al. (2010),
or Grober et al. (2008) in the manner described in the text.
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FIGURE 1 Example 1 simulated data trajectories before dropout (solid
lines) and after dropout (dashed lines) for subset of 30 cases. Notes. Solid
lines connect observed data points. Dashed lines denote unobserved data.

In the conditional latent growth model in Equation 7, yit is
the outcome for person i at time t, where t = 1 . . . 5. η0i

and η1i are intercept and linear growth coefficients, respec-
tively, which are themselves predicted by treatment, treati.
Note that λt represents fixed linear time scores of 0, 1, 2, 3,
4 for times t = 1–5. εit is a normally distributed time-specific
residual and ζ0i and ζ1i are bivariate normally distributed
person-specific random effects. di is a dropout indicator for
person i. In Equations 8 and 9 a person’s probability of
dropout at time t, where t = 4 or 5, is predicted by treati
and that person’s outcome score at time t–1 (i.e., yit−1).
In Equation 9, dropout at time t is also predicted by that per-
son’s (unobserved) outcome score at time t, consistent with
MNAR.

Designating the MAR model (Equations 7 & 8) as Model
A8 and the MNAR model (Equations 7 & 9) as Model B,
the comparison of Models A and B has �df = 1. Fitting
both models yields �BIC = 10.45 and �AIC = 13.46.
Both indices indicate support for the MNAR model (of a
very strong degree according to Raftery [1995], for �BIC).
However, one case, Case 117, is flagged as potentially influ-
ential on model ranking according to �indBICi or �indAICi

using the definitions in Equations 5 and 6. The �indBICi=
13.84 (as depicted in the index plot in Figure 2)9 and

8Technically no missingness model is needed under MAR, and as such
the estimates for the outcome-generating process parameters in the MAR
model should stay the same regardless of whether this logistic dropout
model is included or not. Nonetheless, it is conventional to include the
logistic dropout model conditional on observables in the MAR specifica-
tion when it is to be compared to a more elaborated logistic dropout model,
in the MNAR specification, so the likelihoods are on the same metric (see
Muthén et al., 2011).

9�indAICi and �indBICi index plots will only differ by a constant so we
only present one of them here.
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FIGURE 2 Index plot for �indBICi in Example 1.

�indAICi= 13.83. Deleting Case 117 confirms that this case
is influential on the sample-level ranking of �BIC, which
now supports the MAR model (�BIC(−i) = −1.38), and
that Case 117 is influential on degree, but not direction, of
evidence for �AIC (�AIC(−i)= 1.63).

Example 1 illustrates the possibility that a case gener-
ated from a heterogeneous missingness mechanism (here, an
MNAR mechanism), could have influence on sample-level
results of a MAR–MNAR model comparison. Other char-
acteristics that increased this case’s potential for influence
included when it dropped out and how the case’s outcome
data deviated from the sample mean trajectory (Case 117’s
yi4 and yi3 scores were relatively large at and before time
of dropout, as shown in Figure 1). In an empirical study,
we would not be able to conclude from these results that
the influential Case 117 was MNAR, but we could con-
sider heterogeneity in the missingness mechanism a potential
contributing factor.

Empirical Example

Example 2 is an empirical illustration that cases with anoma-
lous trends can dominate the MAR–MNAR model ranking
result even if they have complete data (see also Enders,
2011; Jansen et al., 2006). This example involves N =
170 cases from a depression treatment trial (see Dmitrienko,
Chuang-Stein, & D’Agostino, 2007). Treated and control
participants were assessed five times on the outcome of
interest: the Hamilton Depression Rating Scale (Hamilton,
1980), where higher scores denote more depressive symp-
toms. Whereas 10% of participants dropped out by Time
2, 36% dropped out by Time 5. Here we are interested in
comparing the fit of a MAR latent growth curve model with
an MNAR model allowing for random-coefficient dependent
missingness (in particular, a Wu–Carroll [1988] random
coefficient selection model). Substantive motivation for

considering a Wu–Carroll (1988) MNAR model is based
on the expectation that the probability of dropout at a
given time point may depend on one or more latent growth
coefficients (here, η0i and η1i) characterizing an individual’s
entire change process (e.g., Feldman & Rabe-Hesketh,
2012)—rather than depending directly on unobserved
outcome scores at particular time point(s), as in Example 1’s
Diggle–Kenward (1994) MNAR model.

The rate of change was theoretically expected to be
nonlinear—with depression scores on average decreasing
more rapidly at earlier time points (as in other similar studies;
Baldwin, Berkeljon, Atkins, Olsen, & Nielsen, 2009). The
outcome-generating process in both our MAR and MNAR
models represented the nonlinear mean trend semiparamet-
rically using a shape-factor model (also called a freed-
loading model; see Bollen & Curran, 2006). Specifically, the
outcome-generating process was specified as in Equation 7,
except that λ2, λ3, and λ4 were freely estimated to allow
the model-implied mean trend to take on a flexible func-
tional form. The missingness mechanism under MAR, in
Equation 10, allows the probability of dropout at time t,
(with dropout occurring at t = 2–5), to depend only on treat-
ment condition. Under MNAR the missingness mechanism
is given in Equation 11, where dropout is also a function of
η0i and η1i.

logit(Pr(di = t|di ≥ t; treati)) = α0t + α10treati (10)

logit(Pr(di = t|di ≥ t; ηi, treati)) = α0t + α10treati

+ α20η0i + α30η1i

(11)

Designate the MAR model (Equation 10 and Equation 7—
with λ2–λ4 estimated) as Model A. Designate the MNAR
model (Equation 11 and Equation 7—with λ2–λ4 estimated)
as Model B. This model comparison has �df = 2. At the
sample level, information criteria support the MAR model;
�AIC = –3.96, and �BIC = –10.23 (with the latter indi-
cating very strong support for the MAR model at the sample
level). Inspection of the influence diagnostics, however,
indicates that two cases contribute disproportionately to this
sample-level model ranking, and that these two cases to some
extent counterbalance each other’s contributions. These two
cases are here labeled Case 11 and Case 145 in the �indAICi

index plot in Figure 3. Case 11 has �indAICi = −7.53 and
�indBICi = −7.54; it strongly favors the MAR model, has
complete data, and is in the control group. Case 145 has
�indAICi = 5.22 and �indBICi = 5.21; it heavily favors the
MNAR model, dropped out (after the third time point), and
is in the treatment group. Whereas both cases are potentially
influential on degree of evidence, most seriously Case 11 is
flagged as potentially influential on �AIC model ranking
according to the definition in Equation 6. To conserve space,
we focus further pedagogical investigation on Case 11.
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FIGURE 3 Index plot for �indAICi in Example 2.

Potential influence for the flagged Case 11 is confirmed
with exact case deletion. When Case 11 is deleted, the model
ranking indeed reverses for �AIC; that is, �AIC(−i) = 3.08
(now preferring MNAR at sample level), whereas for �BIC
the degree of evidence for the MAR model is reduced;
�BIC(−i) = –3.19. In other words, Case 11 has influence
on the sign of �AIC and the magnitude of �BIC, favoring
MNAR.

Although Cases 11 and 145 differ on a variety of features
(dropout vs. completer; treatment vs. control), they both have
relatively anomalous functional forms, which may relate
to their potential for influence on the model comparison
result. Figure 4 depicts their observed trajectories (bold solid
lines), alongside other cases’ observed trajectories (nonbold
solid lines), and the overall model-implied mean trajecto-
ries for both models (dashed lines). Additionally, model-
implied, individual-specific trajectories for Case 11 are, for
the MAR model, ŷi|ηi, treati = [12.04, 17.59, 21.80, 24.81,
24.59]; and, for the MNAR model, ŷi|ηi, treati =[18.05,
19.71, 21.11, 21.93, 21.83]. Comparison of these model-
implied, individual-specific trajectories against Case 11’s
(bold, solid) observed trajectory in Figure 4 might sug-
gest why Case 11 greatly prefers the MAR model accord-
ing to �indAICi and �indBICi . That is, even though both
models accommodate individual differences in level and
shape via two random effects, Case 11’s observed trajec-
tory in Figure 4 is closer to ŷi|ηi, treati from the MAR
model.

In sum, Example 2 illustrates how one or a few cases can
disproportionately affect sample-level conclusions about the
plausibility of the specified MAR versus MNAR missingness
processes. Cases, such as Case 11, with unusual trends might
be able to dominate the MAR–MNAR model ranking result
despite having complete data (also see Enders, 2011; Jansen
et al., 2006).
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FIGURE 4 Observed data trajectories for Example 2 with Cases 11 and
145 shown in bold and the model-implied means for the missing not at ran-
dom (MNAR) model (short dash) and missing at random (MAR) model
(long dash) superimposed. Note. Model-implied means were obtained from
the full N analysis.

In practice, a researcher would not need to permanently
omit an influential case (e.g., Case 11) from the analy-
sis, particularly without additional substantive rationale from
follow-up investigation (e.g., indication of an illness, adverse
event, or data entry or coding error). Instead, after deciding
which fit index or indices to interpret (here, AIC), here it
could simply be reported that a MAR–MNAR model com-
parison was performed, the result of which was sensitive
to the influence of a particular case. Parameter estimates
from the pair of fitted models—with and without the influ-
ential case—could be inspected, as shown in Table 1. The
researcher might start by interpreting the best fitting model
in the full N analysis (here, the MAR model; Table 1, col-
umn 2), while noting the sensitivity of the results. Then
it could be noted whether different substantive conclusions
would be drawn about any particular parameter estimates
based on the best fitting (N – 1) model, omitting the influ-
ential case (here, the MNAR model in Table 1, column 3).
For instance, comparing Table 1 columns 2 versus 3 (both
in bold), there is the same pattern of significant and non-
significant parameter estimates, and furthermore significant
estimates are of the same sign. However, particular param-
eter estimates do differ in magnitude (e.g., the mean slope,
γ10, is 21% smaller in absolute value in column 3 than
in column 2). In conclusion, although inferences about the
missingness mechanism are sensitive to the influence of par-
ticular case(s) in this application, the overall substantive
conclusions for the outcome-generating process are quite
robust. That is, in both columns, there is a similar nonlinearly
decreasing mean trend, a similar magnitude of individual
variation in level and change, and a nonsignificant effect of
treatment on intercepts and slopes.
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TABLE 1
Parameter Estimates for the Full N and the N – 1 Model Comparisons in Example 2

Full N Analysis N – 1 Analysis (Omitting Case 11)

MNAR Model MAR Model MNAR Model MAR Model

Parameter Estimate SE Estimate SE Estimate SE Estimate SE

γ00 15.364∗ .609 15.286∗ .629 15.128∗ .610 15.372∗ .631
γ10 −1.157∗ .204 −1.295∗ .201 −1.018∗ .204 −1.355∗ .193
γ01 .328 .853 .456 .878 .383 .846 .377 .879
γ11 −.352 .257 −.399 .267 −.338 .243 −.306 .250
λ2 1.765∗ .241 1.768∗ .216 1.807∗ .258 1.798∗ .221
λ3 3.240∗ .294 3.112∗ .262 3.447∗ .323 3.243∗ .269
λ4 4.107∗ .290 4.071∗ .246 4.387∗ .330 4.141∗ .256
ψ00 19.898∗ 3.198 26.823∗ 4.300 20.811∗ 3.201 25.722∗ 4.194
ψ11 1.248∗ .322 1.856∗ .407 1.280∗ .297 1.529∗ .364
ψ10 .569 .692 −1.618 1.077 .429 .724 −1.032 .991
σ 2

1 14.275∗ 2.549 6.573∗ 3.172 12.204∗ 2.533 7.836∗ 3.100
σ 2

2 15.419∗ 2.239 15.686∗ 2.235 15.059∗ 2.165 15.384∗ 2.177
σ 2

3 19.203∗ 2.860 19.866∗ 2.907 17.406∗ 2.530 18.158∗ 2.685
σ 2

4 6.648∗ 2.206 4.772∗ 2.014 4.140∗ 1.775 3.550∗ 1.835
σ 2

5 17.147∗ 2.902 16.949∗ 2.903 18.278∗ 3.003 17.703∗ 2.938
α02 2.417∗ .813 2.198∗ .290 2.686∗ .771 2.183∗ .290
α03 2.623∗ .844 2.465∗ .331 2.880∗ .802 2.449∗ .331
α04 2.285∗ .855 2.206∗ .313 2.535∗ .808 2.190∗ .313
α05 1.734∗ .877 1.802∗ .290 1.962∗ .831 1.784∗ .290
α10 .314 .332 .001 .271 .297 .331 −0.014 .271
α20 .047 .042 — — .059 .042 — —
α30 .706∗ .285 — — .724∗ .278 — —

Note. MNAR = missing not at random; MAR = missing at random. Parameter estimates shown in bold correspond to the best fitting model for the full N
and the best fitting model for the N – 1 sample, according to Akaike’s Information Criterion.

aIn Example 2, the MAR model is Equation 10 and Equation 7—with λ2 – λ4 estimated, and the (Wu–Carroll) MNAR model is Equation 11 and
Equation 7—with λ2 – λ4 estimated.

∗p < .05.

DISCUSSION

Social scientists might at times have substantive reasons to
expect that their missing data mechanism does not adhere
to MAR assumptions. In this situation, researchers often
continue to use missing data handling methods that assume
MAR, hoping that after conditioning on diverse observed
variables potentially related to missingness and to out-
come(s), bias is mostly ameliorated (Schafer & Graham,
2002). In this situation, as another option, an MNAR model
can be applied to jointly model interdependent outcome-
generating and missingness mechanisms. Such MNAR mod-
els have the potential to prevent bias in parameters of the
outcome-generating process (of key interest to investiga-
tors) that could otherwise arise due to MNAR missing-
ness. As awareness of MNAR models has increased, more
empirical applications conduct fit comparisons between a
target MAR model and substantively reasonable MNAR
model. Because the results of such fit comparisons are valid
under the assumptions of the stipulated MNAR mecha-
nism (e.g., Verbeke, Lesaffre, et al., 2001), methodologists
have encouraged two kinds of sensitivity analyses to exam-
ine the robustness of these results. One kind of sensitivity

analysis—recently demonstrated in several social science
applications (e.g., Enders, 2011; Feldman & Rabe-Hesketh,
2012; Muthén et al., 2011; Xu & Blozis, 2011)—involves
examining parameter estimates and fit across not one but
several competing MNAR models, each imposing alterna-
tive assumptions. A second kind of sensitivity analysis—
presently underused in social science applications—involves
examining the robustness of a given MAR–MNAR fit com-
parison to influential cases(s). As explained by Thijs et al.
(2000), “influential subjects can have large impact on the
substantive conclusions, especially in the context of selection
models for incomplete data, due to the well-known sensitiv-
ity to model assumptions, and therefore formal tools for their
detection are to be welcomed” (p. 644).

In response, this article suggested two convenient diag-
nostic tools for detection of global case influence on MAR–
MNAR model comparisons; neither has been used before
in this context. Global case influence diagnostics previously
used in this context were not convenient (i.e., required N iter-
ative refittings per model; e.g., Kenward, 1998; Molenberghs
et al., 2001; Thijs et al., 2000). This is particularly bur-
densome for selection-type MNAR models, as they can
require high-dimensional numerical integration. Here we
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suggested that two noniterative approximate global influence
diagnostics, �indAICi and �indBICi , be used to flag case(s)
that are potentially influential on MAR–MNAR model fit
rankings according to �AIC or �BIC. Following the ratio-
nale in Sterba and Pek (2012), we suggested—for flagged
cases only—confirming the presence or absence of influence
with exact case deletion. This strategy drastically reduces
potential refittings per model to perhaps one or two needed
to confirm whether conclusions are susceptible to case influ-
ence. Moreover, the �indAICi and �indBICi diagnostics we
suggested are generally applicable and user-friendly; their
calculation requires by-products of FIML estimation that
several commercial software programs already output, as
demonstrated for one software program (Mplus) in the online
Appendix.

Examples 1 and 2 were chosen for pedagogical purposes
to illustrate interpretation of the diagnostics in the context of
influential case(s). In practice, however, it is not uncommon
to find no influential cases. If no cases are flagged as influen-
tial, researchers can report that the sample-level conclusions
about model ranking are robust to the contribution of an indi-
vidual case, leading to additional confidence in these results.
On the other hand, if at least one case is flagged (and con-
firmed) as influential on a MAR–MNAR model comparison,
such sensitivity needs to be reported. Particularly, it would
be useful to report to what extent the final model ranking and
the parameter estimates of substantive interest would change
if that case were excluded or included. An example of how
such sensitivity analyses can be reported was shown in the
empirical illustration.

The fundamental importance of a case influence analy-
sis for a MAR–MNAR model comparison is to ensure that
a researcher is informed if his or her model comparison
result can be unduly influenced by a particular case. Earlier
we discussed several data and model conditions and case-
specific characteristics that could increase the risk of case
influence, all else being equal. Two of these case-specific
characteristics were highlighted in the examples. In practice,
several contributing risk factors could apply in a particular
application (e.g., Verbeke et al., 2008).

Multiple Model Comparisons

In illustrative examples presented here, one target MAR
model was compared to a particular substantively motivated
MNAR model, and case influence was investigated in a
sensitivity analysis. As mentioned earlier, another kind of
sensitivity analysis involves comparing a target MAR model
to more than one MNAR model, or to more than one speci-
fication of a given MNAR model (e.g., Hedeker & Gibbons,
2006; Michiels et al., 2002; Verbeke, Lesaffre, et al., 2001).
Combining these two kinds of sensitivity analyses, case
influence could be investigated for some or all pairs of mod-
els under comparison. For instance, we might be interested
in an additional MAR–MNAR comparison for empirical

Example 2—say, a comparison of a Diggle–Kenward MNAR
model to a MAR model10 where dropout is conditioned
on yit−1 (Equations 8 and 7 with λ2–λ4 estimated). In this
comparison, �AIC and �BIC support the MNAR Diggle–
Kenward model (�AIC = 5.79,�BIC = 2.65) at the sample
level. Case 11 again has the most extreme �indBICi and
�indAICi , and can be flagged (and confirmed) as influen-
tial on ranking for �BIC, but not �AIC. (Hence, without
Case 11, the same sample-level ranking pattern is obtained
as in Example 2: AIC supports the MNAR model and BIC
weakly supports the MAR model.) Several factors described
earlier are operating here again to increase the risk of
influence: a case-specific condition (Case 11’s anomalous
observed trend) as well as general data and model conditions
(the overall modest N and relative closeness of �BIC and
�AIC to 0 at the sample level).

When conducting multiple model comparisons, a
researcher needs to decide whether to retain or omit an influ-
ential case identified in one model comparison when con-
ducting other comparisons. This decision can be informed by
the researcher’s outside investigation into potential explana-
tions for that case’s influence. If the case was determined
to be a data coding error, for example, removing it from
other model comparisons seems reasonable. Otherwise, if a
known cause for the case’s influence was not determined, a
researcher may consider retaining the case in other compar-
isons for the purposes of examining and reporting when it,
or a different case, might be influential. If a different case is
influential in a subsequent comparison, this could highlight
which aspects of a model specification are needed to accom-
modate a particular case’s data characteristics, or suggest
ideas for new specifications.

Extensions and Limitations

Several extensions and limitations deserve mention. First,
global case influence diagnostics (including those discussed
here) traditionally are not designed to detect “clumps” of
cases that are jointly influential; a clump might mask detec-
tion of influence for cases in the clump (Lawrance, 1995).
Some global influence diagnostics have been modified to
detect joint influence among k cases, for a prespecified num-
ber k > 1 (Bruce & Martin, 1989; Thijs et al., 2000).
Alternatively, it would be possible to repeatedly apply the
diagnostics that we suggested here for several cases in a sus-
pected clump. We could then recheck for influential cases
with Equations 3 or 4 after deleting one flagged case at a time
(see Sterba & Pek, 2012). See Footnote 6 for an illustration.

10Here we are not interested in comparing the MAR model from
Example 2 to a Diggle-Kenward MNAR model because these models differ
in parameters pertaining to not only MNAR (the effect of yit on dropout) but
also MAR (the effect of yit−1 on dropout). If this comparison were of inter-
est, note that �AIC and �BIC support the MNAR model (�AIC = 22.29
and �BIC = 16.02, where �df = 2) and no influential cases are flagged.
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When at least one case is influential, a lack of robustness of
the sample-level result to single-case contributions has been
demonstrated. In theory, (latent) pattern mixture MNAR
models could instead be employed to accommodate larger
clumps possibly thought to arise from unobserved popu-
lation heterogeneity in the missingness mechanism (e.g.,
Beunckens, Molenberghs, Verbeke, & Mallinckrodt, 2014;
Dantan, Proust-Lima, Letenneur, & Jacqmin-Gadda, 2008).
A practical complication is that classes extracted by latent
pattern mixture models might serve to approximate data fea-
tures other than heterogeneity in the missingness mechanism
(Gottfredson, Bauer, & Baldwin, 2014).

Second, selection-type MNAR models that were illus-
trated here in examples only considered one particular kind
of missingness—dropout. Certain MNAR models, including
shared-parameter models, readily accommodate intermit-
tent missingness (e.g., Follmann & Wu, 1995; Lin et al.,
2004; Little, 1995). Case influence diagnostics described
here would be equally applicable in that setting.

Third, although in this article we have focused on MAR–
MNAR model comparisons, a researcher might also have
interest in comparing fit and parameter estimates across dif-
ferent MNAR models. Researchers must keep in mind that
comparing fit with �AIC or �BIC (and diagnosing influ-
ence using �indBICi and �indAICi ) requires that the same set
of dependent variables be used across the models under com-
parison (e.g., the repeated measure outcomes and the dropout
indicators; Burnham & Anderson, 2002). For instance, the
Wu–Carroll MNAR dropout model and Diggle–Kenward
MNAR dropout model meet the requirement of maintaining
the same set of dependent variables with each other, but nei-
ther may meet the requirement with other MNAR models
allowing for intermittent missingness.

Conclusions

Commonly used estimation routines (e.g., FIML) accom-
modate MAR missingness, but not MNAR missingness.
Incorrect assumptions about the missingness mechanism
have the potential to induce bias in parameter estimates
of inferential interest. Comparisons of MAR and MNAR
model(s) have become more common, particularly in
treatment-outcome studies where MNAR missingness might
be suspected on substantive grounds. The fact that the results
of these fit comparisons can be sensitive to case influence
is underappreciated in social science research. This article
illustrated the calculation, interpretation, and implementa-
tion of two convenient diagnostics suited for detecting case
influence on MAR–MNAR model comparisons. We hope
that this article increases awareness of the potential for case
influence on MAR–MNAR model comparison results and
increases understanding of how to detect it.
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