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Individual growth trajectories of psychological phenomena are often theorized to be nonlinear.
Additionally, individuals’ measurement schedules might be unique. In a structural equation
framework, latent growth curve model (LGM) applications typically have either (a) modeled
nonlinearity assuming some degree of balance in measurement schedules, or (b) accommo-
dated truly individually varying time points, assuming linear growth. This article describes
how to fit 4 popular nonlinear LGMs (polynomial, shape-factor, piecewise, and structured
latent curve) with truly individually varying time points, via a definition variable approach. The
extension is straightforward for certain nonlinear LGMs (e.g., polynomial and structured latent
curve) but in the case of shape-factor LGMs requires a reexpression of the model, and in the
case of piecewise LGMs requires introduction of a general framework for imparting piecewise
structure, along with tools for its automation. All 4 nonlinear LGMs with individually varying
time scores are demonstrated using an empirical example on infant weight, and software syntax
is provided. The discussion highlights some advantages of modeling nonlinear growth within

structural equation versus multilevel frameworks, when time scores individually vary.
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Many longitudinal data sets in the social sciences have
truly unique, individually varying measurement schedules
(Cook & Ware, 1983; Finkel, Reynolds, McArdle, Gatz, &
Pedersen, 2003; Mehta & West, 2000; Xu, Styner, Gilmore,
Piven, & Gerig, 2008). Such data structures can arise when
time is measured very precisely (e.g., age in days or months
rather than years) and data collection schedules vary over
persons. Other possibilities include daily diary studies with
signal- or participant-initiated response schedules (Walls &
Schafer, 2006), or longitudinal studies beginning with a ret-
rospective report of a prior event that occurred at different
times for different persons (Blozis & Cho, 2008).
Researchers may be interested in using such longitudinal
data to model growth trajectories in a social or behavioral
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construct. If followed for a long enough time span, such
trajectories are likely to exhibit nonlinear change—in that
the construct has a nonlinear relationship to time. Nonlinear
change is posited by developmental theories in, for instance,
cognitive aging (Finkel et al., 2003; Hertzog & Nesselroade,
2003), literacy (Skibbe, Grimm, Bowles, & Morrison, 2012),
information seeking (De Vos & Freese, 2011), functional
health (Haas, 2008), pediatric brain imaging (Xu et al.,
2008), and math ability (Harring, 2009). Hence, important
initial tasks for the researcher include determining the func-
tional form of the mean trend over time, often by comparing
alternative nonlinear models (by which we mean mod-
els that accommodate nonlinearity with respect to time'),
and determining the extent to which individual growth
trajectories vary around that mean trend. Growth curve

'Some models discussed later (namely, structured latent curve [SLC]
models) also allow certain parameters to enter the model nonlinearly. This
kind of nonlinearity is distinguished from whether a model accommodates
a nonlinear relationship between the construct and time (our focus here).
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TABLE 1

Case |, Il, and lll Unbalancedness and Their Respective Latent Growth Model Specification and Estimation

Data Model Specification

Model Estimation

Case I: Observed data are
balanced

All persons are measured at the same
occasions, and there are no missing
data.

Persons may contribute data at
different occasions and different
numbers of occasions, so long as the
maximum number of possible
occasions across the sample as a
whole remains limited.

Factor loadings are fixed to the same
set of time scores for all persons.

Case II: Complete data are
balanced

Factor loadings are fixed to the same
set of time scores for all persons.

Case III: Truly individually No two people need be measured at
varying exactly the same occasions and
persons can have different numbers
of occasions.

Factor loadings for Person i are fixed
to the observed measurement times
for Person i. Loadings are definition
variables—fixed parameters
assigned the values of a predictor
(time) that varies over persons.

Estimation methods (e.g., conventional

maximum likelihood [ML]) employ
sufficient statistics as input.

Full information ML (FIML) is employed

to allow individual contributions to the
likelihood. In Person i’s contribution, the
dimensionality of data vectors and
parameter matrices are individual-
specific (due to missing data) to conform
with available occasions for Person i.

FIML is employed. Individual

contributions to the likelihood can now
depend on individual-specific values of
time scores (due to definition variables)
as well as individual-specific
dimensionality of data vectors and
parameter matrices (due to missing data).

Note. Specification and estimation methods are backward compatible (e.g., Case II methods accommodate Cases I or II; Case III methods accommodate

Cases I-II).

models can be used to accomplish these tasks. Growth curves
can be fit using a multilevel modeling (MLM; Raudenbush &
Bryk, 2002) or structural equation modeling (SEM) frame-
work (e.g., Bollen & Curran, 2006; McArdle & Epstein,
1987; Meredith & Tisak, 1990). This article concerns growth
curve models in an SEM framework; when using this frame-
work we call them latent growth curve models (LGMs).
Historically, one distinction between the SEM and MLM
approaches was that the former placed certain restrictions on
the nature and spacing of measurement occasions, whereas
the latter did not. This distinction has eroded over the
course of the last two decades, in the following manner.
Table 1 defines and distinguishes among three types of
(un)balancedness, labeled Case I (observed data are bal-
anced), Case II (complete data are balanced), and Case III
(truly unique, individually varying measurement occasions;
e.g., Raudenbush & Bryk, 2002). Model specification and
estimation methods needed to fit LGMs with Case I, II,
or III data in an SEM framework are also described in
Table 1. The LGM model specification and estimation meth-
ods accommodating Case I data were widely used through
the early 1990s (e.g., Willett & Sayer, 1994, 1995).2 Starting
in the mid-1990s, estimation methods for fitting LGMs
with Case II data became available (Arbuckle, 1995, 1996;
Neale, 1994) and were widely employed (e.g., Bollen &
Curran, 2006; T. E. Duncan, Duncan, & Strycker, 2006;
Ferrer, Hamagami, & McArdle, 2004; McArdle & Bell,

2If there were a limited number of different measurement schedules,
a modified specification was used that placed individuals with the same
schedule in a group and fit the LGM simultaneously to all groups (e.g.,
Duncan & Duncan, 1994; McArdle & Hamagami, 1992; Muthén, Kaplan,
& Hollis, 1987).

2000; Raykov, 2005). For over a decade, LGM specifica-
tions that allow Case III data have been available in SEM
software (e.g., Mplus, Muthén & Muthén, 1998-2012; Mx,
Neale, Boker, Xie, & Maes,1999-2003; see also Hamagami,
1997; OpenMx, Boker et al., 2011).

However, demonstrations of how to accommodate truly
individually varying time scores with LGMs to date have
concerned linear LGMs (i.e., LGMs that accommodate
a constant relationship between the construct and time;
e.g., Bauer, 2003; Burt, McGue, Carter, & Iacono, 2007;
Hamagami, 1997; Mehta & West, 2000; Preacher, Wichman,
MacCallum, & Briggs, 2008). Some methodological sources
on LGM in an SEM framework have allowed for the
possibility of individually varying time scores with certain
parametric nonlinear LGMs (polynomials or SLC; e.g.,
Blozis, 2004, 2007; Blozis, Conger, & Harring, 2007) but
suggested this was not possible for shape factor LGMs.
Furthermore, no studies have demonstrated implementing
semiparametric LGMs (piecewise or shape-factor) with truly
individually varying time scores in an SEM framework, to
our knowledge. More generally, a detailed treatment of how
to accommodate truly individually varying time scores in a
variety of nonlinear LGMs in an SEM framework is lacking,
but this extension has been recommended (Mehta & West,
2000, p. 40).

Perhaps relatedly, the vast majority of LGM applications
using SEM continue to assume data are Case I or II. In these
applications, a more precise measure of time, such as age in
days or months, might have first been rounded to age in years
to facilitate assuming that observed or complete data are
balanced. Some undesirable consequences of treating indi-
vidually varying time scores as if they are balanced were
discussed by Blozis and Cho (2008), Mehta and West (2000),
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and Maes and Neale (2009). These consequences can include
biased intercept variance, intercept—slope covariance, and
residual variance, but can differ depending on the fitted
model and nature of individual variation in time scores.
There are advantages to staying within an SEM framework,
rather than moving to MLM, when confronted with indi-
vidually varying time scores. This is particularly true when
further modeling goals include specifying complex structural
relations (e.g., directional paths among parallel growth pro-
cesses) and latent variable predictors or outcomes of growth.
See the Discussion for other examples.

This article fills an existing gap by describing how to
fit four popular nonlinear LGMs—polynomial, shape-factor,
piecewise, and an SLC (exponential)—with truly individu-
ally varying time scores in an SEM framework. Whereas
the extension from linear LGMs with individually varying
time scores is more intuitive for some models (polynomials,
SLC) it is more involved for others (piecewise, shape-factor).
The remainder of this article is organized as follows. First
we briefly review specification of the balanced (Case I or
I) linear LGM and contrast it with the Case III specifi-
cation. Next, we present the specification of polynomial,
shape-factor, piecewise, and exponential models, in turn,
for a balanced (Case I or II) LGM versus an individually
varying time score (Case III) LGM. Third, we briefly dis-
cuss two topics handled somewhat differently in Case I
and II versus Case III LGMs (model fit and missing data).
Fourth, we illustrate these models using a longitudinal study
of infant weight in the Philippines and supply accompa-
nying software syntax. We conclude with implications of
these extensions for practice when time scores individually
vary, including considerations for choosing among nonlinear
SEMs, and rationales for choosing between SEM and MLM
for modeling growth.

Subsequent sections assume time scores are already
in the desired metric of time. There are often alternative
metrics from which to choose within a given study; some
might entail more individual variation in time scores than
others. Although researchers might be more familiar with
thinking about individual variation in time scores when the
metric is age, when the desired metric is wave, there is
often still variation in actual data collection times around a
planned occasion. For instance, Coffey, Schumacher, Brady,
and Cotton (2007) attempted data collection at 2, 5, 10, 14,
21, and 28 days after last substance abuse, and considered
these waves as their metric of time. But there was doubtless
variation in the timing of individual data collection around
each attempted data collection occasion. Finally, examples
considered throughout subsequent sections assume time
scores have already been recoded to have the desired origin
(or O-point) and spacing of time (Biesanz, Deeb-Sossa,
Papadakis, Bollen, & Curran, 2004; Hancock & Choi,
2006). Also, for all persons time is coded with respect to
the same origin (see Blozis & Cho, 2008, or Mehta & West,
2000, for other options).

REVIEW OF LINEAR LGM

Balanced (Case | or Il)

The linear LGM is given as
Yi=An; +¢ ey

n, =K, +¢g (@)

y;isa T x 1 vector of repeated measures for person i, where
i=1...N. For Case I and I, T is defined in Table 2. y; is
a g x 1 vector containing person i’s scores on latent growth
factors—here, intercept (;) and linear slope (8;). n,, is a ¢
x 1 vector of growth factor means—here |1, and jg. €; is a
T x 1 vector of normally distributed time-specific errors for
person i, where g; ~ N(0, ®;) and usually @, = 6.1. ¢, is a
q x 1 vector of normally distributed person-specific devia-
tions from growth factor means where ¢; ~ N(0, ¥). Denote
the intercept variance ¢, linear variance vgg, and covari-
ance ¥,p. A is a T x g matrix of fixed time scores. The first
column, of 1s, defines level. The second column, with val-
ues proportional to measurement occasion, represents linear
change. Supposing T =7,

1 A 10
1 2 11
1 2 1 2

A=|1 ml=]1 3 3)
1 As 1 4
1 %6 15
1 A 16

In this Case I and II model specification, all persons are
assumed to be measured at the same occasions because
they are all assigned the same values in the second col-
umn of Equation 3. Persons are also assumed to be
measured at the same number of occasions because they
are assigned the same dimension of A in Equation 3.
In estimation, allowing for missing data using full infor-
mation maximum likelihood (FIML), persons could be
present for different numbers of occasions (Arbuckle,
1996).

Individually Varying Time Scores (Case Ill)

For Case III, T is defined in Table 2. Note that two alterna-
tive definitions for 7' are provided, and the choice between
them depends on the study design and chosen model. This
choice also has relevance for the construction of the analysis
data set. For the linear LGM with individually varying time
scores and T = 7, person i’s second column of loadings is
populated with values of the T observed time variables for
person i.
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TABLE 2
Number of Rows, T, in the Factor Loading Matrix Under Case I, Il, and Ill Specifications: Definitions and Example Designs

T (No. of Rows in Factor Loading Matrix)

Example Design(s)

Case I T = number of measurement occasions per T = 7 for a panel study where all persons are repeatedly measured at ages 15, 16,
person 17, 18, 19, 20, and 21 years, with no missingness.

Case II T = maximum number of possible T = 7 for a panel study where measurements for all persons were attempted at
measurement occasions across the entire ages 15, 16, 17, 18, 19, 20, and 21 years, but Person i contributes between
sample as a whole (no longer equivalent to 1 and 7 time points due to subject-initiated absences.
the number of measurement occasions per T = 7 for a cohort-sequential study where Cohort A is measured at 15, 16, 17,
person). A person might not be present at all and 18; Cohort B at 17, 18, and 19; and Cohort C at 19, 20, and 21 years.
occasions. Person i contributes a maximum of 4 time points, but 7 time points are

observed across the sample as a whole.

Case IIT Two alternative definitions of T’ For some designs, T definitions (a) and (b) imply the same loading matrix. Under

(a) T = the maximum number of possible
measurement “windows” across the entire
sample as a whole. (Here, a window is a
time span of actual data collection around a
common attempted occasion; an individual
can provide up to one measurement per
window but need not provide data at every
window. Windows could overlap in some
applications.) The shape-factor model
requires this definition.

(b) T = the maximum number of occasions for
which the design allows a single person to
provide data.

(a), T =7 if in a panel study everyone has the opportunity to be measured

7 times, but individual data collection times vary within measurement
windows. So long as at least 1 person has complete data, under (b), 7= 7 also.
For such designs, all 4 nonlinear LGMs are applicable.

For other designs, only T definition (b) is used. Under (b), 7 = 20 for a daily
diary study yielding up to 20 measurements per person on a purely
participant-initiated response schedule. Definition (a) is not used as there are
no common occasion windows. For such designs, the shape-factor LGM is not
applicable (see text).

For other designs, T definitions (a) and (b) imply different loading matrices but
can yield the same results. Consider a cohort sequential design in which
Person i has an opportunity to contribute data at up to 4 windows, although the
sample as a whole spans 7 windows. Under definition (a), 7 = 7. But under
definition (b), T = 4.3 For such designs, fitting a shape factor LGM requires
definition (a). Polynomial, piecewise, and SLC LGMs also require definition
(a) if they allow time-varying residual variances. (With time-invariant residual
variances the loading matrix under (a) collapses to the loading matrix under
(b) in full information maximum likelihood estimation).

Note. LGM = latent growth model; SLC = structured latent curve.

time;
timep
timej
timejy
time;s
time;g
time;;

“

When an observed variable (time) is placed into a parame-
ter matrix (lambda) it is called a definition variable (Mehta
& Neale, 2005; Neale, 1998, 2000). A path diagram for this

3For an example person in Cohort 2, definition (a) implies the loading
matrix on the left for a fitted quadratic LGM, and definition (b) implies the
matrix on the right.

1 X X
1 timep time> . .
2 i2 1 timep time}
1 timejs time.23 . .5
L 1 time;z  timej
Ai=1]1 time;jy time.24 A= . .5
v 1 timey timey
1 time;s time.25 . )
l 1 time;s  times
1 X X
1 X X

Case III linear LGM is given in Figure 1, where definition
variables are denoted with diamonds (Mehta & Neale, 2005).
The raw data input for a linear LGM under Case III now
contains 27 variables—T repeated measures as well as T
measurement occasion times.

In all the balanced Case I or II LGMs presented in
this article, the estimated LGM parameters could be used
to construct a single model-implied mean vector (ji, =
Alin) and covariance matrix (fy = A\ilA’—i—(:)s). In all
the Case III LGMs presented here, there is no longer a
single model-implied mean vector and covariance matrix;
rather, there are N of each (ji,, = A;fi,, and flyl. = Ai\ilA; +
0,). Throughout, interpretation of growth factor means,
(co-)variances, and Level-1 residual variances remains
unchanged when moving from the balanced case (I or II) to
Case III.

POLYNOMIAL LGMS

Balanced (Case | or Il)

In the balanced setting, a commonly employed nonlinear
model is a polynomial LGM (see also Cudeck & du Toit,
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FIGURE 1 Linear latent growth curve model with truly individually vary-
ing (Case III) time scores. Note. Boxes = measured variables; circles =
latent factors (growth factors or residuals); straight arrow = regression
path; curved arrow = (co)variance; triangle = constant. Diamonds repre-
sent definition variables, here corresponding to observed individual-specific
measurement times. See text for other notation.

2002). A polynomial LGM includes additional column(s)
(i.e., latent curves or basis functions) in A containing
powered versions of time scores (often squared, g = 3 or
cubed, g = 4). For instance, extending Equation 3 to a
quadratic LGM yields

10 0
111
1 2 4

A=]|13 9 )
1 4 16
1 5 25
1 6 36

Means for these intercept, linear, and quadratic growth fac-
tors can be estimated (Lo, g, , Ig,), as can their variances
(Vaa> ¥pipi» Wp,p,) and covariances (Yogp, Vap, Vpip,)s 1O
allow individual differences among correlated aspects of
change.

Individually Varying Time Scores (Case Ill)

In the individually varying measurement setting, a similar
manipulation is done either via data management or a non-
linear constraint. Using data management, for a quadratic
LGM, T new variables—squares of measurement occasion
times—are created to serve as 7' new definition variables in
A; (bringing the data set variables to 37). Or, more con-
veniently, a nonlinear constraint can be employed to set a

second set of definition variables equal to the squared values
of the original set. Either approach yields:

[

time; time;
timey time;
time;; time;
time;y time;
time;s time;
time;q time;

time;; timey,

N5 IR N

(6)

S

DT

>z
I
— e e e e
=

[

SHAPE-FACTOR LGMS

An advantage of the polynomial LGM is that it allows spec-
ification and testing of known parametric functional forms
of change over time. However, as the degree of the polyno-
mial increases, the number of estimated parameters increases
sharply, potentially resulting in a nonparsimonious model.
An alternative is to abandon the fully parametric mindset to
estimate some loadings on an optimal “shape” curve. This
kind of model has been presented for the balanced (Case I
or II) setting and is called a shape-factor or freed-loading
(Bollen & Curran, 2006; McArdle, 1986), fully latent (e.g.,
Aber & McArdle, 1991), unspecified (Duncan et al., 2006),
or latent basis LGM (Grimm, Ram, & Hamagami, 2011).
The extension of the shape-factor LGM to individually
varying time scores is less straightforward than for the
polynomial LGM.

Balanced (Case | or Il)

In this setting, a convention is to fix all loadings to unity
on the intercept factor and fix just two anchor loadings on
a “shape” factor to two different values. This convention is
sufficient to set the scale of the estimated loadings and overi-
dentify the LGM covariance structure when 7' > 3 (Bollen &
Curran, 2006). A popular choice is to fix A; = 0 to establish
interpretation of the intercept factor as initial status and fix
Ar to the final time score to allow interpretation of the pat-
tern of loadings on the second factor—the shape factor—in
comparison to a linear LGM. When time scores are 0, 1, 2,
3,4,5, 6, this yields:

0
A2
A3
Ag @)
As
A6
6

>
I
— e = e e =

Means (puq, I g) and (co)variances (Yoo, Ypg, Wap) Of the g =
2 growth factors are also estimated.

At first, the very definition of the shape-factor LGM
seems to prohibit individually varying time scores. There



are not enough degrees of freedom to estimate every per-
son’s freed loadings at different values. To illustrate how this
extension can be accomplished, we begin by reexpressing
the shape factor loadings’ capability for capturing depar-
tures from linearity, in the balanced setting. Note that other
related parameterizations of shape factor models have been
previously considered for the balanced case (e.g., McArdle,
1988). An equivalent way of conveying that the shape-factor
model’s estimated loadings A, to Ag capture departures from
linearity is to represent a loading at time ¢ as the sum of (a)
the time score at ¢, and (b) the amount by which the loading
departs from linearity at time +—denoted &,. The fixed (first
and last) anchor loadings are also sums of (a) and (b), how-
ever, in their case (b) is 0. For the setting considered earlier,
this reexpression is shown in Equation 8:

0

146

2443

3464 (8)
4445

5+ 8

6

>
I
— e = e e =

where &, J3, 84, 85, and &g are the amounts by which the
second, third, fourth, fifth, and sixth loadings would have
to move to correspond with linearity. Because 6; = 67 = 0,
they are not shown. 8, ... §y_; are estimated and used to
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solve for A, . . . Ar_;. In the reexpression, [i,, is still the aver-
age intercept and [iz is still the average net gain or loss per
unit in time. The reexpressed model tells us about occasion-
specific deviations from linearity either in y-units (fig % 80
or in time-units (§,). For example, in a balanced-case sin-
gle sample simulated example in Figure 2, the predicted y
at the third occasion is farthest from linearity ((jlg x S,) =
—47 x 3.21 =—-1.51 y-units lower). Further, linearity implies
the y score of 3.33 is reached when time is 2.74, but the
shape-factor model implies it is reached when time is 1.0—a
difference of 32 time units. (In Figure 2 note the model-
implied mean trajectory is gray and a superimposed linear
reference line is black.)

Individually Varying Time Scores (Case Ill)

We can extend the reexpressed shape-factor LGM to accom-
modate individually varying time scores. Fixed linear time
scores in Equation 8 are replaced with T individual-specific
time scores (definition variables):

time;;

timep + 62

timejz + 83

timejy + 84 9)
time;s + Os

timejs + J¢

time;;

?
I
— e e

54 5

Model—implied y

T T T T
3 - 5 6

Time

FIGURE 2 Model-implied y scores from a reexpressed shape factor latent growth model (LGM) fitted to an N = 1,000 simulated sample with balanced time
scores. Note. The seven boxes connected with a gray line define the model-implied mean trajectory for the sample. The solid black diagonal line is a reference
line superimposed to demarcate net change between anchor time points. The intercept and slope of this line correspond with the means of the corresponding
growth factors. Dashed horizontal lines represent offset parameter values—occasion-specific departures from linearity, in time units (shown only for two
occasions). Products of offset parameter and mean slopes, denoted by curly brackets, represent occasion-specific departures from linearity, in y units (shown
only for two occasions). Symbols discussed in the text. The sample was generated from a conventional shape-factor LGM: wq = 4.65; L g = —47; Yo = 1.4;
Vpp =35 Yop = —13; 41 = 0; A2 = 2.80; A3 = 5.25; ha = 4.2; As = 2.75; 6 = 44307 = 6,02 — 02 = 5.
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As in the balanced case, we are still estimating only 7 —
2 parameters in lambda (here, §, ... §7—;). Note that the
first and last (anchor) loadings on the shape factor are no
longer fixed to universal values for identification purposes,
as in the balanced case. Rather, the anchor loadings for
person i are constrained to the observed values of person
i’s own first and last time scores, which serves to identify
the model. Thus, person j can have different anchor loading
values than person i.

In this model, persons within the rth measurement win-
dow (see Table 2 for definition of measurement window)
are now allowed different measurement times, but, as in the
original shape-factor model, still have the same horizontal
offset from linearity (§;). Thus, persons within the rth win-
dow take on different model-implied mean y values due to
their individually varying time scores within that window (as
will be visually depicted later in the context of the empirical
example).

Some additional properties of this model can be noted.
First, if linearity were to hold, all offset parameters would be
zero: 8, = ... = 87— = 0. Second, although this model is
not necessarily limited in the degree of individual variation
in time that can be accommodated,* it is limited in the kind
of individual variation in time that can be accommodated.
Regarding the kind of individual variation accommodated,
observations need to be classifiable by the researcher into
measurement windows. The timing of data collection is
allowed to individually vary within such windows. Examples
of designs that would qualify are given in Table 2; in such
contexts there may be compelling reasons to consider this
extension.

PIECEWISE LGMS

We have discussed a fully parametric approach to modeling
nonlinearity (polynomial LGM) and one semiparamet-
ric approach (shape-factor LGM). A third alternative—
a piecewise LGM—provides a compromise between the
potential overrestrictiveness of the former and the flexibil-
ity of the latter. Like polynomials, piecewise LGMs capture
nonlinearity through the use of additional latent growth
factors. Like shape-factors, piecewise LGMs are not fully
parametric.

4Regarding degree of individual variation, a simulation was conducted
(generating parameters py = 4.65; g = —47; Yoo = 1.4; Ypg = .35;
lﬂaﬁ = —.13; )\.1 = 0; )\,2 = 2.80; )»3 = 5.25; )\4 = 4.2; )\5 = 2.75; )»5 =
44,07 = 6; ‘712 — 072 = .5) with normally distributed time scores gen-
erated to have some variation at Levels 1 and 2: time; = levl_time;, +
lev2_time;. Two alternative amounts of individual variation in time were
considered; either (levl_time;; ~ N(t,.10%) and lev2_time; ~ N(0,.052)),
or (levl_time;; ~ N(t, .502) and lev2_time; ~ N(0O, .252), the latter implying
considerably overlapping windows. t =0, 1, 2, 3,4, 5, or 6. There was trivial
to no bias (< 1.2% relative bias) in any model parameter across 100 samples
of N = 1,000.

Piecewise LGM’s “piece” together at least two shorter,
low-order polynomial (often linear or quadratic) segments
to approximate a more complex underlying functional form.
In addition to a shared intercept factor, one growth factor is
added per basis function, per piece. For example, a two-piece
linear LGM has intercept and linear factors for each piece
1 and 2 (¢ = 3). A three-piece quadratic LGM has inter-
cept, linear, and quadratic slope factors for pieces 1, 2, and
3 (g = 7). Means and (co)variances of the g growth factors
can be estimated to determine average aspects of change per
piece and (co)variation in aspects of change. We focus on
piecewise linear LGMs, but explain how principles can be
extended to higher order pieces.

Piecewise LGMs attach curve fragments together at knot
points. Knot points may be chosen in a data-driven way
(Kwok, Luo, & West, 2010) or based on theory (Flora, 2008;
Hancock & Lawrence, 2006). Here we assume the knot
point is at the same predetermined place for all persons, but
some recent work has addressed relaxing this assumption
(Preacher & Hancock, 2010). Knot point location(s) in
piecewise LGMs are specified in A. As usual, each of the ¢
growth factors is associated with its own column of loadings
in A.

Balanced (Case | or Il)

In an SEM framework, piecewise LGMs have been presented
for balanced (Case I or II) data (e.g., Bollen & Curran, 2006,
Duncan et al., 2006, Flora, 2008). Flora (2008, p. 523) pro-
vided a set of rules used to generate A elements for any
two-piece linear LGM for balanced Cases I or II. However,
no fully general algorithm for specifying elements in A has
been provided that applies to any number of pieces (phases),
and any coding of the origin or spacing of time. In the bal-
anced case (I or II), it might be possible to infer A elements
for more complex designs by extrapolating from available
rules. However, in the individually varying time scores case,
fully general guidelines are necessary. Furthermore, their
application needs to be automated (for reasons discussed
later). Such general guidelines are first presented in the
balanced case (I or II), and later applied to Case III.
Preliminarily, a researcher with balanced (Case I or II)
data needs to choose the number of phases (i.e., pieces),
denoted M. There are M — 1 knots. We index phases m = 1
...Mandknotsm =1...M— 1. Next, the locations of the
knot(s) need to be chosen. An algorithm for generating linear
slope loadings for each phase (piece) in a piecewise LGM are
given in Table 3. In Table 3, the phase containing the origin
of time is termed the intercept phase. When the intercept falls
on a boundary between two phases (i.e., at a knot), we always
assign it to the previous phase.” The general guidelines in
Table 3 are applied, in turn, to each of the T time scores

5This is an arbitrary decision. If the alternative decision had been made
(i.e., when an intercept falls at the boundary between two phases, assign it to
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TABLE 3
Algorithm for Transforming Each of the T Time Scores to Have Desired Piecewise Structure for Eachm=1... M

If phase (m) < intercept phase:

o If knot (mm) is > time and [either time > knot (m — 1) or knot (m — 1) absent] then loading = (time — knot(m)).

o If knot (m — 1) > time, then loading = (knot (m — 1) — knot (m)).

e Otherwise, loading = 0.
If phase(m) = intercept phase:

o If [either knot (/) > time or knot (m) absent] and [either time > knot (m — 1) or knot (m — 1) absent] then loading = time.

o If knot (m — 1) > time then loading = knot (m — 1).
o If knot (m) < time then loading = knot (m)
If phase (m) > intercept phase:

o If knot (m — 1) < time and [either age < knot (/) or knot (/) absent] then loading = (time — knot (m — 1)).

o If knot (m) < time then loading = (knot (m) — knot (m — 1)).
e Otherwise, loading = 0.

Note. Time = already-recoded time score; number of phasesism = 1. .. M; number of knotsism = 1. . . M — 1; intercept phase = phase
containing the origin (in the already-recoded time metric). Note that knot (m — 1) will be “absent” if m = 1, and knot (m) will be “absent” if
m = M. When the intercept falls at a knot, it is assigned to the previous phase. The Table 3 algorithm is automated in SAS code in the online

Appendix.

(denoted time in Table 3), for m = 1 ... M. Slope loading
for phases with higher order polynomial (quadratic or cubic,
etc.) factors do not need to be separately generated; they
can be obtained through nonlinear constraints on the gener-
ated linear slope loadings (see empirical example and code).
These general guidelines are implemented in a SAS macro
available in the online Appendix at www.vanderbilt.edu/
peabody/sterba/appxs.htm. One example is provided here;
two other examples, of greater and lesser complexity, are
provided in the online Appendix (with code).

For this Case I or II data illustration, suppose time scores
are time = —-6.5 -5, -1, 0, 2, 3.5, 6, 8. Suppose there are
M = 3 phases (pieces), and M — 1 = 2 knots at time
=—1, and 3.5. The intercept phase is Phase 2 because time =
0 falls between the two knots. Applying general guidelines
in Table 3 yields

I =55 -1 0
1 -4 —-10
1 0 -1 20
1 0 0 0
A= 1 0 2 0 (10)
1 0 35 0
1 0 3525
1 0 3545

This balanced case example affords intuitive understanding.
The aspect of change described by the first piece goes offline
at the first knot. There the second piece picks up until the
second knot, where the final piece takes over, ensuring linear
slope loadings sum across rows to time scores.

the later—not earlier—phase), the exact same lambda matrix would result,
so long as the decision was made consistently.

Individually Varying Time Scores (Case Ill)

In Case II or III some, no, or all persons may be mea-
sured exactly at a knot point, or exactly at the origin. Also,
some persons may not be measured in the span of an entire
piece. In Case II these complications were not burdensome
because we were obliged to specify A only once; variations
due to missing data were handled exclusively in estimation,
not specification. In Case III, we need to specify N differ-
ent A; to impart the piecewise structure on N different sets
of transformed time scores. The variety of possibilities and
scope of this task make it more difficult to verify via visual
inspection that A; conforms with the desired piecewise struc-
ture. To illustrate such complications, consider a situation in
which there are M = 3 linear phases, and M — 1 = 2 knots,
desired to be at time = —1 and 2 for the sample, such that
the intercept phase is Phase 2. Consider the measurement
schedules for four persons from this sample.

Person 1 time scores: -3.9,-1.9, -1.0, 0, .90, 2.0, 4.8, 5.9
Person 2 time scores: —4.3, -2.1, -1.0, .60, 1.7, 3.1, 4.2, 5.8
Person 3 time scores: —4.5,-2.5,-.50,0, 1.9,2.8,3.9,5.2
Person 4 time scores: —5.0, -3.3, 2.1, -1.8, 3.0, 3.2,4.5, 5.6

Here Person 1 is measured exactly at both knots as well as at
the origin. Person 2 is measured exactly at the first knot, but
at neither the second knot nor origin. Person 3 is measured
exactly at the origin, but at neither knot. Person 4 is measured
at neither at a knot, nor the origin, and furthermore has no
measurements in Piece 2 at all.

The Table 3 guidelines can be used, personwise, to gen-
erate A;. But because of the preceding complexities and the
need to specify N different A;, automated implementation of

These persons could have missing data; missing data are not immedi-
ately relevant to this illustration.
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these guidelines for generating loadings is no longer just a
convenience, but a necessity. The software tools described
earlier can be used to generate all N A; simultaneously;
instead of inputting one set of time scores that apply to
all persons in the sample, an entire data set of N persons’
time scores is inputted. For instance, the Table 3 guidelines
generate A; for Persons 1, 2, 3, and 4 as:

1 —29 -1 0 1 =33 -1 0
1 -9 -1 0 1 —1.1 -1 0
1 0 -1 0 1 0 -1 0
1 0 0 0 1 0 6 0

A=y o 9 o %=1 o 17 o0
1 0 2 0 1 0 2 11
1 o0 2 28 1 0 2 22
1 0 2 39 1 0 2 38
1 =35 -1 0 1 —4 -1 0
1 -15 -1 0 1 =23 -1 0
1 0 -5 0 1 —1.1 -1 0
1 0 0 0 1 -8 -1 0

As=11 0o 19 o |M=|1 o 2 1
1 0 2 8 1 0 2 12
1 0 2 19 1 0 2 25
1 0 2 32 1 0 2 36

Importantly, Person i’s linear slope loadings still sum across
columns of their A; to produce their own individual-specific
time scores (given earlier). Further, because Person 3 was
not measured exactly at the second knot, the second knot
occurs between their fifth and sixth loadings. Also, because
Person 2 was not measured exactly at the origin, the intercept
occurs between their fourth and fifth loadings. Finally, as
the Table 3 guidelines accommodate any number of pieces,
very complex piecewise LGMs (see online Appendix)
could have individually varying loadings using the same
procedure.

We have thus far described automatically generating A;
matrices for piecewise LGMs. When specifying the model in
SEM software, transformed individually varying time scores
constituting slope loadings in A; are definition variables, as
illustrated in Equation 11 for a two-piece linear LGM:

. piecel ..  piece2
1 tlmefllecg ttmelﬂ'“e

. piecel .  piece2
1t timeli

. piecel . piece2
1 timel," " timely
1 timef‘:ecel timeizeceZ
Ai = . iecel . iece2 (1 1)
1 ttmef5 tlmef5
. piecel . piece2
1 timéi  timel

. piecel . piece2
1 timéy timel)™

. piecel ..  piece2
1 tlmefém ttmeféece

SEM software expects transformed, individually varying
time scores serving as definition variables to be in wide

format.” In wide format, our piecewise LGM data set has T
+ TM columns (T outcomes + TM transformed linear time
scores), even if some pieces have higher order slope factors.®

STRUCTURED LATENT
GROWTH CURVE MODELS

Earlier we discussed that one advantage of polynomial
LGMs is their known functional form. With complex
growth patterns, however, high-degree polynomial LGMs
can become difficult to interpret. Other known parametric
functional forms for a mean trajectory, or target functions
(e.g., Gompertz, monomolecular, cosine, hyperbolic, expo-
nential) could yield parameters that are easier to interpret.
However, such functional forms are often more difficult to
specify in SEM software because this software assumes
growth coefficients enter the model linearly.” The target
function can be linearized to be compatible with SEM
software—as done previously for a variety of functions (e.g.,
Blozis, 2004, 2007; Browne, 1993; Browne & Du Toit, 1991;
Grimm & Ram, 2009; Grimm et al., 2011). Such models
are called structured latent curves (SLCs). Our goal is to
highlight how specification of an SLC differs between the
balanced cases (I or II) and Case III; hence, we provide
this contrast for one popular exemplar SLC—the exponential
LGM.

Balanced (Case | or Il)

The (here, negative) exponential target function at time 7 can
be given as follows (e.g., Bollen & Curran, 2006):

y=a+ (1l =7 (12)

where « is the intercept, S is the total change in the outcome
as time approaches infinity, and y is a rate parameter govern-
ing the rate at which the outcome approaches an asymptotic
level. The corresponding SLC is specified here with balanced
Case I or II time scores of O, 1, 2, 3, 4, 5, 6.

"The %PIECEWISE macro outputs the transformed time scores in long
format. The Mplus syntax provided in the online Appendix transforms them
to wide format before fitting piecewise LGMs.

8Loadings for any pieces with high