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Researchers in psychology are increasingly using model selection strategies to decide among competing
models, rather than evaluating the fit of a given model in isolation. However, such interest in model selection
outpaces an awareness that one or a few cases can have disproportionate impact on the model ranking. Though
case influence on the fit of a single model in isolation has been often studied, case influence on model selection
results is greatly underappreciated in psychology. This article introduces the issue of case influence on model
selection and proposes 3 influence diagnostics for commonly used selection indices: the chi-square difference
test, Bayesian information criterion, and Akaike’s information criterion. These 3 diagnostics can be obtained
simply from the byproducts of full information maximum likelihood estimation without heavy computational
burden. We provide practical information on the interpretation and behavior of these diagnostics for applied
researchers and provide software code to facilitate their use. Simulated and empirical examples involving
different kinds of model comparison scenarios encountered in cross-sectional, longitudinal, and multilevel
research as well as involving different kinds of outcome distributions illustrate the generality of the proposed
diagnostics. An awareness of how cases influence model selection results is shown to aid researchers in
understanding how representative their sample level results are at the case level.
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Psychologists are increasingly using model selection strategies to
decide among competing population generating models, rather than
simply evaluating the adequacy or fit of a single model in isolation
(Hamaker, van Hattum, Kuiper, & Hoijtink, 2011; MacCallum, 2003;
Maxwell & Delaney, 2004; Myung, Forster, & Browne, 2000; Rod-
gers, 2010). As no one model is true, and all models are approxima-
tions to a more complex reality (Box, 1979), the logic of a model
selection strategy is to find a working model that provides a better
approximation than competing alternatives (e.g., MacCallum, 2003).
Although a model selection strategy has historically been more com-
mon for some statistical frameworks (e.g., structural equation mod-
eling [SEM]), this strategy is now being recommended and applied
more broadly (e.g., single-level regression, multilevel regression mod-
els [MLM], item response theory [IRT]; A. S. Cohen & Cho, in press;
Hamaker et al., 2011; Kang & Cohen, 2007; Rodgers, 2010).

Popular indices used in model selection, such as chi-square
difference tests or information criteria (e.g., Akaike’s information
criterion [AIC; Akaike, 1974] or the Bayesian information crite-
rion [BIC; Schwarz, 1978]) determine which of the competing
models is preferable at the sample level—that is, aggregating
across all cases. (Here, a case will often be a person, but in general

it is the highest level unit in an analysis.) However, all cases’ data
may not be best fit by the model that is selected at the sample level;
such a generalization would constitute an ecological fallacy (Rob-
inson, 1950). One model might provide a relatively better fit to one
case, but the other might provide a relatively better fit to another
case. Furthermore, an underappreciated issue in psychology is that
the results of model selection, at the sample level, could be
influenced by one or a few cases’ data. For instance, selection of
one model at the sample level could be driven by one or a few
cases’ data that strongly support that model, despite most cases’
data modestly supporting the alternative model.

Traditionally, case influence—how a given case may impact
conclusions drawn about study results (Cook, 1977, 1986)—has
been evaluated for a single model at a time in psychology (e.g.,
Cadigan, 1995; Lee & Wang, 1996; Lee & Xu, 2003b; Zu & Yuan,
2010). Case influence is typically evaluated via a sensitivity anal-
ysis—a quantification of the uncertainty in statistical results due to
the introduction of small, controlled changes or perturbations to
data or modeling conditions (e.g., Pek & MacCallum, 2011;
Tanaka, Watadani, & Moon, 1991). A popular and well-studied
perturbation is a case deletion scheme.1 When removing a case
results in different conclusions from the original statistical test or

1 Sensitivity analyses involving case deletion are often called a global
influence approach, dating to Cook (1977), to be discriminated from local
influence. Local influence, dating to Cook (1986), introduces an infinites-
imal perturbation to the model or data set and then uses differential
geometry techniques to assess the behavior of what Cook (1986) termed
the likelihood displacement function (or other quantities) obtained from the
perturbation. Local influence analyses have been performed for a variety of
models with a variety of outcome distributions (e.g., Lee & Xu, 2003b;
Cadigan, 1995; Poon & Poon, 2002; Zhu & Lee, 2003; Zu & Yuan, 2010).
However, for an applied researcher such procedures have not yet been
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index, the case is deemed influential, and the results are said to be
sensitive to the presence of that particular case in the sample.
When such influential cases are identified, data integrity may be
verified or such cases may serve as interesting case studies. In the
situation where no influential cases are found, confidence is gained
in interpreting results. However, sensitivity analyses involving
case deletion via iteratively refitting the model N times, omitting
one case per iteration (e.g., Bruce & Martin, 1989; Cadigan, 1994;
Pek & MacCallum, 2011; Rensvold & Cheung, 1999; Tanaka et
al., 1991, pp. 3811–3814) can be time consuming. Hence, influ-
ence diagnostics that serve to approximate case deletion statistics
without requiring iterative refitting have been developed (e.g.,
Cook, 1977; Lee & Lu, 2003; Pregibon, 1981; Reise & Widaman,
1999; Tanaka et al., 1991; Xu, Lee, & Poon, 2006). In particular,
Reise and Widaman (1999); Tanaka et al. (1991), and Pregibon
(1981) created diagnostics that approximate individual contribu-
tions to the chi-square statistic; some have been used to assess case
influence on the fit of a single model in isolation.

It is important to clarify at this juncture that diagnosing case
influence, the topic of this article, differs subtly in objective and
approach from outlier detection (e.g., Draper & John, 1981; Mul-
len, Milne, & Doney, 1995; Stevens, 1984) as well as from what
is often referred to in the IRT literature as person- fit assessment
(e.g., Karabatsos, 2003; Meijer, 2003; Meijer & Sitjsma, 2001).
Outliers with respect to sample characteristics can have extreme or
unusual scores on predictor or outcome variables and may be
identified without fitting a model (i.e., can be model-free). In
contrast, case influence is evaluated with respect to fitted model(s)
(i.e., always model-based). Outliers may or may not be influential
with respect to, say, model fit, and influential cases may or may
not be outliers. Further, employing outlier detection is typically not
sufficient to determine the possibility of influential cases (e.g.,
Chatterjee & Hadi, 1986; Pek & MacCallum, 2011). Person-fit
assessment (the model-based or parametric variety) often portrays
individual contributions to the fit of a model and identifies cases
that fit a model relatively better or worse—with a typical goal of
classifying misfitting cases as aberrant test responders (e.g., cheat-
ers, those “faking good,” those unfamiliar with computer test
equipment). But there is little focus on determining whether the
presence/absence of designated aberrant cases would change sam-
ple level conclusions (i.e., whether they are influential), which is
our concern here. Sometimes when person-fit statistics are applied,
the most extreme 1% or 5% of misfitting cases are a priori
designated as aberrant (e.g., Drasgow, Levine, & Zickar, 1996).
Using such arbitrary cutoffs to identify cases is not consistent with
our influence diagnosis goals here because there is no guarantee
that any cases among the 1% or 5% will be influential with respect
to sample level conclusions (e.g., overall model fit). In many
analyses no cases may show influence (examples given later).
Finally, different person-fit statistics have historically been used
depending on the modeling framework and outcome distributions

(e.g., IRT with categorical outcomes [Karabatsos, 2003; Meijer,
2003] vs. SEM with continuous outcomes [Coffman & Millsap,
2006; Reise & Widaman, 1999]), a practice that differs from the
approach taken here.

Although little discussed in psychology, the potential for indi-
vidual cases to influence the ranking of competing models has
been mentioned several times in the statistics literature (e.g., Cook
& Wang, 1983; Greenland, 1989; Hoeting, Raftery, & Madigan,
1996; McCann, 2006; Ronchetti, 1997; Ronchetti, Field, &
Blanchard, 1997). Prior research on AIC and BIC has found them
sensitive to influential cases (e.g., Atkinson & Riani, 2008; Chik,
2002; Laud & Ibrahim, 1995; Le, Raftery, & Martin, 1996), as has
limited prior research on the chi-square difference test in the
context of competing models (Sadray, Jonsson, & Karlsson, 1999).
Still, Atkinson and Riani (2008) lamented that the sensitivity of
model selection indices, such as AIC, to influential cases is an
often overlooked issue:

Professor Akaike’s 1974 paper on model selection (Akaike, 1974) is
one of the most highly cited papers in statistics . . . Akaike’s elegant
solution penalizes the maximized log-likelihood by twice the number
of parameters in the model. However, the loglikelihood is an aggre-
gate statistic, a function of all the observations. AIC provides no
evidence of whether or how individual observations or unidentified
structure are affecting the model choice. (p. 3)

Due to this potential for case influence on model selection,
researchers are in need of user-friendly diagnostic tools capable of
portraying the sensitivity of existing model selection results to
influential cases. Existing diagnostics for case influence on the fit
of a single model in isolation, on the parameter estimates for a
single model, or on the predicted values for a single model are in
no way guaranteed to identify cases that have a disproportionate
impact on model ranking. Moreover, since researchers typically
consider not one but multiple model selection indices when com-
paring models, researchers need multiple corresponding options
for model selection influence diagnostics. Finally, given that psy-
chologists currently use model selection across a wide variety of
modeling frameworks (Rodgers, 2010), researchers need model
selection influence diagnostics that are generally applicable to
many modeling frameworks (e.g., SEM, IRT, single- or multilevel
regression) and outcome distributions (e.g., binary, normal, count).
Such generality would be convenient—a researcher need only
master one kind of diagnostic regardless of what models are to be
compared on what kind of data. Further, such generality is essen-
tial if, for example, data are to be fit with competing models
assuming alternative outcome distributions (e.g., Poisson vs. neg-
ative binomial).

However, no diagnostics for case influence on model selection
have been disseminated to a psychology audience. Furthermore, no
diagnostics for case influence on information criteria have ever
been proposed, to our knowledge. Whereas a diagnostic for case
influence on the chi-square difference test has been previously
mentioned for one model comparison context in the pharmacology
literature (Sadray et al., 1999), its generality has not been recog-
nized.

Consequently, the goals of this article are to develop and de-
scribe the interpretation of several influence diagnostics for pop-
ular model selection indices, which are widely applicable across
modeling frameworks, and also to demonstrate their implementa-

implemented in commercial software for a flexible class of models (al-
though specific routines have been made available for particular models;
e.g., a three variable mediation model in Zu & Yuan, 2010). The global
influence approach can be motivated as a special case of the local (e.g., Lee
& Wang, 1996). Rather than focusing on the local influence approach, this
article focuses on approximations involving the global influence approach.
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tion. The remainder of this article proceeds as follows. First, we
briefly review full information maximum likelihood estimation
and the case-wise decomposition of the likelihood as background
to later developments. Second, we briefly review three popular
model selection indices: the chi-square difference test, BIC, and
AIC. Third, we describe exact case deletion influence diagnostics
for these three model selection indices, and we describe approxi-
mations to these exact case deletion diagnostics that do not require
iterative model refitting. Fourth, we provide two application ex-
amples (one empirical and one simulated) that incorporate exten-
sions not discussed in detail earlier: having �2 models to compare
and having a case correspond to a cluster (e.g., a school). Fifth, we
describe and illustrate some potential causes of case influence on
model selection and some conditions under which it may be more
likely. Our illustrations and examples exemplify the generality of
the proposed diagnostics in that they span alternative modeling
frameworks (e.g., SEM, MLM, IRT) and outcomes (categorical
and continuous). Also, illustrations concern often-used model
comparisons in order to link concretely to practice (e.g., one- vs.
two-factor confirmatory factor analysis [CFA]; one-parameter lo-
gistic [1PL] vs. 2PL IRT; MLM with vs. without a cross level
interaction; longitudinal factor analysis with different levels of
across-time invariance). We conclude by providing software code
to calculate the developed diagnostics and by providing recom-
mendations regarding their application in practice.

Full-Information Maximum Likelihood Estimation

Maximum likelihood (ML) is a widely used technique for ob-
taining parameter estimates. The diagnostics we develop to exam-
ine case influence on model selection are predicated on ML
estimation. ML requires making distributional assumptions about
the observed outcome variables, as well as any latent variables
(called factors in SEM; random effects in MLM; traits in IRT), if
present.2 The probability density function (pdf) for the conditional
distribution of the outcome is denoted f(.), and the density function
for the latent variable(s), if present, is denoted h(.). In a sample of
cases i � 1 . . . N—where, as stated earlier, a case is a highest level
unit in the analysis—the marginal likelihood Li for case i can be
written

Li���Yi� ��f�Yi�ui,��h�ui���dui, (1)

where � is a k � 1 vector of model parameters, Yi is a p � 1 vector
of outcomes for case i, and ui is their vector of random effects (also
called latent variables, factors, or traits). Typically h(.) is assumed
to be multivariate normal. If f(.) is also multivariate normal, the
integral within the likelihood resolves analytically, and the mar-
ginal likelihood for Yi is the multivariate normal density function.
(Otherwise averaging or integrating over all possible values of the
random effects is necessary to obtain the marginal Li, because
these random effects are unobserved.) Under the assumption that
the N cases are independent and identically distributed, the sample
likelihood L is the product of the casewise likelihoods. However,
to improve computational stability its log is typically taken, mak-
ing the sample loglikelihood, lnL, the sum of the casewise log-
likelihoods.

ln L���Y) � �
i � 1

N

ln Li���Yi�. (2)

Historically, ML estimation was conducted by optimizing
monotonic transformations of the sample loglikelihood based on
sufficient statistics. The use of sufficient statistics—which sum-
marize all relevant information contained in the data about the
parameters �—in place of each case’s raw data was required due
to computational limitations. Increased computing power now
allows ML estimation to be conducted on raw data (termed full-
information maximum likelihood, FIML, direct ML, or raw ML;
e.g., Neale, Boker, Xie, & Maes, 2003). Advantages of FIML over
traditional ML algorithms include the ability to account for miss-
ing data (Arbuckle, 1996) and the opportunity to compute casewise
contributions to the loglikelihood (e.g., Lange, Westlake, &
Spence, 1976; McArdle, 1997; Neale, 2000). We illustrate these
properties for the situation where f(.) and h(.) are normal, and in
this example, ln Li resolves to the multivariate normal pdf:

ln Li � �
1

2
ln ��i���� �

pi

2
ln �2��

�
1

2
�Yi � �i������i��)�1 (Yi � �i��)). (3)

Here pi denotes the number of outcome variables present for case
i, and Yi has dimension pi � 1. �i��) is a pi � 1 model implied
mean vector and �i��� is a pi � pi model implied covariance
matrix. �i��� and �i��� can be thought of as resulting from deleting
elements of ���� and ����, where case i has missing outcomes.
The FIML sample lnL is the sum of these casewise lnLi.

Three Model Selection Indices

After competing models are estimated using FIML, focus typ-
ically turns to comparing the fit of these models and selecting a
final model. We next briefly review three indices often used for
this purpose: the chi-square difference test, BIC, and AIC.
Whereas BIC and AIC are rooted in a model selection tradition
(Burnham & Anderson, 2002), the chi-square difference test can
be considered as coming from a distinct hypothesis testing tradi-
tion. However, we are using all three criteria for the same goal in
this article: to rank models. Thus, in line with Maxwell and
Delaney (2004) and Rodgers (2010), we deemphasize this tradi-
tional distinction and consider all three united in their current
purpose as indices for model selection.

Chi-Square Difference Test

Recall that a chi-square test can be used to evaluate fit for a
single hypothesized model, as reviewed first. More generally,
pertaining to the topic of this article, a chi-square difference test
can be used to compare fit of alternative models, as reviewed
second. In the context of a single hypothesized model, the null

2 Distributional assumptions about observed predictors may also be
made, and in some cases distributional assumptions of latent variables can
be partially relaxed.
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hypothesis of the chi-square test is that this model fits the data
perfectly, or that model-implied moments exactly reproduce sam-
ple moments. This test is also known as a likelihood ratio test
(LRT) as it has the form

	2 � �2ln�L/LS� � �2
ln L � ln LS�, (4)

where lnL is the estimated loglikelihood based on the hypothesized
model and lnLS is the loglikelihood based on a saturated model—
one that perfectly reproduces the moments of the sample data.3 For
instance, in our multivariate normal example, lnLS would be ob-
tained by substituting observed means, denoted Yi, and observed
(co)variances, denoted Si, in place of their model-implied coun-
terparts, �i��� and �i���, in Equation 3. The 	2 statistic will equal
0 when the ratio �L/LS� is 1 (i.e., when the hypothesized model fits
as well as the saturated model) and will be asymptotically central
chi-square distributed under the null hypothesis with degrees of
freedom (df) equal to the difference in the number of estimated
parameters between the hypothesized and saturated models. For
the critical value (	crit

2 ) determined by df and the desired �, the null
hypothesis can be rejected when the obtained 	

2
� 	crit

2 .
Although saturated models can provide useful information in the

search for a more parsimonious model, other competing models
may be used in place of the saturated model. Hence, we now
consider the more general situation where we wish to compare two
competing models (A and B); these two models may be the only
ones under consideration or may be part of a larger set of com-
peting models (discussed later). Suppose Model A is nested in
Model B such that, for example, imposing equality constraints or
fixing some free parameters in Model B yields Model A. Since
Model B is less restricted than A, its loglikelihood, ln LB, is
necessarily � the loglikelihood of Model A, ln LA. The test of
perfect fit may therefore be extended to a test comparing the fit of
competing Models A and B.

	2 � �2ln�LA/LB� � �2
ln LA � ln LB� � 	A
2�	B

2 (5)

The null hypothesis is that there is no difference in fit between
Models A and B in the population, a circumstance corresponding
with a LA/LB ratio of 1 and a 	2 of 0. Under this null hypothesis,
the 	2 statistic is asymptotically distributed as a central chi-
square with df defined as dfA � dfB � df. For the 	crit

2 determined
by df and �, the null hypothesis is rejected when 	2 � 	crit

2 .
Rejecting the null implies that Model B fits the data significantly
better than A, so B is selected. Failing to reject the null implies A
fits as well as B, so A may be retained as it is more parsimonious.

Penalized Model Selection Criteria

When selecting among competing models, researchers may con-
sider criteria other than 	2 for several reasons. First, 	2 requires
competing models to be nested. Second at large N, 	2 becomes
increasingly sensitive to small deviations from the null hypothesis,
favoring more complex models. Penalized model selection criteria
such as BIC and AIC overcome these limitations (Kuha, 2004).
Suppose competing models A and B may or may not be nested.4

For this situation, penalized model selection criteria have the form

� 2
ln LA � ln LB� � q�kA � kB�. (6)

Since the number of free parameters can be regarded as one
indicator of complexity, the difference in free parameters between
the more and less restricted models (here, kA � kB) portrays the
relative complexity of Model A versus B. Hence, the second term
may be regarded as a penalty afforded to more complex models.
Here, q is a known multiplicative factor by which we want to
weight the contribution of complexity (AIC and BIC correspond
with different values of q, as discussed shortly). When the penal-
ized model selection criterion in Equation 6 is negative, Model A
is selected over B, and vice versa when the criterion is positive.
Notice that when nested models are involved, the first term is the
	2, and the second term is a constant. Whether competing models
are nested, the difference of the loglikelihoods reflects the relative
fit of the models to the data. Similar to the 	2 LRT, the first term
in Equation 6 tends to favor more complex models.

BIC. The BIC is motivated to select the true model from a set of
competing models (see, e.g., Wagenmakers & Farrell, 2004, for other
properties). For a single model, BIC � �2ln L � k ln N (lower is
better). In the context of two competing models, the penalized model
selection criterion for BIC is obtained when q � ln N:

BIC � �2
ln LA � ln LB� � ln N�kA � kB�, (7)

which is the between model difference in BIC. Negative BIC
indicates Model A is more likely to be the true model (or, closer to the
true model) compared with B; the opposite conclusion is drawn for
positive BIC. There are different approaches to interpreting the
magnitude of BIC (Burnham & Anderson, 2002); a common one is
based on the fact that BIC is an approximation to a Bayes factor—a
measure of the evidence provided by the data in favor of one model
against the other (Raftery, 1995). For instance, the degree of evidence
for Model B over A could be labeled “weak” if 0 � BIC � 2,
“positive” if 2 � BIC � 6, “strong” if 6 � BIC � 10, and “very
strong” if BIC � 10. The negative equivalent would be used to
describe the degree of evidence for Model A over B, “weak” if –2 �
BIC � 0, “positive” if –6 � BIC � –2, etc.

AIC. An aim of model selection using AIC is to choose the
most generalizable model. AIC is closely related to other measures
of predictive validity (Stone, 1977), such as the expected cross-
validation index (ECVI; Browne & Cudeck, 1992). For a single
model, AIC � �2ln L � 2k (lower is better). When two competing
models are assessed using the AIC, the penalized model selection
criterion for AIC is obtained when q � 2.

AIC��2
ln LA � ln LB� � 2�kA � kB� (8)

Negative values of AIC indicate that Model A has more predic-
tive validity than (or cross-validates better than) Model B; vice
versa for positive values of AIC. Additionally, it can be shown
that ECVI (the difference in ECVI for Models A and B) would
only differ by a constant (1/N) from AIC. There are also different
approaches to interpreting the magnitude of AIC (Wagenmakers
& Farrell, 2004). For instance, Burnham and Anderson (2002)
suggested guidelines, based on simulation results, that involve
determining the model with the best AIC and then subtracting its

3 A saturated model is not always available, as is discussed later.
4 Later in this article, when we compute penalized selection criteria for

nested models, Model A corresponds with the more restricted model.
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AIC from the AIC of poorer fitting model(s). Differences between
0 and 2 suggest that the poorer fitting model still retains substantial
support; differences �10 suggest the poorer fitting model has
essentially no support. However, these guidelines are subject to a
variety of qualifications involving N, nestedness, and other issues
(Burnham & Anderson, 2002, pp. 131, 170) and are not considered
further here.

Exact Case Deletion Influence Diagnostics for Model
Selection

One approach for assessing case influence on model selection
would be to iteratively remove each case, one at a time, and
calculate the change in the sample level selection index associated
with deleting a case. That is,

	i
2 � 	

2
� 	��i�

2 , (9)

BICi � BIC � BIC��i�, (10)

AICi � AIC � AIC��i�, (11)

where the subscript (�i) denotes “calculated after empirically
removing case i from the sample.” Using this approach, for the
diagnostic 	i

2 in Equation 9 we define an influential case with
respect to the 	2 test as one whose presence/absence could alter
the sample level decision about rejecting the null hypothesis.
Specifically, denote d � (	

2
� 	crit

2 ). When d � 0, a researcher
would diagnose case i as influential for the 	2 test if 	i

2 � d.
When d � 0, case i would be influential if 	i

2 � d.
For the diagnostic BICi in Equation 10, we define case influ-

ence to mean that the presence/absence of the case could alter the
sign of BIC (and thus model ranking) at the sample level, and/or
could alter the magnitude of BIC enough to change the desig-
nated degree of evidence for a given model (in terms of Bayes
factors; Raftery, 1995) at the sample level. If BIC is positive,
influence on its sign would require: BICi � BIC. If BIC is
negative, influence on its sign would require: BICi � BIC.
Consider an example in which BIC is –2, meaning Model A is
“weakly” preferable to B at the sample level. Case i with BICi �
�2.5 would have influence on the sign of BIC, since it would
alter the sample level model ranking (making B “weakly” prefer-
able to A) if removed. An example of case influence on magnitude
but not sign would be if BIC was –2 and BICi was �1. Case i
would simply alter the degree of evidence for Model A (from
“weak” to “positive”) if removed.

Finally, it will be useful for later developments to note how
BICi is calculated in terms of 	i

2:

BICi � ��2
ln LA � ln LB� � (ln N)�kA � kB�) � ��2
ln L��i�
A

� ln L��i�
B � � (ln (N � 1))�kA � kB�)

� ��2
ln LA � ln LB� � ��2
ln L��i�
A � ln L��i�

B �))

� �(ln N��kA � kB� � (ln �N � 1�)�kA � kB�)

� �	i
2� � ��ln N��kA � kB� � (ln �N � 1���kA � kB�)

� �	i
2� � �kA � kB�ln �N/�N � 1��. (12)

For the diagnostic AICi in Equation 11, we define case influ-
ence on sign (ranking) as occurring when the presence/absence of
the case alters the sign of AIC at the sample level. For positive
AIC, influence on its sign would require AICi � AIC,
whereas for negative AIC, influence on its sign would require
AICi � AIC. It would be also possible to determine influence
on degree of evidence for a given model according to AIC using,
for instance, the Burnham and Anderson (2002) guidelines men-
tioned earlier, but that is not pursued here. Additionally, given the
close relationship between AIC and ECVI, a researcher could
instead choose to use ECVIi � �1/N�AICi. Finally, it can be
seen that another way of calculating AICi is in terms of 	i

2:

AICi � (�2
ln LA � ln LB� � 2�kA � kB�)

� (�2
ln L��i�
A � ln L��i�

B � � 2�kA � kB�)

� (�2
ln LA � ln LB�) � (�2
ln L��i�
A � ln L��i�

B �)

� 	i
2. (13)

Since AICi � 	i
2 in Equation 13, these two diagnostics do not

differ in their calculation; however, they do differ in their imple-
mentation and interpretation. If researchers want to assess influ-
ence with respect to 	2—or goodness of fit between models—
they need to compare case i’s diagnostic value with d. On the other
hand, if researchers want to assess influence with respect to
AIC—or cross-validity between models—they need to compare
case i’s diagnostic value with AIC.

Whereas it would be possible to compute the case deletion
influence diagnostics in Equations 9–11 exactly, this would re-
quire N (jackknife) iterative refittings of Model A (plus its full-
sample solution) and N (jackknife) iterative refittings of Model B
(plus its full-sample solution) for each model comparison. For
complex models and/or models without closed-form likelihood
expressions (e.g., CFAs with categorical outcomes), 2(N � 1)
fittings (i.e., one time per model for the full sample; N times per
model for the delete-one samples) would potentially be prohibi-
tively time consuming. In fact, in the context of evaluating a single
model in isolation, Lee and Xu (2003a) argued that standard case
deletion diagnostics would be intractable for CFAs with categor-
ical outcomes. In contrast, as illustrated in a later empirical exam-
ple, our approximation diagnostics allow us to perform a sensitiv-
ity analysis for selecting between alternative three-timepoint
longitudinal factor analysis models with categorical outcomes.

Approximate Case Influence Diagnostics for Model
Selection

It would be useful to have diagnostics for case influence on
model selection that do not require time consuming, potentially
computationally intractable iterative model refitting. We develop
such non-computationally-intensive selection diagnostics as exten-
sions of an existing diagnostic, termed indCHIi, which applies to a
single model in isolation. The indCHIi is reviewed first.

In the context of a single model in isolation, Reise and Widaman
(1999) and Coffman and Millsap (2006) proposed decomposing
the 	2 test of perfect fit for a given model in isolation to obtain
case-specific contributions to the 	2, which they termed:

indCHIi � �2ln �Li/Li
S�. (14)
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(Here, we use ind to stand for index.) indCHIi sum to the sample
chi-square statistic:

	2 � �
i � 1

N

indCHIi. (15)

Although 	2 is bounded below by 0, a case’s contribution is not.
Reise and Widaman (1999) and Coffman and Millsap (2006) used
indCHIi only as a person-fit statistic, not in the context of influence
detection. If case i has a positive value of indCHIi, this means that
its presence in the sample worsens overall model fit. Conversely,
if case i has a negative indCHIi, its presence in the sample improves
overall model fit.

Although this has not been previously noted, for a single sample
in isolation indCHIi is an approximation to its case deletion coun-
terpart 	i

2 � 	2 � 	(�i)
2 at the point where � � �̂full—that is,

where all model parameters are fixed at their values in the full-
sample analysis (more on this later). Hence, indCHIi, can be used as
an approximate case deletion influence diagnostic for a single
model in isolation, without the need for iterative refitting. Specif-
ically, we can define an influential case with respect to the 	2 test
for a single model in isolation as one whose presence/absence
could alter the decision about whether to reject the null hypothesis
at the sample level. Denote d � (	2 � 	crit

2 ). When d � 0, case i
would be flagged as influential for the 	2 test if indCHIi � d.
Conversely, when d � 0, case i would be flagged as influential if
indCHIi � d. For instance, if the sample 	2�7� � 15.96 and 	crit

2 �7� �
14.07 for � � .05, a researcher would conclude that the hypothesis of
perfect fit can be rejected (p � .05). Since d � 1.89, a case with
indCHIi � 1.89 would be flagged—this case’s absence could poten-
tially lead to the opposite conclusion, that perfect fit cannot be
rejected. Confirmation of a flagged case’s influential status via
case deletion is recommended because indCHIi serves only as an
approximation to 	i

2. In other words, the approximation indCHIi can
be a useful screener, allowing calculation of 	i

2 only for flagged
cases.

�indCHIi
as an Approximate Model

Selection Influence Diagnostic

Now we extend this approximate diagnostic for a single model,
indCHIi, to the context of model selection. We can determine case
i’s relative contribution to 	2, denoted indCHIi, by replacing its
contribution to the saturated likelihood in Equation 14 with its
contribution to a competing model likelihood:

indCHIi � �2 ln�Li
A/Li

B� � indCHIi

A � indCHIi

B . (16)

Just as the indCHIi summed to the sample 	2 for testing perfect fit
of the hypothesized model, the indCHIi sum to the sample 	2

between competing models

	2 � �
i�1

N

indCHIi. (17)

Unlike the sample 	2, indCHIi can be positive or negative. Recall
that Model A is nested in B. Descriptively, positive indCHIi

indicates that case i is relatively better fit by the less restricted
Model B. Negative indCHIi indicates that case i is relatively better

fit by the more restricted Model A. Near-zero indCHIi indicates
that case i is about equally consistent with both competing models.

indCHIi serves as an approximation of its exact case deletion
counterpart, 	i

2, at the point where �A � �̂A full and �B �
�̂B full—that is, where all model parameters are fixed to their values
in the full sample analyses for Models A and B. In other words,
indCHIi affords us an approximation of how much the sample
level selection index would change if we removed case i, without
us actually having to remove case i. To illustrate the relationship
between indCHIi and 	i

2, in Figure 1 the approximation diagnos-
tic was plotted against its exact case deletion counterpart (com-
puted iteratively for all cases) for each of the three simulated
model comparisons considered in detail later. These three compar-
isons are a main-effect-only versus interactive MLM example, a
1PL versus 2PL IRT illustration (for one sample), and a one-
versus two-factor normal-theory CFA example.

In all three examples in Figure 1, the correlation between
indCHIi and 	i

2 was � .99. Similarly high correlations were
found between 	i

2 and indCHIi in Sadray et al. (1999) for a
nonlinear mixed model. Although indCHIi and 	i

2 are strongly
linearly associated, Figure 1 shows that indCHIi still does not
exactly equal 	i

2 due to approximation error (as also described in
later examples).5 Nevertheless, their near-1.0 correlation implies
that cases’ rank order on indCHIi will very closely correspond with
cases’ rank order on 	i

2; this close correspondence in ranking was
confirmed by calculating Kendall’s Tau-b for indCHIi and 	i

2 in
each model comparison. Kendall’s Tau-b � .99, .94, and .97 for
Figures 1A, 1B, and 1C, respectively. Closeness of rank order is
important because it means that when the sample level 	2 is
significant [nonsignificant], the case with the most positive [neg-
ative] indCHIi is likely the case with greatest potential for influ-
ence according to 	i

2. Indeed, if that case did show influence, the
sensitivity of the sample level model ranking to an individual case
contribution would already be apparent.

Relatedly, our recommendation is for researchers to use indCHIi

as a screening tool to flag cases that could be influential for the
sample level decision about rejecting the null hypothesis. For
instance, as stated earlier for d � (	2 � 	crit

2 ), when d � 0, a
researcher would flag case i as influential for the 	2 test if

5 This approximation error stems from the fact that when computing 	i
2

parameters are allowed to change from their estimates in the full-N analysis
(which produced 	2) to their reestimates in the N � 1 analysis (which
produced 	��i�

2 in Equation (9)); whereas, when computing indCHIi

parameters are held at their estimates from the full-N analysis. A full-scale
simulation portraying indCHIi’s approximation quality under diverse con-
ditions is outside the scope of this article; however, one degenerate special
circumstance can be noted in which the approximation does not result in
the strong positive linear association in Figure 1. This degenerate circum-
stance is unlikely to be seen in practice. When the likelihood for Model A
exactly equals the likelihood for Model B in the sample, all indCHIi � 0
(i.e., cases equally support both models in the full-N analysis), however
	i

2 can take on a variety of values other than 0 (because sample likeli-
hoods for A and B may diverge in an N � 1 analysis, thus allowing cases
to support one model over another). This situation is unlikely to be seen in
practice because even if the null is true in the population it is unlikely that
	2 � 0 in the sample (indeed, its expectation is df).

587INFLUENCE ON MODEL SELECTION



indCHIi � d. When d � 0, case i would be flagged as influential
if indCHIi � d. Then, for a flagged case only, exact case diagnos-
tics in Equation 9 can be computed to confirm (or disconfirm)
suspected influence. Accordingly, for our later simulated and
empirical examples, we report our approximation influence diag-
nostics for all cases (via index plots or the equivalent) and then
also provide exact counterparts just for a potential influential case.

It is worth noting that case influence on model selection can
occur via different patterns of indCHI i. For instance, a statisti-
cally significant sample 	2 might arise because the less re-
stricted model fit one or a few cases’ data much better, despite
the more restricted model fitting many cases’ data modestly
better. Or, a nonsignificant sample 	2 might arise because one
or a few cases’ data are much better fit by the more restricted
model, although the majority of cases’ data are modestly better
fit by less restricted model. Another possibility is that one or a
few cases’ data are much better fit by the more restricted model,
and one or a few cases’ data are much better fit by the less
restricted model, but for the vast majority of cases’ data either
model is suitable. In this scenario the two sets of influential
cases might effectively counterbalance each other, leading to a
nonsignificant sample 	2.

�indBICi
and �indAICi

as Approximate Model Selection
Influence Diagnostics

Researchers using alternatives to 	2 for model selection with
nested or nonnested models need a non-computationally-intensive
approach for determining how cases influence overall model rank-
ing. To fulfill this need, we approximate the exact case deletion
influence diagnostics from Equations 12 and 13 by replacing 	i

2

with indCHIi in each formula. This yields

indBICi � �indCHIi� � �kA � kB�ln �N/�N � 1��, (18)

indAICi � �indCHIi�. (19)

Descriptively, for a particular case indBICi and indAICi can be
negative (favoring Model A) or positive (favoring Model B).6

Also, given the aforementioned relation between ECVIi and
AICi, we can approximate ECVIi as indECVIi

� (1/
N)indAICi

. The approximation adequacy of indCHIi
for 	i

2

6 Note that indBICi or indAICi will not sum across i to their sample level
statistic BIC or AIC, unlike indCHIi, which sums to 	2.

Figure 1. Approximate indCHIi versus case deletion 	i
2 for three simulated model comparisons discussed

later. A. Multilevel regression model (MLM) model comparison. B. Item response theory (IRT) model
comparison (one sample). C. Confirmatory factor analysis (CFA) model comparison 1.
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(discussed earlier) will be the same as the approximation adequacy
of indAICi

for AICi or the approximation adequacy of indBICi

for BICi,because these formulas differ by at most a constant.
Although proposed diagnostics (indCHIi, indBICi and indAICi)
entail some approximation error, and although exact (jackknife)
case deletion statistics are theoretically available (Equations
9–11), the latter will be computationally impractical in many
settings for applied researchers. Hence, we consider the proposed
diagnostics as easy-to-use screeners, whose accuracy can be ver-
ified by focused application of case deletion statistics to flagged
cases.

Specifically, definitions of case influence on model ranking, or
on degree of evidence for a model, that were provided earlier for
exact case deletion statistics BICi and AICi can be applied to
flag potential influential cases using indAICi and indBICi. For
instance, cases can be flagged as potentially influential on model
ranking for positive BIC when indBICi � BIC; for positive
AIC when indAICi � AIC; for negative BIC when indBICi �
BIC; and for negative AIC when indAICi � AIC. Influence of
flagged cases can be confirmed by computing exact case deletion
statistics. Like 	i

2 and AICi, their approximation counterparts
indCHIi and indAICi differ not in their calculation but in their
implementation and interpretation. Case i’s value of Equation 19 is
compared with d to assess influence on the models’ relative
goodness of fit but compared with AIC to assess influence on the
models’ relative predictive validity (illustrations given later).

Comparing indCHIi
, �indCHIi

, �indAICi
, and �indBICi

It is worth noting that indCHIi is more generally applicable than
indCHIi, in several respects. For example, 	2 tests (and thus indCHIi)
cannot be implemented when there is no saturated model (e.g., for
MLMs in the presence of unbalanced data or SEMs in the presence
of considerable missing data that may result in zero covariance
coverage for some cells in Si; Bollen & Curran, 2006). Also, 	2

(and thus indCHIi) is not recommended for IRT models where the
number of outcome variables is modest or large, as in this situation
	2 does not have the appropriate null distribution (e.g., Jöreskog &
Moustaki, 2001; Reise & Widaman, 1999). However, likelihood
ratio 	2 (and thus indCHIi)

7 is applicable under these circum-
stances. Indeed, likelihood ratio 	2 for comparing competing
models has often been recommended when there are many cate-
gorical outcomes (e.g., when comparing 1PL vs. 2PL IRT models,
or unidimensional vs. bifactor IRT models; Embretson & Reise,
2000; Reise, Widaman, & Pugh, 1993; Swaminathan, Hambleton,
& Rogers, 2007; Thissen, Steinberg, & Gerrard, 1986), as it does
not suffer from as severe limitations regarding number of vari-
ables. To our knowledge indCHIi has been applied only once, to a
nonlinear mixed model (Sadray et al., 1999). indCHIi’s generality
in comparing models from different frameworks has not been
recognized. indCHIi’s generality is useful because, in the past,
assessing influence or person-fit for competing models from dif-
ferent frameworks involved employing separate diagnostics to
each model (Reise & Widaman, 1999). This process would make
it difficult to tell if different persons are identified as influential
across models due to (a) the differential suitability of the alterna-
tive models for particular persons or (b) the differential perfor-
mance of alternative diagnostics themselves.

Further insight is obtained by comparing the behavior of
indCHIi, indAICi, and indBICi in the situation where competing
models are nested. Comparing Equations 16, 18, and 19, indBICi

will be more different from indCHIi or indAICi, when df is larger
and N is smaller. Researchers can note if particular cases are
influential according to some but not all diagnostics. Such incon-
sistency can be viewed in light of the different purposes of the
indices; for instance, a given case might be influential with respect
to “generalizability” of the selected model (i.e., how well it cross-
validates: AIC results), but not with respect to selection of the
“true” model (e.g., BIC results). In general, index plots—
scatterplots of case ID number against case diagnostic value (either
indCHIi, indAICi, or indBICi)—can aid in visualizing potential
influential cases. When employing all three diagnostics, it would
not be necessary to make three separate index plots. For instance,
an index plot of indCHIi (indAICi) could be reported, together with
the parsimony correction factor for indBICi, which indicates the
constant by which all points would be negatively shifted to yield a
indBICi index plot. Beyond using indCHIi, indAICi, and indBICi

for detecting influence on sample level results, it may be of interest
in some clinical or educational applications to descriptively report
the model ranking for a particular case, and/or report the percent-
age of cases whose indAICi, indBICi, or indCHIi favor a particular
model.

Example Applications and Extensions

Next we demonstrate the application and interpretation of the
proposed diagnostics in two examples (one empirical and one
simulated). These examples’ model comparison settings concern
practically useful extensions of those considered thus far: (a)
influence diagnosis for �2 models under comparison and (b)
influence diagnosis when a case is a cluster (e.g., school). In each
example, we consider whether sample level conclusions are de-
pendent on one or a few cases.

Example 1: More Than Two Models to Be Compared

Until this point, we have been concerned with the comparison of
only two models, labeled A and B. Often, a researcher will need to
compare several models (A, B, C, etc.). These alternative models
can be arranged into a sequence of pairwise model comparisons;
we already do this explicitly when performing chi-square differ-
ence tests but usually only do this implicitly when comparing AIC
and BIC values (Kuha, 2004). Sometimes all possible pairwise
comparisons are of interest (e.g., A vs. B, A vs. C, B vs. C). Other

7 Note that all diagnostics described here can be applied in the context of
missing data. Missing data have been known to interfere with identification
of aberrant cases (e.g., cheaters) for a single model in isolation in the
person-fit literature (Neale, 2000). However, our goals here are different;
our purpose is assessing each case’s potential for influence on sample level
conclusions given that case’s available data. We are not, for instance,
concerned with what a case’s potential for influence would have been if the
data had been complete. So, even if a particular case’s potential for
influence on model selection would have been different in a complete data
set, for the data set at hand, application of our diagnostics provides a
researcher with an accurate assessment of whether any cases are influential
for their chosen model comparison, conditional on their available data.
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times a subset of possible comparisons are of interest. The case
influence diagnostics proposed here can be applied to each pair of
models under consideration. It thus would be possible to find that
a given case is influential for all, none, or some of the pairwise
model comparisons considered. We next empirically illustrate the
application and interpretation of the developed model selection
diagnostics when more than two models are to be compared.

This example concerns the assessment of longitudinal measure-
ment invariance (MI) of ordinal items on a unidimensional scale
using categorical longitudinal factor analysis, where several mod-
els are to be compared. Longitudinal MI testing addresses the
question, “Are we measuring the same construct across time?”
Such testing generally involves comparing nested models that
impose increasingly restrictive stages of invariance (Millsap,
2010). In the context of categorical longitudinal factor analysis,
these nested models can include (Millsap & Yun-Tein, 2004):8

noninvariant loadings and thresholds over time (Model B), invari-
ant loadings but noninvariant thresholds over time (Model A), and
invariant loadings and thresholds over time (Model C). Model C is
nested in A, and A is nested in B. Typically all possible pairwise
comparisons are not made in the MI context; rather, adjacent
nested models are compared, moving from lesser to greater invari-
ance (B vs. A, A vs. C). The sequence of model comparisons is
stopped before completion when invariance is rejected. The con-
clusion traditionally drawn at that point is that at least some item
parameters do differ across time, in that sample. However, another
possibility raised in the IRT person-fit literature in related contexts
(e.g., Johanson & Alsmadi, 2002; Meade, Ellington, & Craig,
2004) is that there are one or a few persons whose item parameters
are noninvariant (perhaps due to data/coding errors, chance, pop-
ulation heterogeneity, etc., as discussed later) but for most persons,
item parameters are invariant over time. This possibility motivates
a sensitivity analysis for case influence on model selection in
invariance testing.

For this empirical example, our data set contains N � 599 girls
from the National Institute of Child Health & Human Develop-
ment Study of Early Child Care, whose internalizing behavior was
evaluated with the Child Behavior Checklist (CBCL; Achenbach,
1991, 1992) at three repeated measurements: ages 24, 36, and 54
months. Eight internalizing symptoms from the CBCL9 served as
indicators of a unifactorial internalizing construct at each of the
three timepoints. Each CBCL item has three ordered categories:
0 � not true; 1 � sometimes true; 2 � often true. Due to the use
of these categorical outcomes, f(.) in Equation 1 is a multinomial
probability mass function (for more details, see Bauer & Hussong,
2009; Moustaki, Jöreskog, & Mavridis, 2004), whereas it is as-
sumed that h(.) is a normal pdf; to obtain the marginal likelihood,
numerical integration is required. df for Model A versus B is 14;
df for Model A versus C is 30. In Model B, 21 loadings (seven
per factor, with one per factor fixed for identification), 46 thresh-
olds (two per ordinal item, with two fixed due to sparseness), and
six factor (co)variances were estimated; in Model A, seven load-
ings, 46 thresholds, and six factor (co)variances were estimated; in
Model C, seven loadings, 16 thresholds, and six factor (co)vari-
ances were estimated.

For the Model A versus B comparison, at the level of the
sample, 	2(14) � 24.79, p � .05, where 	crit

2 (14) � 23.69.
BIC � –64.75, and AIC � –3.22, meaning that chi-square
selects the more unrestricted model of girls’ internalizing behavior

over time (Model B) with noninvariant thresholds and loadings.
But when we take parsimony and predictive validity into account
the other indices select the more restricted Model A, with invariant
loadings. The upper panel of Figure 2 provides an index plot of
indCHIi (or indAICi). Additionally, the parsimony corrective term
for indBICi was –.02. Descriptively, Model A is a better fit for
43% of persons, according to indCHIi or indAICi, or 48% of
persons, according to indBICi. These differences can be visualized
by comparing the zero point for indCHIi or indAICi in the upper
panel of Figure 2 (the zero-point on y-axis) to the zero-point of
indBICi (dotted reference line).

No cases have large enough negative indBICi or indAICi to poten-
tially reverse BIC’s or AIC’s selection of Model A at the sample
level. However, since d � 1.1, several cases with indCHIi

� d, would
be independently flagged as having the potential to influence 	2’s
selection of Model B at the sample level. To demonstrate case
influence on the 	2 results, we need only confirm via case
deletion that the presence/absence of one of these cases can reverse
the 	2 results. We use case ID 195 as an example; it had indCHIi �
3.06. Without ID 195’s contribution, the sample 	2 became nonsig-
nificant: 	2(14) � 20.62, p � .05, now indicating support for Model
A. BIC (–68.89) and AIC (–7.38) continued to select A. Although
the approximate indCHIi and its exact deletion counterpart, 	i

2(4.08),
both led to the same decision that case 195 was influential, they were
not numerically identical. Recall this discrepancy occurs because
indCHIi corresponds with case 195’s contribution when parameter
estimates are at the values from the full-N sample analysis. Refitting
models with N � 1 to get 	i

2 allows parameter estimates to change.
If we were to rely solely on the chi-square results at the sample

level, we might stop our invariance testing here, retain Model B,
and not perform the A versus C comparison. But the support of
BIC and AIC for Model A over B, together with the influential
indCHIi in favor of A, suggest a rationale for continuing. In the A
versus C comparison, at the level of the sample, 	2(30) �
1689.52, p � .05, where 	crit

2 (30) � 43.77; BIC � 1497.66, and
AIC � 1629.52, meaning that all indices select the invariant
loading/noninvariant threshold model (A) over the invariant load-
ing and threshold model (C). The lower panel of Figure 2 provides
an index plot of indCHIi (or indAICi) for the A versus C compar-
ison. Additionally, the parsimony correction term for indBICi was
–.05; the dotted reference line in Figure 2 denotes the zero-point of
indBICi. There are no potentially influential cases (d � 1645.75
and no indCHIi � d; no indBICi � 1497.66; no indAICi �
1629.52). Taken together, these results suggest that there is con-
siderable support for selecting A over B and A over C. When
reporting these results, a researcher could explain that a sensitivity

8 In categorical factor models, some authors have allowed invariance of
loadings and thresholds to be evaluated in separate steps (e.g., Millsap &
Yun-Tein, 2004) as we do here, and others have tested their invariance
together in one step (L. K. Muthén & Muthén, 1998–2011).

9 Eight items appear as internalizing domain items on both the Child
Behavior Checklist (CBCL) 2/3 form and CBCL 4–18 form (Achenbach,
1991, 1992): “underactive, slow-moving, or lacks energy”; “unhappy, sad
or depressed”; “withdrawn/doesn’t get involved with others”; “overtired”;
“nervous, high-strung, tense”; “too fearful or anxious”; “shy or timid”;
“self-conscious or easily embarrassed.”
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analysis had been done that indentified influence with respect to
the chi-square for the first but not the second model comparison.
If a researcher was, for instance, most interested in predictive
validity, the insensitivity of AIC to influential cases could be
emphasized, alongside selecting Model A at the sample level.
Another option would be to follow-up on potential cases that
dominated 	2 results to investigate why they were influential on
the A–B comparison; some ideas for such follow-up investigations
are discussed in a later section, entitled “Why could a case be
influential on model selection?” In sum, this empirical example
highlights that, using these diagnostics, richer insights can be
obtained about MI at the individual versus sample level across
multiple model comparisons, which can, in turn, improve confi-
dence in the final sample level model ranking.

Example 2: Cases as Clusters

Until this point, in illustrations a case has corresponded to a
person in a single-level analysis. It was stated earlier that, more

generally, the proposed diagnostics consider a case to be the
highest level unit in an analysis. Hence, in a multilevel model with
mice nested within litters, a case is a litter, but in a daily diary
longitudinal model with day nested within week, and week nested
within person, a case is a person. Once researchers recognize
which unit corresponds with a case, no further complexities arise
in applying the diagnostics to a hierarchical or multilevel modeling
context. Here we consider the application of our approximation
diagnostics indCHIi, indAICi, indBICi to a common model selec-
tion problem in multilevel modeling for which influence diagnosis
has been previously recommended (Snijders & Bosker, 1999, pp.
137–138). Specifically, we consider a comparison between a mul-
tilevel model that includes a cross-level interaction (Model B) and
one that does not (i.e., a main effects only model; Model A) using
simulated data. Simulated data were all generated from Model B,
and so we expect support for the interaction model at the sample
level, although not necessarily at the case level, and we generally
would not expect influential cases.

Figure 2. Example 1—indCHIi index plots for comparing longitudinal factor models. Dotted horizontal
reference line denotes 0 for indBICi.
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The generating multilevel model (MLM) has normally distrib-
uted outcomes and random effects; hence, f(.) and h(.) are normal
for Equation 1. This MLM has j � 1 . . . 10 Level 1 units (student)
nested within each of i � 1 . . . 40 Level 2 units or clusters
(schools). Since a case is a highest level unit, here a case refers to
a cluster (school), rather than a student. Therefore N � 40. Out-
comes Yji are an additive linear combination of an intercept, a
Level 1 predictor Xji, a Level 2 predictor Wi and their (cross-level)
interaction WiXji; their respective population coefficients are 2, 1,
1, and 1.10 Intercepts vary randomly across schools (variance �
.5), as do slopes of Xji (variance � .3); the residual (Level 1)
variance is 1.0. To this data set we fit two multilevel models:
Model B (the true generating model) and Model A (omitting the
cross-level interaction term); A is nested in B.

At the sample level, all model selection indices support Model
B: 	2�1� � 58.34, p � .05, (where 	crit

2 �1� � 3.85), BIC �
52.64 (“very strong” evidence for Model B against Model A), and
AIC � 56.63, consistent with the fact that B is the generating
model. An index plot of indCHIi (or indAICi) is given in Figure 3,
and the parsimony-corrective factor for indBICi was � –.05. As
expected, no indCHIi, indBICi, or indAICi are influential in the
sense that their values, if excluded, could potentially alter the
model ranking or the degree of support for Model B (d � 54.49
and no indCHIi � d; no indBICi � 52.64; no indAICi � 56.63).
The largest indCHIi � indAICi � 8.1, and indBICi � 7.8.

Additionally, despite the fact that all cases were generated from
B, descriptively, all cases do not support B at the case level. A few
cases’ data are relatively much better fit by B; most are modestly
better fit by B; and some cases’ data show slight support for A
(18% of cases according to indCHIi, indBICi, or indAICi). To
understand why, consider the implications of the two models at the
case level. A cross-level interaction term implies that the slope of
Yji on Xji depends on case (cluster) i’s value of Wi. Moreover, a

positively signed cross-level interaction term implies that clusters
for which this slope and Wi were larger and positive, or clusters for
which this slope and Wi were larger and negative would see much
more improved fit from the inclusion of the interaction term than
would other clusters (e.g., clusters in which the slope was larger
and positive but Wi was larger and negative). This pattern is borne
out in Figure 4. In Figure 4 we see that the cases whose indCHIi

indicated that their data were much better fit by Model B (e.g.,
ID#s 22, 28, 35) indeed had a high Xji slope and high Wi value (or
low on both). Conversely, the cases whose data were better fit by
A (e.g., ID# 33) could have relatively large and opposite-signed
coordinates. Only if we were to increase the population effect size
difference between the models enough (here, by increasing the
coefficient of WiXji fourfold), holding constant N and df, would
all cases’ data eventually be better fit by the generating Model B,
than Model A.

In sum, we showed that the proposed diagnostics can be
straightforwardly applied to detect influence of highest-level units
in a multilevel analysis. In this example, all cases were generated
from the same fitted model; no influential cases were expected and
none were found. This example also served to illustrate why a true
generating model need not have the support of all cases at the case
level, despite having support at the sample level. For this reason,
generalizing sample level conclusions about model ranking to a
given case constitutes an ecological fallacy (Robinson, 1950).

Why Could a Case Be Influential on Model Selection?

Thus far we have defined case influence with respect to model
selection as occurring when a single case’s presence/absence alters
model ranking (or alters the degree of evidence for a given model
according to, say, Bayes factors). We suggested that a case flagged
as influential on selection by our approximate influence diagnos-
tics be confirmed as such using exact case deletion. It is also
crucial to recognize that model selection influence diagnostics tell
us whether, but not why, a case is influential. This point is not
unique to influence diagnostics for model selection; influence
diagnostics in general (e.g., with respect to fit of a single model in
isolation, or with respect to parameter estimates) do not tell us why
a case is influential. Once a diagnostic indicates that a case is
influential, it is up to the researcher to investigate and weigh
alternative potential causes for influence and decide how to use
this information. It would not be advisable to automatically per-
manently omit an influential case from an analysis based on the
influence diagnostic value alone (more cautions in this regard are
given in the Discussion). Understanding why a case is influential is
a separate task requiring additional qualitative or quantitative
information beyond the diagnostic.

In general, gathering information on why a case is influential on
model selection may involve checking data collection instruments
for malfunctions, checking codebooks for data contamination or
checking interview records for signs of fatigue or inattention (e.g.,
Rensvold & Cheung, 1999). Similar suggestions have been made
in the IRT literature with respect to investigating potential causes

10 Xji and Wi were both standard normally distributed in the population.

Figure 3. Example 2—indCHIi index plots for comparing a main-effects-
only multilevel regression model (MLM; Model A) versus an MLM with
an interaction (Model B): N � 40 cases generated from Model B. Model
A is an MLM including main effects of a Level 1 predictor Xji and a Level
2 predictor, Wi. Model B is an MLM that also includes a cross-level
interaction of the Level 1 and 2 predictors.
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of person misfit (Reise, 2000; Reise & Waller, 2009). Patterns of
covariate values may be inspected, potentially leading to consid-
eration of additional models. Sometimes, a researcher may not
fully resolve why a case is influential. Case influence on model
selection can occur for a variety of reasons, including data entry/
coding errors or unobserved population heterogeneity (�1 case
from a different population; discussed shortly). Further, certain
data/model conditions increase the chance of finding an influential
case, even in the absence of data coding errors or unobserved
population heterogeneity. Whereas the possibility for influence
stemming from data coding errors seems self-explanatory, the
possibility for influence to arise from unobserved population het-
erogeneity and the possibility for other data/model conditions to
increase the chance of finding an influential case are less clear cut.
These latter two topics are discussed and illustrated in the next two
subsections.

Unobserved Population Heterogeneity

Unobserved population heterogeneity arises when at least one
case in the sample is generated from a different population than the
rest of the sample, unbeknownst to the researcher (e.g., B. O.
Muthén, 1989). Whereas case influence on model selection can be
caused by such population heterogeneity, unobserved population
heterogeneity is neither necessary nor sufficient to guarantee the
presence of influential cases. Hence, diagnostics for case influence
on model selection should not be treated as a de facto test for a
mixture. Whether population heterogeneity gives rise to influential
case(s) depends on the particular characteristics of the heteroge-
neous case(s) in relation to the models under consideration. To
explicate this point, a brief simulated example is used involving
selecting between competing numbers of factors in CFA in the
presence of alternative heterogeneous cases.11

Suppose that we have two nested generating models: a one-
factor congeneric CFA model (Model A) versus a two-correlated-
factor congeneric CFA model (Model B). Both have 20 normally
distributed items and normally distributed factor(s); hence, f(.) and

h(.) are normal in Equation 1. In both generating Models A and B,
factor loadings � .7, factor variances � 1, and residual vari-
ances � .51; also, in Model B, the factor correlation � .5, and 10
items load on each factor. We are concerned with the conse-
quences for model selection between A and B if a researcher’s
sample contains all 75 persons generated from A plus one person
generated from B (N � 76). In this context, given that A is
unidimensional and B is two-dimensional, if our one heteroge-
neous case generated from B had factor scores very different from
each other, it would be worse fit by A and likely influential on
model selection. On the other hand, if this heterogeneous case’s
scores on the two factors were similar, it would be reasonably
consistent with A and, thus, not be influential on model selection.
These two circumstances are depicted in the indCHIi (or indAICi)
index plots in Figure 5 for a Model A versus B comparison
(indBICi’s parsimony-corrective term from Equation 18 is –.01).

First consider the left panel of Figure 5. Here, the analysis data
set contained the 75 cases generated from A plus a heterogeneous
case from B (ID#B1) that had a relatively large factor score
difference (–2.19; which can be thought of as more than a two
standard deviation difference between z-scores). Here, at the sam-
ple level, Model B would be selected: 	2�1� � 9.76, p � .05, (for
	crit

2 �1� � –3.85), BIC � 5.43 (“positive” evidence for Model B),
and AIC � 7.76. The heterogeneous case ID#B1 has indCHIi �
indAICi � 12.52 and indBICi�12.51. These diagnostics suggest
that case ID#B1 is influential with respect to the model ranking for
all selection indices, since 12.52 � d (recall d � 	2 � 	crit

2 ),
12.51 � BIC, and 12.52 � AIC. The influence of case ID#B1
is confirmed via exact case deletion. Excluding ID#B1 reverses the
model ranking (in favor of A): 	2�1� � 0.25, p � .05, BIC �
–4.07 (“positive” evidence for Model A), and AIC � –1.75,
implying that 	i

2 � AICi � 9.51 and BICi � 9.50.
Now consider the right panel of Figure 5. Here, the analysis data

set contained the 75 cases generated from A plus a different
heterogeneous case from B (ID#B2) with a smaller factor score
difference (–.70). Here, at the sample level, Model A would be
selected: 	2�1� � .32, p � .05, BIC � –4.01 (“positive”
evidence for Model A), and AIC � –1.68. The heterogeneous
case ID#B2 has indCHIi � indAICi � .39, indBICi � .37 and is
not influential with respect to model ranking.

More generally, there would be a whole range of possibilities for
case influence on model selection depending on which one or few
cases generated from B happened to be mixed with the sample
generated from A prior to model fitting. To put this in perspective,
Figure 6 depicts 75 cases generated from A (in black) as well as
N � 75 cases generated from B (in gray)–including ID#B1 and
ID#B2. Gray cases show increasing indCHIi (favoring B) as their
factor score differences increase.

11 This example was chosen as substantively relevant because chi-square
difference tests are still commonly used for this purpose (e.g., Bollen,
1989; Fitzmaurice, Laird, & Ware, 2004; Hedeker & Gibbons, 2006;
Mulaik, 2009) with the understanding that they will be slightly conserva-
tive when setting a factor/random effect variance to 0 or a factor/random
effect correlation to 1 in the restricted model. Whether to adjust chi-square
tests in this context and how to do so in general settings is currently
unresolved (e.g., Savalei & Kolenikov, 2008; Stoel, Garre, Dolan, & van
den Wittenboer, 2006). Other model comparisons in other modeling frame-
works could have been used to explicate the same point.

Figure 4. Example 2—Plot of each case’s slope of Yji on Xji versus that
case’s value of Wi. See Figure 3 notes.
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In sum, population heterogeneity is one hypothesis to consider
for explaining case influence on model selection. But this illustra-
tion showed that a case’s potential for influence is not just deter-
mined by whether it was literally generated from a second popu-
lation; it is also determined by that case’s characteristics with
respect to the models under consideration.

Other Data/Model Conditions That Can Increase the
Chance of Case Influence on Model Selection

We have thus far considered a few possible reasons for case
influence on model selection, including unobserved population
heterogeneity. It is also useful to recognize that certain data/model
conditions pose a greater chance of finding case influence on
model selection, all else equal. These are conditions that result in
differences in fit between models close to the selection index’s
decision threshold, where for the 	2 statistic, the decision thresh-
old would be 	crit

2 and for BIC and AIC it would be 0. For
instance, consider 	2, and recall d � 	2 � 	crit

2 . When |d| is
smaller, there is generally a greater chance of finding case influ-
ence (i.e., indCHIi � positive d or � negative d). Given that a
researcher’s competing models are not exactly the same, N has a
positive monotonic relationship with d. Also, the effect size dif-
ference between models (e.g., size of parameters constrained to 0
in Model A but not B or size of differences between parameters
constrained to equality in Model A but not B)—has a nonmono-
tonic relationship with d. Specifically, all else equal, there is a
greater chance of 	2 influence for low N combined with small
effect size. Holding N constant, a very tiny effect size or a large
effect size makes influence unlikely (the former makes d larger
and negative; the latter makes d large and positive).

Since influence on model selection can occur by chance alone
(i.e., due to sampling variability), we illustrate the nature of
relations among effect size, N, and case influence on 	2 by
comparing the proportion of samples having an influential case by
chance alone under conditions that differ in effect size and N—and
thus differ in d. Although any model comparison context could be
chosen for this illustration, we chose a frequently used nested IRT
model comparison (see Kang & Cohen, 2007): a one-parameter
logistic (1PL or Rasch, with equal item discriminations) vs. a

Figure 5. Population heterogeneity does not necessarily imply case influence on model selection: indCHIi

index plots for a one-factor confirmatory factor analysis (CFA; Model A) versus a two-factor CFA (Model B)
comparison, where all but one case are generated from Model A.

Figure 6. Cases’ estimated factor score differences versus cases’ indCHIi

scores, for 75 (black) cases generated from a one-factor confirmatory factor
analysis (CFA; Model A) and 75 (gray) cases generated from a two-factor
CFA (Model B). The factor score difference for case i was calculated as
case i’s estimated score on Factor 1 minus case i’s estimated score on
Factor 2, when Model B was fitted. B1 and B2 refer to the cases described
in Figure 5. Models A and B refer to the models described in Figure 5.
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two-parameter logistic (2PL with unequal item discriminations);
df � 9. Five hundred samples of 10 binary items were generated
from a 2PL model with item difficulty parameters chosen from
Embretson and Reise’s (2000, p. 69) abstract reasoning test results,
Items 11–20. Twelve data conditions were defined by four Ns
(100, 500, 750, 1000) crossed with three effect size differences
between models. Effect size differences between models were
manipulated by reducing or increasing the range of item discrim-
inations in the generating 2PL: large discriminations (range �
.5–2.5 by .222);12 small discriminations (range � 1–1.5 by .055);
very small/trivial discriminations (range � 1–1.05, by .0056). 1PL
and 2PL models were fitted to the 500 samples per cell. Incidences
of a case flagged as influential by indCHIi were recorded. Here f(.)
in Equation 1 is a binomial probability mass function, h(.) is a
normal pdf, and integration is required to obtain the marginal
likelihood.

Figure 7 summarizes the results obtained from the simulation.
Figure 7 shows that there is little chance of influence for large
effect size (dotted line), regardless of N. And there is little chance
of influence for large N, regardless of effect size. There is also
little chance of influence for very small/trivial effect size (dashed
line), at most N. As anticipated, the combination of small N and
small effect size posed the highest chance of influence: 17% of
samples had at least one influential case flagged by indCHIi.

This brief illustration considered influence on model selection
occurring due to sampling variability only. Yet, more generally, a
case whose contribution is relatively more extreme than other
cases for any other reason (data coding error, population hetero-
geneity, etc.) would also be more likely to have influence on
sample level conclusions when differences in fit between models
are close to a selection index’s decision threshold. Further, though
this illustration concerned only IRT models, the phenomenon
demonstrated is not limited to this modeling context; at issue is the
closeness of the models’ fit difference to a selection index’s
decision threshold, not which models (e.g., SEMs, IRT models,
MLMs, single-level regressions, etc.) gave rise to a given fit
difference.13 Finally, this illustration considered only 	2; close-

ness of AIC and BIC to their decision thresholds of 0 depends
on df over and above N and effect size (see Equations 7 and 8).
In sum, researchers should be aware that there is a higher chance
of case influence on model selection under certain conditions, all
else equal.

To summarize, we revisit this section’s question: “Why could a
case be influential on model selection?” We discussed that there
are many causes of case influence on selection and that there are
certain data conditions under which we are more likely to find
influence. Researchers can investigate alternate potential causes of
case influence and try to adjudicate between them and can also
report results of influence diagnostics in the context of a sensitivity
analysis (described in the Discussion).

Software Implementation of �indCHIi
, �indBICi

, and
�indAICi

Two steps are needed to produce the approximate casewise
influence diagnostics discussed here. First, a researcher needs to fit
each of their competing models using one of several software
packages that provide FIML and also allow the saving and export-
ing of casewise loglikelihood values (e.g., Mplus, Version 6.1 [
L. K. Muthén & Muthén, 1998–2011], see Save � Loglikelihood
option; Mx [Neale, Boker, Xie, & Maes, 2003], see MX%P � �
filename� option). Second, the researcher needs to use these
casewise loglikelihood values to compute model selection influ-
ence diagnostics for each pair of models. In our online Appendix,
we provide example Mplus code for exporting casewise loglikeli-
hood values. We also provide SAS code for calculating indCHIi,
indBICi, and indAICi from these exported casewise loglikelihood
values and obtaining index plots for each diagnostic. Given the
generality of the proposed individual contributions to model se-
lection indices, this two-step approach can be used with any model
type or outcome type, so long as FIML estimation was used.

Discussion

Researchers’ increasing use of model selection in psychology
far outpaces an awareness or examination of individual-specific
influences on model selection. This article began by highlighting
the underappreciated issue that one or a few cases can have a
disproportionate impact on the selection of a model at the sample
level. We then developed several approximate influence diagnos-
tics for commonly used model selection indices—	2, BIC, and
AIC—that are obtained simply from byproducts of FIML esti-
mation using available software, without computationally heavy
iterative model refitting. We described and provided simulated
demonstrations of the diagnostics’ interpretation and behavior,
along with code to facilitate their use in practice.

Here we summarize key take-home points. Case influence on
model selection refers to whether a single case can impact the
sample level conclusion, reflecting the approach of the case influ-

12 Reise and Waller (2009, p. 30) reported that discriminations often
exceed 2.5 in the clinical but not cognitive psychology literature.

13 For instance, selected cells of the simulation were conducted with
nested CFA models with normal outcomes, rather than IRT models, and
similar findings were obtained. More information is available from the first
author upon request.

Figure 7. Percentage of samples with at least one influential indCHIi

across alternative simulated data conditions for model comparisons that
differ in N and effect size.
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ence literature more generally. Unlike outlier diagnostics and
person-fit diagnostics, our focus is not on comparing cases’ con-
tributions against one other but ultimately to sample level decision
thresholds for model ranking. It is therefore possible and common
for no cases to be influential on model selection (e.g., the MLM
example); this differs from some person-fit diagnostics that may
automatically siphon off the top 1% or 5% of cases (Drasgow et
al., 1996). Like other influence diagnostics, our diagnostics for
case influence on model selection convey whether rather than why
a case is influential. Earlier we discussed several potential causes
of case influence that a researcher could investigate and some
data/model conditions under which influence may be more com-
mon.

In addition to using the developed diagnostics for influence
detection (e.g., by comparing a case’s indCHIi, indBICi, and/or
indAICi with sample level d, BIC, and AIC, respectively), we
noted that these diagnostics also provide descriptive, ideographic
information about a given case’s own model ranking (by compar-
ing a case’s indCHIi, indBICi, and/or indAICi with 0). Our em-
pirical and simulated examples highlighted the applicability of the
indCHIi, indBICi, and indAICi influence diagnostics to diverse
modeling frameworks and outcome types (e.g., categorical or
continuous). Although all of our simulated and empirical model
comparisons happened to be nested, this was merely so that all
three selection diagnostics could be applied and compared for
pedagogical purposes. In general, however, indBICi, and indAICi

can be readily applied to nonnested comparisons, such as between
an autoregressive model and a growth curve model. Furthermore,
although our empirical example pertained to clinical psychology,
potential application areas are diverse. For instance, these diag-
nostics are particularly relevant for mathematical modeling of
cognitive psychology processes (e.g., memory; decision making),
an area that has historically employed a model selection approach
(Myung, Pitt, & Kim, 2005). Next we provide some practical
recommendations on reporting results of sensitivity analyses using
such diagnostics and conclude with a discussion of limitations and
potential future extensions of these techniques.

Recommendations for Reporting Sensitivity Analyses
for Case Influence on Selection

We suggest using these diagnostics in the context of a sensitivity
analysis. A sensitivity analysis framework is increasingly used for
gauging the practical impact of particular data conditions or as-
sumption violations (Verbeke & Molenberghs, 2000). Researchers
can conduct a sensitivity analysis for case influence on model
selection by using indCHIi, indBICi, and/or indAICi as screeners
to flag potential influential cases, and then by confirming the
influence of flagged cases by exactly computing 	i

2, AICi,
and/or BICi. If no influential cases are found, researchers can
report that their model selection conclusions are robust to influ-
ential cases. But, for descriptive purposes, researchers may still
want to report the model ranking for individual case(s) of partic-
ular substantive interest. If an influential case (or cases) are found,
researchers may consider follow-up investigations of those cases.

At the least, information about case influence is something
for researchers to be aware of when articulating and framing
their substantive conclusions. How researchers use this infor-
mation will depend on their analytic goals. For instance, sup-

pose a researcher was comparing five models (A, B, C, D, E)
and had found two models (A, B) strongly preferable to the
other three models (C, D, E) at the sample level using BIC. But
suppose the best fitting two models A and B were only
“weakly” differentiable from each other at the sample level, and
the researcher had decided to postpone judgment between them.
If the researcher found that there was an influential case that
could reverse the ranking from weak support of B over A to
weak support for A over B, such sensitivity may have little
consequence for decision making in this context. Given differ-
ent analysis goals, or given a case that exerted stronger influ-
ence (e.g., reversing the degree of evidence for A over B to
“very strong” rather than “weak” levels) this influential case
might be considered more substantively consequential. In other
situations, an influential case could lead us to contextualize or
qualify what would have otherwise been an all-or-nothing de-
cision about model ranking. For instance, if the difference in fit
between competing models is very close to the chosen index’s
decision threshold (e.g., the small effect size condition from our
IRT model comparison simulation) and if N is very small, a
researcher finding influence for unexplained reasons might
report the following caveat alongside their sample level results.
Under their data/model conditions, their chosen sample level
model ranking could be materially altered by a single case. In
future studies the researcher could consider alternative models
that were more distinct and/or larger Ns to try to avoid this
situation.

We caution that unless separate investigations into the cause
of an influential case can confirm a particular cause (e.g., a data
coding error), it may not be advisable to omit this case from the
sample permanently. Case omission is certainly not a necessary
step and should only be considered in light of multiple kinds of
additional information beyond the diagnostic value, such as the
nature of the researchers’ measurement, in conjunction with
their sample characteristics and theory—to avoid the premature
dismissal of a substantively important pattern. Also, researchers
should avoid deciding whether to delete a case solely based on
whether the model ranking would change for or against hypoth-
eses (this could be framed as an ethical issue; Panter & Sterba,
2011).

Taking a step back, we recognize that, in practice, the results of
model selection—even when exclusively considering sample level
model ranking—are often equivocal. Indices’ rankings may not
agree; no model may have a strong degree of evidence over others.
Here we have further complicated the picture by adding
ideographic-level information to the nomothetic. An individual
could be influential on one model comparison but not another.
Further, influence diagnostics may not agree on what case is
influential, just as they do not always agree at the sample level. Yet
we consider the added complexity informative and worthwhile.
These indices fall in line with a progression of methodological
recommendations away from evaluating one nomothetic model in
isolation, to considering nomothetic and ideographic influences on
one model (e.g., Reise & Widaman, 1999), to considering multiple
competing models (Rodgers, 2010), to considering nomothetic and
ideographic influences on model comparison (as done here). We
emphasize that the primary motivation for a sensitivity analysis of
case influence in the selection context is to avoid unknowingly
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obtaining and interpreting a model ranking that is materially driven
by one (or very few) cases.

Limitations and Extensions

In some applications researchers may be most interested in (a)
whether model selection can be influenced by at least one case; (b)
whether any one of several flagged cases could individually influ-
ence selection results (e.g., ID#s 195, 286, 154, 325 in the Figure 2
empirical example); or (c) whether jointly two or three cases, for
instance, could influence selection. Objective (a) has been our
concern in earlier examples. Objective (b) could be assessed by
individually confirming the influence of each flagged case of
interest, one at a time. Regarding objective (c), one-at-a-time case
deletion statistics (whether approximate or exact, of which
indCHIi, indBICi, indAICi, and 	i

2, AICi, BICi would be no
exception) are not designed to simultaneously identify an influen-
tial “clump” (J. Cohen, Cohen, West, & Aiken, 2003) of cases
(e.g., Poon & Poon, 2002; Xu et al., 2006). A clump could
dominate or drive model selection results to the extent that such
diagnostics would not flag a given case within the clump as
influential, although the clump as a whole is influential; this
phenomenon is generally called masking (e.g., Atkinson & Riani,
2008; Bendre & Kale, 1987). Potentially, approximation influence
diagnostics could be calculated iteratively after one case from the
clump of interest is deleted at a time; at each iteration the original
versus current model selection results at the sample level could be
compared.

More general approaches for addressing masking have been
proposed in the context of evaluating single models in isolation;
future research could consider explicitly extending these to the
context of model selection. One approach is leave-m-cases out
case deletion (e.g., Bruce & Martin, 1989), wherein the model
is iteratively refit leaving out, say, each possible pair (m � 2),
and/or triplet (m � 3) of cases, which escalates computational
demand (Rensvold & Cheung, 1999). A second approach is a
forward search procedure (e.g., Mavridis & Moustaki, 2008;
Yang, Tanaka, & Nakaya, 2006), which aims to begin with an
initial subset of noninfluential cases and then monitor changes
in fit as cases are added in order of their consistency with the
fitted model. A third approach is to employ local influence
diagnostics (see footnote 1), which are considered somewhat
less vulnerable to masking than case-deletion-type (i.e., global)
diagnostics (Poon & Poon, 2002). On balance, since detecting
individual influence on model selection currently receives no
attention in applied psychology research, we believe the pro-
posed indCHI i, indBIC i, and indAIC i diagnostics provide a
worthwhile and simple-to-implement first step to allow detec-
tion of certain kinds of influence, even if they do not detect all
potential kinds of influence well.

Another important direction for future work involves an ex-
panded evaluation of the adequacy of the proposed diagnostics’
approximation of their case deletion counterparts, perhaps involv-
ing simulation studies across a broad variety of data and model
conditions. A third interesting direction for expansion would be to
define case influence on magnitude of BIC and AIC in terms of
Schwarz weights and Akaike weights, respectively (e.g., Burnham
& Anderson, 2002; Wagenmakers & Farrell, 2004).

Finally, a fourth direction for additional research involves a
complementary but philosophically different avenue for handling
case influence on model selection besides the diagnostic approach
considered here. Specifically, robust model comparison methods
may be used to downweight the impact of influential cases without
necessarily bringing such cases to the attention of the researcher.
Several such methods have been developed, for instance: a robust
version of AIC for time series models using least squares estima-
tion (Chik, 2002), a robust version of AIC implemented for au-
toregressive models (Ronchetti, 1997), and a robust version of
Mallows’ Cp for regression models using least squares estimation
(Atkinson & Riani, 2008). Future research could expand such
methods to other model types, other selection indices, and other
estimation algorithms to increase the generality of this approach.
These methods differ philosophically from our diagnostics in the
sense that they may consider influential cases a nuisance to be
controlled more so than a potentially theoretically meaningful
occurrence to explore.

Conclusions

Model selection is a useful and increasingly popular endeavor in
psychology that should be encouraged. We can often learn more
from model comparisons than we can from the evaluation of a
single model in isolation. A summary message from our demon-
strations and empirical example is that, under at least some con-
ditions, researchers may not recognize how often their model
selection results are contingent on one or a few cases in a sample.
Awareness of how individuals influence model selection results
can help researchers understand how representative sample level
results are at the individual level. We hope that available user-
friendly software tools will facilitate researchers’ greater explora-
tion of case influence on model selection.
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