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Psychologists have long been interested in characterizing individual differences

in change over time. It is often plausible to assume that the distribution of these

individual differences is continuous in nature, yet theory is seldom so specific

as to designate its parametric form (e.g., normal). Semiparametric groups-based

trajectory models (SPGMs) were thus developed to provide a discrete approxima-

tion for continuously distributed growth of unknown form. Previous research has

demonstrated the adequacy of the approximation provided by SPGM but only under

relatively narrow, theoretically optimal conditions. Under alternative conditions,

which may be more common in practice (e.g., higher dimension random effects,

smaller sample sizes), this study shows that approximation adequacy can suffer.

Furthermore, this study also evaluates whether SPGM’s discrete approximation

is preferable to a parametric trajectory model that assumes normally distributed

random effects when in fact the distribution is modestly nonnormal. The answer

is shown to depend on distributional characteristics of both repeated measures

(binary or continuous) and random effects (bimodal or skewed). Implications for

practice are discussed in light of empirical examples on externalizing behavior.
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SEMIPARAMETRIC APPROXIMATION 591

FIGURE 1 Semiparametric groups-based trajectory model of externalizing behavior prob-

lems: Six-class empirical example. Note. Time D (age in years—5.5). Solid lines D model

estimated mean per class. Dashed lines = observed mean per class, calculated using modal

class assignment. Proportions associated with each class are listed in the figure legend.

Illustrative class labels: 1 D “decreaser/increaser”; 2 D “low-stable”; 3 D “chronic”; 4 D

“moderate declining”; 5 D “high declining”; 6 D “moderate stable.” Conditional response

distribution assumed normal. Details on the empirical example are given in the section of

this article titled Empirical Illustrations.

Characterizing individual differences in change over time is a core enterprise of

psychology research. One data-analytic approach that can aid in this endeavor is

the semiparametric groups-based trajectory model (SPGM; Nagin, 1999, 2005;

Nagin & Land, 1993; also called a latent class growth model). This longitudinal

method distills individual variation in change over time into a small set of dis-

crete groups (or classes) of trajectories. Attractive to social science researchers,

SPGM has been applied hundreds of times in psychology and related disciplines

over the past decade.

To illustrate, consider an application of SPGM to repeated measures on

externalizing behavior—the most common topic among 100 psychology SPGM

applications we surveyed.1 In Figure 1 (based on Sterba, Prinstein, Bauer, & Cox,

2005), individual differences in the course of externalizing are captured by six

class-specific trajectories, which can differ in initial status, rate of change, and

1Out of 100 applications, 22 modeled externalizing or related antisocial, conduct, or aggressive

behavior. See Online Appendix at http://www.vanderbilt.edu/peabody/sterba/appxs.htm for refer-

ences for surveyed applications.
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592 STERBA, BALDASARO, BAUER

FIGURE 2 Heuristic sketch often cited in semiparametric groups-based trajectory model

literature: Hypothesized semiparametric approximation of the probability density function of

a single dimension random effect distribution. Note. Locations of points of support correspond

to class means; heights of points of support correspond to class probabilities; number of points

corresponds to number of classes.

class membership proportions. Researchers often desire to directly interpret such

trajectory classes as literal or true latent subpopulations—where nature’s joints

have been carved (Titterington, Smith, & Makov, 1985). However, SPGM has

been strongly motivated as a tool for providing a flexible, indirect semiparametric

approximation of continuous individual differences in growth (e.g., Nagin, 2005;

Nagin & Tremblay, 2005a,b,c,d). As summarized by Nagin and Tremblay (2001),

As discussed in Nagin (1999), Nagin and Land (1993), and Nagin and Tremblay

(1999), the assumption that the population is composed of distinct groups is

unlikely to be strictly correct. Instead, the groups are intended as an approximation

of an underlying continuous process. In so doing, we adopt a standard procedure

in nonparametric and semiparametric statistics of approximating a continuous

distribution from a discrete mixture. (p. 28)

To illustrate this role, methodological sources introducing SPGM routinely present

a diagram resembling Figure 2 (e.g., Feldman, Masyn, & Conger, 2009; Muthén,

2004, 2008; Nagin, 1999, 2004, 2005; Nagin & Land, 1993; Nagin & Tremblay,

2005c; see also Sampson & Laub, 2005). The smooth curve depicts a one-

dimensional distribution of individual differences in growth (say, differences in

initial level, or intercept) in the population. An SPGM would extract k D 1 : : : K

classes, which would serve as points of support for this continuous individual

difference distribution, much like histobars in a histogram (here K D 5). The

location of the point of support for the kth class is determined by a class-

specific growth coefficient (here, class-specific intercept). The proportion of

individuals in class k determines the height (or mass) of the kth point of support.
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SEMIPARAMETRIC APPROXIMATION 593

Together, these masses and locations define a discrete probability distribution

for the SPGM.

Our literature review of 100 psychology SPGM applications (see Online

Appendix at http://www.vanderbilt.edu/peabody/sterba/appxs.htm for random

selection procedures) indicated that the ability of SPGM to indirectly

semiparametrically approximate continuous individual differences in trajectories

is widely referenced in empirical studies (e.g., Delucchi, Matzger, & Weisner,

2004; Kreuter & Muthén, 2008; Losoya et al., 2008; Louvet, Gaudreau, Menaut,

Genty, & Deneuve, 2007; Maggi, Hertzman, & Vaillancourt, 2007; Mazza,

Fleming, Abbott, Haggerty, & Catalona, 2009; Murphy, Brecht, Herbeck, &

Huang, 2009; Nash & Kim, 2007; Obradovic, Burt, & Masten, 2006; Piquero,

Fagan, Mulvey, Steinberg, & Odgers, 2005; Rodriguez-Zas, Southey, Whitfield,

& Robinson, 2006; Segawa, Ngwe, Li, Flay, & Coinvestigators, 2005; van Ryzin,

Chatham, Kryzer, Kertes, & Gunnar, 2009; Wiesner & Kim, 2006; Xie, McHugo,

He, & Drake, 2010). However, whereas a direct interpretation of classes is

intuitive, an indirect semiparametric function of classes is less so. Applications

typically mention the indirect approximation function of classes only abstractly,

without concrete connection to the obtained results or consideration of whether

such a semiparametric approximation will be adequate or even necessary for

their data. Hence, users of SPGM need to consider the following: first, whether

this approximation will be adequate under conditions typical of psychological

research, and second, whether it will be preferable to existing parametric

models when the latter’s distributional assumptions do not hold.

Regarding the first question, prior investigations of SPGM’s semiparamet-

ric approximation function (Brame, Nagin, & Wasserman, 2006; Muthén &

Asparouhov, 2008, pp. 158–161; Nagin, 2005, Chapter 3) considered very lim-

ited settings (e.g., low dimension distributions of individual differences and

large sample sizes) that do not necessarily represent conditions widely seen

in psychology studies. Further, there is theoretical reason to believe that the

adequacy of SPGM’s approximation will suffer in the opposite settings (higher

dimension individual difference distributions and smaller N), as discussed later.

Hence, our first goal is to consider more generally when SPGM’s semiparametric

approximation abilities will be adequate.

Regarding the second question, existing parametric growth models, such as

hierarchical linear models (HLMs; also known as mixed effects models; Bryk &

Raudenbush, 1987; Goldstein, 1986; Laird & Ware, 1982) also portray change in

continuously distributed individual trajectories—but with the added requirement

that growth parameters are multivariate normal. Using SPGM to discretely

approximate such distributions imposes no such assumption. Furthermore, this

assumption may not always be realistic; there is some indication that individ-

ual difference distributions for familiar psychological constructs may often be

modestly nonnormal (e.g., van den Oord, Pickles, & Waldman, 2003). SPGM
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594 STERBA, BALDASARO, BAUER

has been recommended when individual differences in growth potentially depart

from normality (e.g., Nagin, 2004, 2005; Nagin & Tremblay, 1999, 2001, 2005a,

2005c). However, only one study has compared the two methods under this

circumstance (Muthén & Asparouhov, 2008) and did so for highly nonnormal

individual difference distributions. The second goal of this study is to extend

the previous comparison by providing specifics on the relative performance of

HLM and SPGM under modestly nonnormal continuous individual differences.

As discussed later, theory suggests the categorical or continuous nature of the

repeated measures will be an important distinguishing factor.

In sum, though the ability to semiparametrically approximate continuously

distributed trajectories is a widely referenced motivation for SPGM, the quality

of the approximation under different real-world circumstances and its perfor-

mance relative to a potentially misspecified HLM has not been subject to suf-

ficient scrutiny. This article aims to fill these gaps. First, we review the SPGM

and HLM. Second, we review prior literature and provide theoretical justification

for several hypotheses that are then tested via simulation. Implications of the

simulation for interpreting SPGM results are discussed in the context of an

externalizing behavior example.

ALTERNATIVE MODELS OF INDIVIDUAL CHANGE

Here we define the SPGM and HLM. Either model can be expressed for a

variety of different distributions for the repeated measures (e.g., normal, binary

[Bernoulli], count [Poisson]). (Conventionally the abbreviation HLM is used

for normal outcomes and HGLM—hierarchical generalized linear model [Mc-

Culloch, Searle, & Neuhaus, 2008]—for discrete outcomes). Because SPGMs

with count outcomes have been most commonly featured in SPGM simulations

(e.g., Brame et al., 2006; Nagin, 2005) and discussions (e.g., Eggleston, Laub, &

Sampson, 2004; Kreuter & Muthén, 2008; Nagin, 2004; Sampson & Laub, 2003;

Sampson, Laub, & Eggleston, 2004) to date, we cover the normal and binary

versions of SPGM and HLM/HGLM to better generalize to settings where, for

instance, symptom levels or psychiatric diagnoses are being measured. To unify

our model descriptions, we describe each in terms of a conditional response

distribution, or probability distribution for the repeated measures conditional on

predictors; a linear predictor, or linear combination of predictor(s); and a link

function that transforms the range of the linear predictor to the range of the ex-

pected value of the conditional response distribution. In descriptions that follow,

designate the outcome for person i at time t as yti where t D 1 : : : T . Let xti

denote a p �1 vector of predictor values at time t , which have fixed effects con-

tained in the p �1 vector ”. For instance xti might contain a 1 to define a trajec-

tory intercept and a timeti score to capture change in yti (but could be expanded).
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SEMIPARAMETRIC APPROXIMATION 595

Semiparametric Groups-Based Trajectory Model

In the SPGM (Nagin & Land, 1993), the conditional response distribution of

the repeated measures is conditional on individuals’ scores on predictor(s) (e.g.,

time) and on individuals’ latent class membership, where classes of a categorical

latent variable ci are indexed k D 1 : : : K. For normal repeated measures yti jxti ,

ci D k � N.�ti ; ¢2/ and for binary repeated measures yti jxti , ci D k �

BERNOULLI.�ti /. Further, the link function for normal repeated measures is

the identity ˜ti D �ti . The link function for binary repeated measures is typically

logit ˜ti D ln.�ti =.1 � �ti // or probit. In the SPGM, the linear predictor is a

linear combination of predictor(s) for persons in the kth latent class:

˜ti D x
0

ti ”
.k/ if ci D k (1)

where

P.ci D k/ D
exp.•

.k/

0 /

K
X

kD1

exp.•
.k/
0 /

: (2)

Equation (1) shows that in the SPGM, no systematic individual differences are

allowed within class k because no random effects are included. This implies that

persons within each homogeneous class k differ only due to random perturba-

tions. Although fixed effects in ”
.k/ are the same for all persons within class,

they can vary over class. To illustrate, for a linear SPGM, Equation (1) would

be as follows:

˜ti D ”
.k/

00 C ”
.k/

10 timeti if ci D k (3)

where intercept .”
.k/
00 / and slope .”

.k/
10 / growth coefficient values are the same

for all persons in class k but differ across classes. We now turn to Equation (2).

Equation (2) shows that the proportion of individuals in each class, P.ci D k/,

is estimated using a multinomial logistic regression where •
.k/
0 is the log odds

of membership in class k versus the reference class. To identify this part of

the model, •
.K/

0 D 0, so the Kth class is the reference class. (Time-invariant

covariates could also be included by expanding Equation (2) to allow predictors

of class membership.) The marginal Probability Density Function (PDF) of

the SPGM is obtained by multiplying the class-specific conditional response

distributions (either Bernoulli or normal) by their respective class membership

probabilities and summing over classes:

f .yti jxti / D

K
X

kD1

f .yti jxti ; ci D k/P.ci D k/: (4)
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596 STERBA, BALDASARO, BAUER

Hierarchical Linear and Generalized Linear Model

For HLM/HGLM, the conditional response distribution of the repeated measures

is conditional on individuals’ scores on predictor(s) with fixed effects .xti /, on

individuals’ continuously distributed deviations in growth, or random effects

.ui /, and on predictor(s) (e.g., time) with random effect(s) .zti /. Here, zti and

ui are q � 1. For normal repeated measures yti jxti ; zti ; ui � N.�ti ; ¢2/ and for

binary repeated measures yti jxti ; zti ; ui � BERNOULLI.�ti /. The link functions

for HLM/HGLM are defined exactly as in SPGM. In HLM/HGLM, the linear

predictor is as follows:

˜ti D x
0

ti ” C z
0

ti ui : (5)

To illustrate, for a linear HLM/HGLM with individual differences in intercepts

and slopes, we would define xti D zti D Œ1 timeti �
0 and our linear predictor

from Equation (5) would be

˜ti D ”00 C ”10timeti C u0i C u1i timeti (6)

where ”00 and ”10 are fixed effects representing the average intercept and

linear slope, and u0i and u1i are random effects representing individual de-

viations in intercepts and linear slopes, respectively. Additionally, an aspect of

the HLM/HGLM particularly relevant to this article is that unobserved random

effects are assumed normally distributed, ui � N.0; T/, where the (typically)

unstructured q � q covariance matrix of the random effects is denoted T. For

example, with two random effects (random intercept and slope), we would have
�

u0i

u1i

�

� N

��

0

0

�

;

�

£00

£10 £11

��

. The variability that is now accorded to the

random effects in HGLM was accorded to class differences in the fixed effects

in SPGM; hence the vectors zti and ui did not appear in the SPGM. Thus,

whereas in the SPGM the conditional response distribution was conditional on

discretely distributed class membership .ci D k/, in HGLM it is conditional on

the continuously distributed random effects .ui /.

Finally, the marginal probability density function (PDF) for HLM/HGLM

is obtained by integrating over (i.e., averaging over) the unobserved random

effect(s):

f .yti jxti ; zti / D

Z

f .yti jxti ; zti ; ui /f .ui /dui : (7)

Because the ui ’s are unobserved, we can never be sure that f .ui / is the nor-

mal PDF. As discussed later, worries about sensitivity of model estimates to

misspecification of f .ui / have motivated indirect interpretations of SPGM. The

marginal PDF of the SPGM (Equation (4)) can be obtained by replacing the
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SEMIPARAMETRIC APPROXIMATION 597

continuous density of the random effects f .ui / in Equation (7) with a discrete

class probability P.ci D k/ and replacing the integral in Equation (7) with a

sum across discrete classes. Thus, whereas HLM/HGLM arrives at a marginal

distribution of the repeated measures by averaging (integrating over) continuous

random effects, SPGM does so by averaging over discrete classes.

PRIOR RESEARCH ON THE ADEQUACY OF SPGM’S

APPROXIMATION OF CONTINUOUS INDIVIDUAL DIFFERENCES

Having now defined the models of interest more formally, we return to the

matter of what is known about the adequacy of SPGM’s indirect approxima-

tion ability. To our knowledge, three prior studies have evaluated this question

(Brame et al., 2006; Muthén & Asparouhov, 2008; Nagin, 2005) and did so

in the following manner: Artificial data were generated from a model with

continuously distributed random effects. An SPGM was fit to these data. SPGM

estimates were then used to solve for general characteristics of the random

effects distribution (mixed over groups) for comparison to the true, continuous

distribution. Specifically—designating the model estimate for P.ci D k/ as

O .k/—masses and locations were used to obtain the overall mean(s) of the

continuous random effect(s) in the generating population

O” D

K
X

kD1

O .k/ O”.k/ (8)

and to approximate (co)variance(s) of those continuous random effect(s) using

between-class mean differences (e.g., Bauer, 2007; Vermunt & Van Dijk, 2001):

OT D

K�1
X

kD1

K
X

j DkC1

O .k/ O .j /. O”.k/ � O”.j //. O”.k/ � O”.j //0: (9)

These approximated moments were then compared with the true random effect

means and (co)variances used to generate the data. Of course, the adequacy of

SPGM’s indirect approximation need not only be assessed for the lower order

moments of a random effect distribution. Hence, in two studies, the cumulative

distribution function (CDF) implied by the SPGM was also plotted against the

true CDF to observe recovery of the distribution as a whole.

These studies indicated that SPGMs can adequately recover the mean and

variance of a continuous random effect distribution using several classes (e.g.,

K D 3–6, with K selected by the Bayesian information criteria, BIC; Akaike

information criteria, or a modified likelihood ratio test). For example, at N D
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598 STERBA, BALDASARO, BAUER

500, 2,500, and 10,000, Brame et al. (2006) reported � 5% absolute relative

bias (ARB), and at N D 2,000 Muthén and Asparouhov (2008) reported � 11%

ARB for the approximated mean and variance. Additionally, Brame et al. (2006)

and Nagin (2005) visually depicted a close correspondence between a theoretical

(true) and average sample-estimated SPGM CDF for a continuous random effect

at N D 2,500 or N D 100,000, respectively.

Based on these results, Nagin and Tremblay (2005a, p. 882; 2005c, p. 84) con-

cluded that “simulation evidence reported in Brame, Nagin, & Wasserman (2006)

and Nagin (2005) suggests that relatively few points of support [groups/classes]

are required to approximate reasonably complex continuous distributions of

trajectories.” However, these three prior studies considered quite low dimension

random effect distributions: either one-dimensional (e.g., random intercept only;

Brame et al., 2006; Nagin, 20052) or two-dimensional (e.g., random intercept and

linear slope; Muthén & Asparouhov, 2008). These three prior studies also used

relatively large samples (N D 100,000, 10,000, 2,500, 2,000, or 500). Though

both conditions may not apply to most psychology applications of SPGM, they

are crucial to the adequacy of SPGM’s indirect approximation as follows.

Random Effect Dimensionality

Although a row of mass points (e.g., class-specific intercept coefficients) suffices

to approximate a one-dimensional random effect distribution—as depicted in

Figure 2—a grid of mass points (e.g., class-specific intercept/slope coefficient

coordinates) is needed to approximate a two-dimensional random effect distri-

bution. After two dimensions, the discrete approximation becomes more difficult

to visualize in these terms. But we can instead visualize the approximation in

terms of what the best fitting trajectory classes would actually look like when

they are approximating continuous individual differences in a sample that were

generated along one dimension (random intercept; Figure 3 Panel A), versus two

dimensions (random intercepts and linear slopes; Figure 3 Panel B), versus three

dimensions (random intercepts, linear slopes, and quadratic slopes; Figure 3

Panel C).3 We can see that class trajectories differ in level to approximate

continuous variation in intercepts (i.e., classes appear stacked in Panel A),

whereas classes differ in level and rate of change to approximate continuous

variation in two dimensions (i.e., classes can appear crisscrossed in Panel B),

and classes differ in level, instantaneous change, and acceleration/deceleration

to approximate three dimensions (i.e., class patterns seem very qualitatively

2Nagin (2005) used two random effects that were correlated at 1.0, which is statistically

equivalent to one random effect. Brame et al. (2006) used one random effect (a random intercept).
3The three samples used in Figure 3 Panels A–C had continuous repeated measures and were

generated under HLM simulation conditions described later, which included quadratic fixed effects.
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SEMIPARAMETRIC APPROXIMATION 599

FIGURE 3 Illustration of semiparametric groups-based trajectory model indirect ap-

proximation of simulated unidimensional versus multidimensional continuous individual

differences. Note. Panel A D SPGM fitted to a sample generated with a one-dimensional

individual difference distribution (random intercepts); best Bayesian Information Criteria

(BIC) K D 3. Panel B D SPGM fitted to a sample generated with a two-dimensional

individual difference distribution (random intercepts and linear slopes); best BIC K D 5.

Panel C D SPGM fitted to a sample generated with a three-dimensional individual difference

distribution (random intercepts, linear slopes, quadratic slopes); best Bayesian Information

Criteria K D 6. Solid lines = model estimated mean per class. Dashed lines = observed

mean per class, calculated using modal class assignment. Proportions associated with each

class are listed in the figure legend. Conditional response distribution was normal.

distinct in Panel C). It is important to note that the externalizing behavior SPGM

applications in our review (comprising 22% of studies surveyed) contained at

least one plot resembling Panels B or C; none exclusively contained classes

resembling Panel A. This may suggest that classes are used to approximate high-

dimension individual difference distributions in psychology practice. Further,

though in applications researchers tend to intuitively perceive results like Panel

A as more consistent with an indirect interpretation of classes but Panel C as

more consistent with a direct interpretation of true population subgroups (e.g.,
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600 STERBA, BALDASARO, BAUER

Hadzi, 2009; Hill, White, Chung, Hawkins, & Catalano, 2000; Krueger, Markon,

Patrick, & Iacono, 2005; Walton, Ormel, & Krueger, 2011), this is not necessary.

As shown here, classes serving to indirectly approximate continua can give rise

to plots like Panel A or C simply depending on the dimension of the underlying

individual differences.

For higher dimension random effects, SPGM should need more classes to

well approximate the surface. Potentially mitigating the effect of increasing

random effect dimensionality is the correlation among random effects (Sterba,

Mathiowetz, & Bauer, 2008). More tightly correlated random effects could begin

to effectively function as a single dimension and require fewer classes to ap-

proximate. Yet no prior studies have compared the adequacy of SPGM’s indirect

approximation across different numbers of random effects or manipulated the

correlation among random effects.

Sample Size

In our literature review of 100 psychology SPGM applications, sample sizes

were considerably smaller than those used in prior evaluations of the adequacy

of SPGM’s indirect interpretation; 48% had N < 500 (the lowest sample size

previously considered) and 77% had N � 1,000. Although the number of SPGM

classes needed for an adequate indirect approximation may generally increase

with the dimensionality of the random effect distribution, the number of SPGM

classes actually extracted in practice (K) is effectively limited by N and model

complexity. Specifically, K is typically selected by information criteria, such

as BIC, which penalize for model complexity, especially at small N. Model

complexity (loosely measured by the number of estimated parameters) is higher

when class-varying quadratic and cubic terms are required.4 Most (78%) of

SPGM applications surveyed rely on BIC as the sole overall model selection

index for choosing K. Although BIC is a consistent estimator of the number

of classes (when the true distribution is a mixture; Leroux, 1992; Roeder &

Wasserman, 1997), in small samples BIC tends to pick a K corresponding to a

parsimonious, though not necessarily true, latent component structure (Nylund,

4A similar curse of dimensionality has been noted for related methods, such as nonparametric

maximum likelihood estimation (NPMLE; Follmann & Lambert, 1989; Heckman & Singer, 1984;

Laird, 1978) wherein 6–7 points of support may be needed to adequately approximate one random

effect (e.g., Rabe-Hesketh, Pickles, & Skrondal, 2003) whereas 15 points of support may be needed to

approximate two random effects (e.g., Schafer, 2001). But beyond two dimensions, “little is known

about the performance of NPMLE for models with a large number of latent variables [random

effects]” (Skrondal & Rabe-Hesketh, 2004, p. 183). However, in contrast to SPGM, the number of

mass points K available for NPMLE is not as directly limited by N and model complexity because K

is not chosen using model selection indices such as BIC (Lindsay, 1995; Skrondal & Rabe-Hesketh,

2004).
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SEMIPARAMETRIC APPROXIMATION 601

Asparouhov, & Muthén, 2007; Tofighi, & Enders, 2007).5 Hence, enough mass

points for an adequate indirect approximation of higher dimension individual

differences may be inestimable, inefficient, or not optimally fitting at the modest

Ns used in psychology. The previously studied combination of low random effect

dimensionality and large N may constitute an ideal setting for the success of

SPGM’s indirect approximation.

PRIOR RESEARCH PERTAINING TO THE
COMPARISON OF SPGM’S INDIRECT

APPROXIMATION OF NONNORMAL RANDOM

EFFECTS TO A PARAMETRICALLY MISSPECIFIED HLM

A key setting in which researchers find the indirect application of SPGM attrac-

tive relative to HLM is when the random effects are not multivariate normally

distributed—as assumed by HLM (Nagin, 2005; Nagin & Tremblay, 1999,

2001, 2005a). Under this logic, errors due to the discrete approximation of

the random effects distribution (with SPGM) would be tolerated in exchange

for avoiding errors due to a parametric misspecification of the random effects

distribution (with HLM). The question, therefore, is under what conditions will

the error-of-approximation be larger, and under what conditions will the error-

of-misspecification be larger?

Conditionally Normal Repeated Measures

For conditionally normal repeated measures, HLM’s estimates (fixed effects

and variance components) have been proven consistent regardless of the

type/magnitude of random effect nonnormality, and simulations have supported

their unbiasedness as well (Butler & Louis, 1992; McCulloch et al., 2008;

Verbeke & Lessafre, 1997). Methods similar to indirectly applied SPGMs have

also yielded unbiased fixed effects for conditionally normal repeated measures

(Butler & Louis, 1992). Hence, for such repeated measures, together with

nonnormal random effects, SPGM’s error-of-approximation should only result

in bias for variance components (increasing as the dimensionality of the random

effects increases, especially at common sample sizes). In contrast, in this

setting HLM should not incur error-of-misspecification for either fixed effects

5Unfortunately, overextracting classes in SPGM beyond the number selected as best fitting (by

BIC) at a given N is not necessarily viable; this risks allowing a class proportion to approach zero

or allowing parameters in two classes to approach the same values. Both situations can lead to

singularities and estimation problems (McLachlan & Peel, 2000).
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602 STERBA, BALDASARO, BAUER

or variance components. The standard errors of HLM’s estimates, and thus the

validity of inferences, can be inconsistent when random effect normality is

violated, but alternative standard error computations are robust to distributional

violations (Verbeke & Lessafre, 1997). Nonetheless, we do not know how the

efficiency of a misspecified HLM would compare with that of an SPGM indirect

approximation.

Discrete Repeated Measures

Compared with conditionally normal repeated measures, prior research suggests

a much more complex and nuanced picture of SPGM’s and HGLM’s relative

performance under discrete repeated measures. For discrete repeated measures,

fixed effects and variance components from both HGLMs and indirectly applied

SPGMs can be biased when the distribution of the random effects is incorrect.

Indeed, mean and covariance structures are dependent when modeling discrete

outcomes such as binary and count, such that bias in the latter can affect

estimates of the former (McCulloch et al., 2008). For discrete repeated measures,

the degree of HGLM bias in fixed effects and variance components appears to

depend on the type/magnitude of random effect nonnormality and magnitude of

random effects. Specifically, for discrete repeated measures and small to medium

random effects, HGLM has shown little/no fixed effects bias but produced

biased variance components for some nonnormal random effect distributions

(i.e., chi-square, log-normal, power) yet not others (bimodal-symmetric, uni-

form; e.g., Agresti, Caffo, & Ohman-Strickland, 2004; Butler & Louis, 1992;

Litiere, Alonso, & Molenberghs, 2008; Neuhaus, Hauck, & Kalbfleisch, 1992;

Rabe-Hesketh, Pickles, & Skrondal, 2003). When the random effects have very

large variances, however, HGLMs have produced meaningfully biased estimates

for both fixed effects and variance components regardless of the nonnormal

distribution for random effects (Litiere et al., 2008).

Only one study compared the bias in a misspecified HGLM versus an in-

directly applied SPGM. Using discrete repeated measures, Muthén and As-

parouhov (2008) found HGLM’s bias to be larger. However, they had severely

nonnormal random effects—bimodal with modes 5–7 standard deviations apart.

In contrast, when van den Oord et al. (2003) estimated random effect distribu-

tions for familiar psychological constructs (depression and delinquency) using

two large national data sets, only modest nonnormality (skew range: �0.26 to

0; kurtosis range: �0.09 to 1.77) was found.6 It is therefore important to clarify

the relative performance of HGLM and SPGM under less severe nonnormality.

6Van den Oord et al. (2003) estimated random effect nonnormality by finding which of a family

of Johnson Curves best fit the random effect distribution.
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SEMIPARAMETRIC APPROXIMATION 603

HYPOTHESES

Based on the prior review, the following hypotheses are posited about the perfor-

mance of SPGM’s indirect approximation and the performance of distributionally

misspecified HLM/HGLMs.

Hypothesis 1

SPGM’s indirect approximation of random effect variances (for conditionally

normal or discrete repeated measures) and fixed effects (for discrete repeated

measures) should suffer under more random effects, smaller N, and uncorrelated

random effects. In particular, parameter bias will occur when too few classes are

selected to achieve an adequate approximation; efficiency loss will occur when

many classes are selected. Compared with HLM/HGLM, SPGM’s performance

should be relatively insensitive to nonnormality of random effects.

Hypothesis 2

HLM/HGLM’s recovery of random effect (co)variances and fixed effects should

show efficiency loss (for conditionally normal repeated measures) and bias (only

for discrete repeated measures) under random effect nonnormality. Compared

with SPGM, HLM/HGLM should be less sensitive to number of random effects,

sample size, and random effect correlation.

Consistent with prior research, to test these hypotheses we generated data with

continuous individual differences in change and fit SPGMs and HLM/HGLMs.

To extend prior research, we manipulated random effect number, correlation,

nonnormality (and type of nonnormality). This study also manipulated N and

the conditional distribution of the repeated measures (discrete or continuous).

METHODS

Simulation Design

The simulation contained five design factors and a total of 90 cells. These design

factors were not fully crossed for reasons described later. The first design factor

was N: 250, 500, or 1,000. We chose these N’s because our review indicated that

the majority of the N’s for SPGM applications in psychology fall within this

range (only 16% of applications had N < 250; only 23% had N > 1,000). As

mentioned later, however, we re-ran a subset of cells at N D 10,000 to further

explicate some sample size effects. The second design factor was the number of

random effects in the generating model: 1 (a random intercept only), 2 (random
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604 STERBA, BALDASARO, BAUER

intercept and linear slopes), or 3 (random intercept, linear, and quadratic slopes).

The third design factor was the type of distribution for the random intercept:

normal, skewed, or bimodal. Other random effects, if present, were normally

distributed. To further clarify distribution effects, however, we also re-ran a

subset of cells with all random effects skewed or all random effects bimodal, as

discussed later. The fourth design factor was the conditional response distribution

of the repeated measures, which had two levels—Bernoulli (with probit link) or

Normal (with identity link). The fifth design factor was the correlation among

the random effects: none or moderate.

Population-Generating Models

Population-generating models were HLMs when the conditional response distri-

bution was Normal and were HGLMs when it was Bernoulli, with the exception

that the distributions of the random effects were not always normal. Five hundred

samples were generated for the 90 simulation cells. Ruscio and Kaczetow’s

(2008) R program GenData was used to generate random effects data with the

desired distributions and correlations, followed by SAS IML to generate seven

repeated measures.

Parameters for the generating models were chosen with three objectives in

mind. First, the linear predictor (i.e., ˜ti D x
0

ti ” C z
0

ti ui ) was the same across

binary and normal repeated measures. Also for normal repeated measures, the

variance of the conditional response distribution was set to ¢2 D 1 so estimates

would be on the same scale as the probit model estimates with binary repeated

measures. These features allowed us to compare SPGM approximation adequacy

across cells without confounding the effects of other design factors with the

effects of the response distribution. Second, fixed effects were chosen to make the

proportions of endorsed repeated measures similar to the pattern found in most

binary SPGM applications on problem behavior in our review. In this common

endorsement pattern, most (e.g., 43–86%) of persons follow flat, approximately

zero trajectories (e.g., Bobo, Klepinger, & Dong, 2007; Falck, Wang, & Carlson,

2007; Jackson & Sher, 2008; B. Jones, Nagin, & Roeder, 2001; D. J. Jones

et al., 2010; Lacourse, Nagin, Tremblay, Vitaro, & Claes, 2003; Sher, Gotham,

& Watson, 2004). Hence, in our simulation, most persons (around 50%) never

exhibit the behavior, but some persons show model-implied trajectories of sharp

or slow onset and/or, in some cases, desistance at later ages. Third, variance

components were chosen to render the intercept several times more variable than

the linear slope (a 5:1 ratio is reported to be common by Muthén & Muthén,

2002). The linear variance was in turn larger than the quadratic, following

empirical findings from polynomial growth models in Raudenbush and Bryk

(2002) and Snijders and Bosker (1999).
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SEMIPARAMETRIC APPROXIMATION 605

The generating values fulfilling these three design objectives were as fol-

lows: ” D Œ�1:25 � 0:2 � 0:3�0 and xti D Œ1 timeti time2
ti �

0 where

time1i : : : time7i scores were �1.5, �1, �.5, 0, .5, 1, 1.5. zti was either D Œ1�0

or Œ1 timeti �
0 or Œ1 timeti time2

ti �
0 for 1, 2, or 3 random effects, respectively.

For models with 1 random effect, £00 D 1. For 2 random effects, £00 D 1;

£11 D :15. For 3 random effects, £00 D 1; £11 D :15; £22 D :12. In the

normal random effect condition the intercept random effect was N(0,1), in the

skewed condition it was ¦2 (3), and in the bimodal condition it had a 3 standard

deviation mean separation between modes. A nonnormal intercept random effect

was subsequently transformed to have a mean of zero and the desired £00.

The skewed condition (skew D 1.63, kurtosis D 4) mirrored the degree and

type of random effect nonnormality detected in an application of HLM to

antisocial behavior (Curran, 1997), which had skew D 1.16 and kurtosis D 4.99

when casewise Ordinary Least Squares intercepts were estimated and plotted

as in Carrig, Wirth, and Curran (2004). The bimodal random effect distribution

(skew D 0, kurtosis D �.96) might be more typical of constructs like vocabulary

development (e.g., Bauer, Goldfield, & Reznick, 2002). Moderate random effect

correlations were

�

1 �:6

�:6 1

�

for 2 random effects and

2

4

1 �:6 �:6

�:6 1 :6

�:6 :6 1

3

5 for

3 random effects.

Fitted Models

Model estimation was performed in Mplus 5.2 (Muthén & Muthén, 1998–2010).

Data analysis was performed in SAS 9.2. Fitted models were either HLM/HGLM

(distributionally misspecified for the nonnormal random effect conditions) or

SPGM. When a SPGM was fitted, 300 sets of initial-stage random starting values

were used, followed by 20 optimizations, in order to decrease the possibility

of local maxima (Hipp & Bauer, 2006). Increasing numbers of classes were

estimated starting with K D 2 and ending with any of the following problems:

(a) nonconvergence, (b) a singularity or nonpositive definite covariance matrix,

(c) parameter(s) fixed in order to avoid singularities, or (d) a class that became

unstable and nearly collapsed into another class (i.e., a class proportion < 1%).

Maximum likelihood was used for SPGM and HLM along with numerical

integration (adaptive rectangular quadrature; 15 integration points per dimension)

for HGLMs.

Data Analysis

To evaluate Hypothesis 1, we assessed SPGM’s recovery of (a) the first and

second moments of the random effects distribution (as done by Muthén and
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606 STERBA, BALDASARO, BAUER

Asparouhov [2008] and Brame et al. [2006]), (b) the CDFs of the random effects

distribution (as done by Brame et al. [2006]), and (c) the PDFs of the random

effects distribution. Specifically, for several different values of K, we solved for

population-level means and variances of the random effects distribution (i.e., ”00,

”10, ”20, £00, £11, £22) from the SPGM output in replication r using Equations (7)

and (8). This yielded indirectly approximated estimates O”00, O”10, O”20, O£00, O£11, O£22

per replication r. Denote a generic estimate from this list as O™r (for replication r)

and its population parameter as ™. At the best fitting K, according to the BIC, its

absolute relative bias was ARB D j.E.O™r /� ™/=™j and its mean square error was

MSE D EŒ.O™r � ™/2� where the across-replications average was used in place of

the expected value operator E. Best fitting K was chosen by the BIC because the

BIC was used to select K in virtually all SPGM applications surveyed—usually

exclusively. However, because key results are presented for all stably estimated

solutions, rather than just for the best BIC solution, they are not contingent on

the use of a particular model selection index. Additionally CDF and PDF plots

give a holistic depiction of SPGM’s approximation capabilities. For instance,

we plotted the across-samples average of the empirical CDF (along with the

intervals within which 90% of sample estimates fall) against the true CDF for

the random effect distributions.

To evaluate Hypothesis 2, we calculated ARB and MSE of fixed effects and

variance components estimates that were obtained directly from the output of

possibly misspecified HLMs or HGLMs for replication r. Then we compared

these ARB and MSE results between these possibly misspecified HLM/HGLMs

and the indirectly approximated SPGMs.

RESULTS

To conserve space, tabled results only include uncorrelated random effect con-

ditions. Corresponding tabled results for correlated random effect conditions are

given in an Online Appendix. Figures include a combination of uncorrelated and

correlated random effect conditions.

Continuous Repeated Measures

As anticipated by statistical theory, fixed effect estimates computed from contin-

uous repeated measures were unbiased for both the distributionally misspecified

HLM (here, ARB average D .0033; range D < .0001 to .0107) and the SPGM

approximation (here, ARB average D .0033; range D < .0001 to .0124). Notably,

fixed effects’ MSE for distributionally misspecified HLMs (average D .0014;

range D .0002 to .0056) was also equivalent to MSE for indirectly approximated
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SEMIPARAMETRIC APPROXIMATION 607

SPGMs (average D .0014; range D .0001 to .0056). Thus, for continuous

(conditionally normal) repeated measures, we focus specifically on the variance

component estimates and empirical CDF estimates.

SPGM

Convergence. For continuous repeated measures, few convergence prob-

lems were encountered when estimating SPGMs until well past the best BIC

number of classes was extracted (typically 80–100% convergence until nine

classes).

Random effect dimensionality. As an orientation to the continuous re-

peated measure SPGM results, first consider the PDF for one random effect

with either a bimodal, skewed, or normal distribution at N D 1,000, in Figure 4.

Comparing the across-samples average empirical PDF from SPGM versus the

true population-generating PDF in Figure 4, we can see that for one random

effect classes are essentially working as implied by the often-used heuristic

sketch in Figure 2, regardless of distribution shape. However, consistent with

Hypothesis 1, the approximation of the random effect covariance structure gets

worse as the number of random effects increases, as shown in Table 1. Averaging

across all cells, ARB of SPGM-approximated variance components was 2% for

one random effect, 15% for two random effects, and 32% for three random

effects. Figure 5 exemplifies these findings for a particular case, the skewed

condition, hypothesized to be favorable to SPGM’s variance approximation

with respect to N and random effect correlation (i.e., N D 1,000, correlated

random effects). Figure 5 plots SPGM’s variance approximation at different K

(star D best BIC K). The vertical bars are 90% estimate intervals at each K.

The bold solid line connecting the vertical bar midpoints traces the average

SPGM variance approximation across K. The horizontal thin solid line flanked

by two dotted lines denotes the population-generating value and C/� 10% bias,

respectively. Figure 5 shows that by three random effects, the approximation bias

is sizable (� 10% ARB), particularly for nondominant growth coefficients (i.e.,

coefficients with smaller variances)—even if we were to extract classes beyond

the best BIC (starred) class. For nondominant growth factors, 90% estimate

intervals do not even include the population-generating parameter at the best

BIC number of classes.

Sample size. Table 1 also shows that when N increased, MSE for SPGM’s

variance approximation always decreased. Greater N often resulted in support for

more classes (greater K), which typically translated into lower ARB for SPGM’s

variance approximation. When higher N supported more K, improvements to

the approximation of entire random effect CDFs were noticeable. This result is
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SEMIPARAMETRIC APPROXIMATION 609

TABLE 1

SPGM-Approximated Random Effect Variances: Continuous Outcomes

Intercept Variance (1.0) Linear Variance (.15) Quadratic Variance (.12)

Dist Samp

Best

BIC Estimate MSE ARB Estimate MSE ARB Estimate MSE ARB

1 RE

N 250 4 .958 .014 .042

500 5 .991 .007 .009

1,000 5 .983 .004 .017

S 250 4 .966 .029 .034

500 5 .981 .013 .019

1,000 6 .986 .007 .014

B 250 4 .980 .009 .020

500 4 .985 .005 .015

1,000 4 .979 .003 .021

2 REs, Uncorrelated

N 250 5 .954 .005 .046 .084 .005 .438

500 7 .977 .006 .023 .118 .001 .211

1,000 8 .981 .004 .019 .124 .001 .174

S 250 5 .961 .032 .039 .090 .005 .403

500 7 .985 .014 .015 .122 .001 .187

1,000 8 .982 .008 .018 .126 .001 .161

B 250 5 .959 .010 .041 .100 .003 .332

500 6 .981 .006 .019 .116 .001 .225

1,000 7 .983 .003 .017 .126 .001 .159

3 REs, Uncorrelated

N 250 5 .833 .041 .167 .067 .008 .555 .030 .008 .749

500 7 .878 .022 .122 .099 .003 .337 .042 .007 .651

1,000 9 .906 .012 .094 .112 .002 .256 .061 .004 .493

S 250 5 .842 .051 .158 .069 .008 .539 .038 .007 .686

500 7 .876 .028 .164 .101 .003 .633 .049 .008 .745

1,000 9 .906 .016 .094 .114 .002 .242 .066 .003 .451

B 250 5 .866 .028 .134 .074 .007 .505 .039 .007 .671

500 6 .867 .023 .133 .097 .003 .355 .039 .007 .673

1,000 8 .901 .013 .099 .112 .002 .255 .060 .004 .500

Note. Dist D random effect distribution condition: (N D normal, S D skewed, or B D

bimodal); RE D random effect; Samp D sample size; MSE D mean square error; ARB D absolute

relative bias; BIC D Bayesian information criteria; SPGM D semiparametric groups-based trajectory

model.

shown in Figure 6, which compares the true CDF versus across-samples average

empirical CDF of a skewed or bimodal intercept in a correlated three random

effect model at N D 250 (best K’s 4 or 5) versus N D 1,000 (best K’s D 6

or 7). To help visualize sampling variability around the across-samples average

empirical CDF, 10 single-sample CDFs are also depicted at N D 1,000.
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610 STERBA, BALDASARO, BAUER

FIGURE 5 Semiparametric groups-based trajectory model approximation of random effect

variances for continuous outcomes: N D 1,000, correlated, skewed random effect condition.

Note. Horizontal thin flat solid line D parameter; horizontal thin flat dotted line D C/�

10% bias; length of bold vertical bar(s) D 90% estimate interval(s). Bold solid line

connecting vertical bars D across-samples average. Star D # of classes preferred by Bayesian

information criteria.

Correlation among random effects. Consistent with Hypothesis 1, one

fewer class was typically best fitting for correlated (Online Appendix Table A)

versus uncorrelated (Table 1) random effects. However, advantages in ARB and

MSE for correlated random effects were only seen at three random effects (where

ARB averaged 39% for uncorrelated vs. 26% for correlated random effects).

HLM

Convergence. No problems were encountered fitting HLMs to continuous

repeated measures.

Nonnormality of random effects. For variance components, MSE was

either the same or smaller for HLMs than SPGMs regardless of random effect
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612 STERBA, BALDASARO, BAUER

nonnormality (HLM average MSE D .0044; range MSE D .00015–.0280). For

variance components, ARB was always trivial regardless of number of random

effects for HLMs, consistent with statistical theory (average ARB D .0064; range

ARB D .00003–.0275). Thus necessarily HLM’s ARB was less than SPGM’s

ARB.

Binary Repeated Measures

SPGM

Convergence. For binary repeated measures, a “zero class” with a bound-

ary constraint on the intercept coefficient was implemented to improve conver-

gence above pilot rates.7 There was 100% convergence for 2 classes, 80–100%

for 3 classes, and 50–85% for 4-class models.

Random effect dimensionality. Comparing the across-samples average

empirical PDF from SPGM versus the true population-generating PDF in Fig-

ure 7 (N D 1,000), classes no longer seem to be working as implied by

the Figure 2 heuristic sketch. The spacing and heights of support points in

Figure 7 appear much less optimal compared with the continuous condition

in Figure 4. In particular, point masses (bars) in Figure 7 do not occupy the

far left of the distributions but are overrepresented in the nearest point mass.

This finding reflects SPGM’s difficulty with empirically differentiating large

negative intercept coefficient values that each imply almost all zero repeated

measures. Consistent with Hypothesis 1, ARB of SPGM-approximated variance

components on average increased with the number of random effects. As shown

in Table 2, ARB increased from 22% to 42% to 60% for 1 to 2 to 3 random

effects. More generally, Table 2 shows that SPGM’s approximation is quite

poor regardless of the number of random effects and regardless of the size of

the variance of the random effect. Figure 8 illustrates this point for the skewed

condition at N D 1,000 and correlated random effects; bias is always � 10% at

the best BIC number of classes.

7The simulation was piloted with the following free parameters in the fitted SPGM: one Level 1

error variance parameter (for continuous repeated measures only) and class-varying intercept, linear,

and quadratic growth coefficients for each of K classes. However, for binary repeated measures,

severe convergence problems were obtained during piloting when estimating more than two classes

(even though almost always best BIC K > 2), and converged replications often had singularities and

nonsensical, extreme growth coefficient values and/or standard errors. Diagnostic checks suggested

that estimation problems often occurred when SPGM tried to reproduce the pattern of endorsement

of individuals displaying mainly zeros over time. For these individuals there is little information

from which to estimate the intercept (other than as a large negative value) or slopes (other than as

nonpositive). In this light, we re-ran all binary cells with a designated flat class (linear and quadratic

slopes fixed to zero) in which a boundary constraint of �3.5 was imposed on the intercept.
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614 STERBA, BALDASARO, BAUER

TABLE 2

SPGM-Approximated Random Effect Variances: Binary Outcomes

Intercept Variance (1.0) Linear Variance (.15) Quadratic Variance (.12)

Dist Samp

Best

BIC Estimate MSE ARB Estimate MSE ARB Estimate MSE ARB

1 RE

N 250 2 .526 .298 .474

500 3 1.136 .603 .136

1,000 3 1.098 .487 .098

S 250 3 1.072 1.810 .072

500 3 .903 .300 .097

1,000 3 .838 .280 .162

B 250 2 .777 .114 .223

500 3 1.329 .644 .329

1,000 3 1.428 .752 .428

2 REs, Uncorrelated

N 250 2 .545 .237 .455 .012 .019 .922

500 3 .934 .390 .066 .118 .650 .212

1,000 3 .918 .268 .082 .038 .114 .748

S 250 3 1.056 .932 .056 .268 5.050 .785

500 3 .904 .262 .096 .044 .214 .708

1,000 3 .816 .119 .184 .008 .020 .950

B 250 2 .690 .126 .310 .012 .020 .917

500 2 .685 .108 .315 .010 .020 .930

1,000 3 .949 .250 .051 .049 .013 .671

3 REs, Uncorrelated

N 250 2 .461 .315 .539 .011 .019 .925 .009 .013 .926

500 3 .706 .615 .294 .072 .064 .519 .090 .222 .253

1,000 3 .687 .232 .313 .023 .025 .848 .033 .080 .725

S 250 3 1.063 3.065 .063 .482 15.526 2.211 .243 1.023 1.491

500 3 .797 .170 .203 .037 .090 .751 .021 .022 .828

1,000 3 .728 .100 .272 .008 .020 .950 .006 .013 .951

B 250 2 .570 .219 .430 .014 .019 .909 .011 .012 .907

500 2 .581 .188 .419 .011 .019 .930 .008 .013 .932

1,000 3 .765 .530 .235 .037 .044 .752 .073 .709 .391

Note. Please refer to Table 1 notes.

Table 3 shows that, for binary repeated measures, the bias of the SPGM

approximation also extends to the fixed effects portion of the model. As expected,

the design conditions that resulted in greater variance component bias also

resulted in greater fixed effect bias. In particular, fixed effect ARB was larger in

the presence of more random effects (fixed effect ARB averaged 19% for one

random effect, 27% for two random effects, and 35% for three random effects).

Fixed effect ARB was worst for nondominant growth coefficients in models with

multiple random effects.
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SEMIPARAMETRIC APPROXIMATION 615

FIGURE 8 Semiparametric groups-based trajectory model approximation of random effect

variances for binary outcomes: N D 1,000, correlated, skewed random effect condition. Note.

Horizontal thin flat solid line D parameter; horizontal thin flat dotted line D C/� 10% bias;

length of bold vertical bar(s) D 90% estimate interval(s). Black bold line connecting vertical

bars D across-samples average. Star D # of classes preferred by the Bayesian information

criteria. In some plots, the estimate intervals were truncated at ceiling values to ensure that

10% bias lines were visible.

Sample size. Increasing N often resulted in the selection of greater K as

best fitting.8 When larger N supported larger K, the additional classes typically

translated into decreases in fixed effect and variance component ARB in Tables 2

and 3 and to improvements in recovery of the true generating CDFs. For instance,

8Overall, SPGM’s ARB and MSE tended to be much higher in the binary outcomes condition

than the normal outcomes condition. In case this might be due to binary outcomes requiring much

higher N than continuous in order to achieve sufficient K for SPGM’s approximation, we increased N

to 10,000. We found the same pattern of results. We also calculated medians and trimmed means (i.e.,

most extreme 10% of sample estimates removed before averaging) to see if bias was meaningfully

influenced by a few extreme sample estimates per cell. We again found the same pattern of results.

D
ow

nl
oa

de
d 

by
 [

V
U

L
 V

an
de

rb
ilt

 U
ni

ve
rs

ity
] 

at
 1

5:
41

 1
0 

Ja
nu

ar
y 

20
13

 



616 STERBA, BALDASARO, BAUER

TABLE 3

SPGM-Approximated Fixed Effects: Binary Outcomes

Intercept Mean (�1.25) Linear Mean (�.2) Quadratic Mean (�.3)

Dist Samp

Best

BIC Estimate MSE ARB Estimate MSE ARB Estimate MSE ARB

1 RE

N 250 2 �1.160 .027 .072 �.122 .015 .389 �.179 .028 .404

500 3 �1.321 .079 .057 �.176 .078 .122 �.277 .099 .076

1,000 3 �1.310 .068 .054 �.149 .005 .253 �.231 .009 .229

S 250 3 �1.312 .152 .050 �.147 .011 .264 �.364 .308 .213

500 3 �1.284 .051 .027 �.171 .026 .147 �.267 .044 .112

1,000 3 �1.263 .044 .010 �.170 .006 .149 �.255 .667 .149

B 250 2 �1.240 .014 .008 �.089 .018 .555 �.133 .035 .558

500 3 �1.370 .085 .096 �.157 .053 .214 �.261 .075 .129

1,000 3 �1.407 .093 .126 �.144 .006 .278 �.215 .011 .283

2 REs, Uncorrelated

N 250 2 �1.168 .016 .065 �.091 .017 .546 �.109 .042 .638

500 3 �1.247 .040 .002 �.136 .037 .321 �.179 .089 .403

1,000 3 �1.252 .029 .002 �.125 .012 .374 �.155 .029 .484

S 250 3 �1.266 .052 .013 �.179 .073 .104 �.190 .061 .365

500 3 �1.279 .033 .023 �.141 .012 .295 �.156 .027 .480

1,000 3 �1.259 .015 .007 �.129 .007 .354 �.148 .025 .505

B 250 2 �1.188 .012 .050 �.085 .012 .575 �.109 .040 .635

500 2 �1.191 .007 .047 �.074 .017 .632 �.096 .043 .681

1,000 3 �1.257 .027 .006 �.118 .009 .411 �.144 .027 .520

3 REs, Uncorrelated

N 250 2 �1.119 .026 .105 �.109 .014 .453 �.094 .048 .687

500 3 �1.177 .048 .058 �.137 .023 .314 �.162 .068 .460

1,000 3 �1.185 .022 .052 �.130 .012 .351 �.132 .052 .561

S 250 3 �1.308 .124 .047 �.167 .269 .425 �.171 .173 .742

500 3 �1.261 .016 .009 �.131 .011 .343 �.092 .053 .693

1,000 3 �1.245 .007 .004 �.129 .008 .355 �.086 .047 .713

B 250 2 �1.149 .021 .081 �.106 .016 .468 �.092 .049 .692

500 2 �1.158 .013 .074 �.084 .016 .581 �.073 .054 .757

1,000 3 �1.189 .037 .049 �.136 .015 .318 �.136 .079 .546

Note. Please refer to Table 1 notes.

in Figure 9, increasing N improved the average approximation of the intercept

CDF when greater K was supported (e.g., skewed but not bimodal condition

with three correlated random effects). However, this is not to suggest that more

classes should be extracted at a given N even if not warranted by BIC. Rather,

as K increased past the best BIC number at a given N, variance components

went from underestimation to increasing overestimation in Figure 8, rather than

getting closer to the population value. Furthermore, such “overextraction” of

classes now involved extreme increases in sampling variability in Figure 8,
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618 STERBA, BALDASARO, BAUER

unlike for continuous outcomes. (However, MSE typically did decrease when K

was held constant and N was increased—not shown in Tables 2 and 3).

Correlation among random effects. There was also some evidence for

a decrease in bias associated with correlated (Online Appendix Tables B–C)

versus uncorrelated (Tables 2 and 3) random effects, holding the number of

random effects constant. Consistent with Hypothesis 1, average ARB for SPGM-

approximated variance components for two uncorrelated versus correlated ran-

dom effects was 47% versus 37% and for three uncorrelated versus correlated

random effects was 70% versus 49%. Likewise, average SPGM-approximated

fixed effect ARB for two uncorrelated versus correlated random effects was 32%

versus 23% and for three uncorrelated versus correlated random effects was 39%

versus 32%.

HGLM

Convergence. Few to no problems were encountered fitting HGLMs to

binary outcomes.

Nonnormality of random effects. Tables 4 and 5 depict ARB and MSE

when an HGLM is fit despite potential distributional assumption violations for

random effects (see also Online Appendix Tables D–E for correlated random

effect conditions). On average, ARB was 5% for fixed effects and 18% for

random effect variances across alternative number of random effects, correlation

among the random effects, and N. However, in line with Hypothesis 2, bias was

affected by the random effect distribution. The normal and bimodal random

effect conditions rarely showed sizable bias (average ARB D 1% and 3%

for fixed effects, average ARB D 3% and 7% for random effect variances,

respectively). The skewed condition often showed sizable bias (average ARB D

4% for fixed effects, average ARB D 40% for random effect variances). For

the skewed condition, bias was most notable for the mean and variance of the

intercept coefficient (the dominant and nonnormal coefficient). For this skewed

intercept coefficient, HGLM’s bias (in Tables 4 and 5) was greater than SPGM’s

(in Tables 2 and 3). For the other coefficients (which were nondominant and

normal), HGLM’s bias was less than SPGM’s. Additionally, HGLM’s MSE

typically ranged from equivalent to better than SPGM but could be worse for

the intercept coefficient’s mean and variance in the skewed condition.

Generalizability Checks

All simulations are limited in external validity by their chosen conditions.

Follow-up analyses ascertained whether our binary SPGM results were generaliz-
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SEMIPARAMETRIC APPROXIMATION 619

TABLE 4

Hierarchical Generalized Linear Model Random Effect Variances: Binary Outcomes

Intercept Variance (1.0) Linear Variance (.15) Quadratic Variance (.12)

Dist Samp Estimate MSE ARB Estimate MSE ARB Estimate MSE ARB

1 RE

N 250 1.007 .038 .007

500 1.007 .019 .007

1,000 1.000 .010 .000

S 250 1.826 .844 .826

500 1.798 .730 .798

1,000 1.758 .611 .758

B 250 .912 .033 .088

500 .925 .020 .075

1,000 .909 .016 .091

2 RE, Uncorrelated

N 250 1.001 .038 .001 .160 .007 .067

500 1.001 .021 .001 .151 .003 .008

1,000 1.002 .011 .002 .146 .001 .024

S 250 1.748 .732 .748 .137 .007 .088

500 1.706 .572 .706 .136 .003 .093

1,000 1.693 .520 .693 .133 .002 .115

B 250 .945 .039 .055 .166 .007 .105

500 .944 .018 .056 .164 .003 .096

1,000 .943 .012 .057 .160 .002 .067

3 RE, Uncorrelated

N 250 1.001 .043 .001 .154 .006 .029 .134 .010 .113

500 1.008 .022 .008 .155 .004 .032 .126 .005 .050

1,000 1.007 .013 .007 .149 .002 .007 .120 .002 .003

S 250 1.624 .533 .624 .151 .008 .008 .126 .010 .049

500 1.620 .451 .620 .152 .004 .016 .127 .005 .056

1,000 1.613 .409 .613 .148 .002 .015 .126 .002 .053

B 250 .967 .041 .033 .155 .007 .035 .127 .008 .059

500 .958 .020 .042 .155 .003 .032 .127 .004 .054

1,000 .963 .010 .037 .149 .002 .010 .121 .002 .011

Note. Please refer to Table 1 notes.

able beyond the kind of binary data typical of problem behavior applications and

whether our HLM/HGLM results generalized to applications where all random

effects were nonnormal, rather than just the random intercept.

SPGM generalizability check. For our SPGM generalizability check, we

modified the endorsement pattern of our binary repeated measures to try to

ease estimation issues. Our original binary data were not atypically sparse

in the aggregate (as illustrated by the fact that HGLM had few convergence
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620 STERBA, BALDASARO, BAUER

TABLE 5

Hierarchical Generalized Linear Model Fixed Effects: Binary Outcomes

Intercept Mean (�1.25) Linear Mean (�.2) Quadratic Mean (�.3)

Dist Samp Estimate MSE ARB Estimate MSE ARB Estimate MSE ARB

1 RE

N 250 �1.249 .011 .001 �.204 .003 .018 �.303 .003 .008

500 �1.254 .005 .003 �.199 .001 .007 �.303 .002 .009

1,000 �1.250 .003 .000 �.199 .001 .004 �.302 .001 .006

S 250 �1.565 .122 .252 �.201 .003 .006 �.303 .004 .010

500 �1.561 .108 .249 �.200 .001 .002 �.302 .002 .006

1,000 �1.549 .094 .239 �.201 .001 .007 �.304 .001 .013

B 250 �1.195 .013 .044 �.201 .003 .004 �.297 .003 .010

500 �1.197 .008 .042 �.203 .001 .014 �.300 .002 .001

1,000 �1.193 .006 .046 �.200 .001 .000 �.298 .001 .008

2 RE’s, Uncorrelated

N 250 �1.255 .012 .004 �.199 .003 .004 �.306 .004 .019

500 �1.252 .006 .001 �.202 .002 .007 �.301 .002 .004

1,000 �1.249 .003 .001 �.200 .001 .002 �.299 .001 .005

S 250 �1.533 .100 .227 �.202 .004 .008 �.291 .004 .029

500 �1.529 .087 .223 �.203 .002 .013 �.287 .002 .042

1,000 �1.522 .079 .217 �.200 .001 .001 �.288 .001 .040

B 250 �1.198 .014 .042 �.200 .003 .001 �.316 .004 .052

500 �1.204 .007 .037 �.197 .002 .014 �.306 .002 .021

1,000 �1.201 .005 .039 �.198 .001 .008 �.306 .001 .020

3 RE’s, Uncorrelated

N 250 �1.237 .010 .010 �.204 .004 .022 �.314 .012 .047

500 �1.249 .006 .001 �.202 .002 .012 �.305 .005 .016

1,000 �1.250 .003 .000 �.198 .001 .012 �.299 .003 .002

S 250 �1.527 .097 .222 �.209 .004 .047 �.280 .012 .067

500 �1.518 .081 .214 �.207 .002 .033 �.279 .005 .070

1,000 �1.510 .072 .208 �.204 .001 .022 �.282 .003 .061

B 250 �1.205 .013 .036 �.198 .004 .010 �.310 .010 .035

500 �1.205 .008 .036 �.203 .002 .017 �.313 .006 .043

1,000 �1.205 .005 .036 �.196 .001 .022 �.309 .003 .028

Note. Please refer to Table 1 notes.

problems, discussed previously), but the data became sparse when SPGM split

the aggregate distributions into smaller classes. We made the binary data less

sparse in the aggregate in a subset of cells (N D 1,000, uncorrelated random

effects) by increasing the mean intercept from �1.25 to 0, implying that fewer

(17%) of persons follow flat nonendorsement trajectories. When these new bi-

nary data were fit by SPGM, on average the points of support now appeared more

optimally located for approximating the theoretical PDF of growth coefficients

(Online Appendix Figure A) but still less so than for the continuous data. Fixed
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SEMIPARAMETRIC APPROXIMATION 621

effects were now adequately recovered on average not only by HGLM but also

by SPGM—although SPGM recovery worsened with 3 random effects in the

generating model (see Online Appendix Table F). However, variance components

were still on average better recovered with HGLM than SPGM. For 1, 2, and 3

random effects, respectively, SPGM ARB averaged 16%, 27%, and 28% whereas

HGLM ARB averaged 4%, 10%, and 6%. Also, on average, HGLM was still

more efficient than SPGM (average MSE D .01 vs. .20).

HLM/HGLM generalizability check. To check HLM/HGLM generalizabil-

ity, we allowed all three random effects to be nonnormal (skewed or bimodal)

at all Ns in the three uncorrelated random effect condition. ARB and MSE

results were mostly comparable to our original simulation (see Online Appendix

Table G). For example, for binary outcomes, HGLM’s fixed effect ARB now

averaged .097 for skewed and .024 for bimodal (vs. .105 and .029 in our original

simulation). Also for binary outcomes, HGLM’s variance component ARB now

averaged .410 for skewed and .039 for bimodal (vs. .228 and .035 in our original

simulation). For continuous outcomes, HLM’s ARB now averaged .005 and MSE

now averaged .003—again comparable to our original simulation.

SUMMARY

Though SPGM’s indirect approximation abilities have previously been demon-

strated for low-dimensional, very nonnormal individual difference distributions

at relatively large N, this study investigated the generalizability of SPGM’s

indirect approximation abilities under a wider set of conditions that may be more

typical of psychological research (e.g., relatively smaller sample sizes, higher

dimensional random effect distributions, possibly modestly nonnormal random

effects). We compared the error-of-approximation stemming from using SPGM

as a discrete approximation tool with the error-of misspecification stemming

from distributionally misspecified HLM/HGLMs.

Consistent with Hypothesis 1, more random effects, uncorrelated random

effects, and smaller N (when smaller N translated into smaller best fitting K)

on average increased bias for SPGM’s indirect approximation. Such increases

in bias were seen in the approximated variance components for continuous

outcomes and in the approximated fixed effects and variance components for

binary outcomes, as hypothesized. Also consistent with Hypothesis 1, SPGM

was relatively insensitive to normality versus nonnormality of random effect dis-

tributions. Consistent with Hypothesis 2, random effect nonnormality increased

bias for HGLMs in recovering the fixed effects and variance components for

binary (but not continuous) outcomes. However, increased bias was mainly seen

D
ow

nl
oa

de
d 

by
 [

V
U

L
 V

an
de

rb
ilt

 U
ni

ve
rs

ity
] 

at
 1

5:
41

 1
0 

Ja
nu

ar
y 

20
13

 



622 STERBA, BALDASARO, BAUER

for the skewed rather than bimodal random effect condition. As hypothesized,

HLM/HGLM were less sensitive to the number of random effects and correlation

among random effects than SPGM.

Several additional findings were notable. First, for binary outcomes SPGM’s

strength was recovering means/variances of the dominant random effect (i.e.,

that with highest variance), whereas HGLM’s was recovery of less dominant

random effects—even when all random effects were made nonnormal in a

follow-up generalizability study. Second, although extracting classes past best

BIC improved SPGM’s indirect approximation for continuous outcomes, it led

to worse bias and extreme sampling variability for binary outcomes (Figure 5 vs.

Figure 8). Third, compared with HGLM, binary SPGM led to strikingly more

estimation problems—likely aggravated by high sparseness in some classes.

Finally, the results allowed us to weigh SPGM’s error-of-approximation

against HLM/HGLM’s error-of-misspecification. For conditionally normal out-

comes (used in 65% of SPGM applications in our review), HLM had equal

or lower ARB and MSE than SPGM across cells. Thus, HLM’s error-of

misspecification � SPGM’s error-of-approximation even when random effects

were modestly nonnormally distributed. Regardless of the number of classes

selected, SPGM ARB was unacceptable (> 10%) for some approximated

variance components when there were two or three random effects. Hence, an

approximation alternative to HLM seems not ultimately needed for conditionally

normal repeated measures.

An approximation alternative to HGLM had greater potential to be useful

for binary repeated measures; a distributionally misspecified HGLM can in-

cur bias under this circumstance. However, for binary outcomes, HGLMs on

average provided more accurate fixed effect and equivalent or better variance

component estimates than SPGM’s indirect approximation, even when it was

not the true model. Further, HGLM estimates were typically as or more efficient

than SPGM, except if the dominant growth coefficient was skewed. In sum, for

binary outcomes, SPGM’s indirect approximation was advantageous with one-

dimensional skewed individual differences; HGLM’s error-of-misspecification

was more tolerable in most other circumstances.

EMPIRICAL ILLUSTRATIONS

Here we consider the insights our simulation results provide for practice, using

empirical examples. Figure 1 depicts a K D 6 (best BIC K) cubic SPGM with

a normal conditional response distribution applied to six repeated measures of

externalizing behavior on N D 250 boys at ages 2, 3, 4.5, 6, 7, and 9 years

from the National Institute of Child Health and Human Development (NICHD)

Study of Early Child Care (see NICHD Early Child Care Research Network,
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SEMIPARAMETRIC APPROXIMATION 623

TABLE 6

Externalizing Behavior Empirical Illustration: SPGM Indirect Approximation and

HLM/HGLM Results

Continuous Repeated Measures Binary Repeated Measures

HLM

SPGM-

Approximation HGLM

SPGM-

Approximation

M Variance M Variance M Variance M Variance

Intercept 4.471* 9.464* 4.450 9.016 �4.597* 10.628* �3.359 2.760

Linear �0.443* 0.402* �0.428 0.327 �0.678* 0.156 �0.448 0.0001

Quadratic 0.014 0.026* 0.018 0.009 0.037 0.028 0.058 0.001

Cubic 0.002 0.003* �0.0002 0.002 0.028 — 0.011 —

Note. SPFM D semiparametric groups-based trajectory model; HLM D hierarchical linear

model; HGLM D hierarchical generalized linear model. SPGM approximation used Equations (8)

and (9). Time-specific residual variance estimates not shown. Significance level reported only for

HLM/HGLM, where parameters were directly estimated. SPGM-approximated and HLM/HGLM

estimated random effect covariances are provided in Online Appendix Table H.

�p < :05.

2004, for study design).9 In Figure 1, the externalizing behavior measure was a

total score of 14 externalizing Child Behavior Checklist (CBCL) items common

to both the CBCL 2–3 and CBCL 4–18 (Achenbach, 1991, 1992). Researchers

encountering results like Figure 1 often consider the possibility that classes may

be indirectly approximating continuous individual differences (e.g., Feldman

et al., 2009; Mazza et al., 2010; Murphy et al., 2009; Nagin, 2005; Segawa

et al., 2005; Skardhamar, 2010; Xie et al., 2010). Understanding the implications

of our simulation results requires first being able to visualize how this indirect

approximation could manifest in a given plot. For Figure 1, a researcher can

visualize that an underlying individual difference distribution would almost

certainly be multidimensional because Figure 1 shows crisscrossing trajectories

that do not look anything like Figure 3 Panel A. Hence, should an HLM be

fitted, there will likely be meaningful variability in multiple random effects.

And indeed the HLM estimates reported in Table 6 show statistically significant

variability in intercepts and linear, quadratic, and cubic slopes of externalizing

behavior.

9A subsetted sample size was chosen to mirror the simulation conditions; using the full sample

can change the appearance and number of trajectory classes. Imposing a censored normal versus

normal conditional response distribution yielded similar results. The empirical example SPGM and

HLM with conditionally normal repeated measures used heterogeneous residual variances .¢2
t
/. This

example is for pedagogical purposes; related analyses are available elsewhere (e.g., for aggression;

NICHD ECCRN, 2004).
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624 STERBA, BALDASARO, BAUER

Additionally, because a normal conditional response distribution is used, a

researcher can infer from our simulation results that the indirect approximation

of the mean externalizing trend by SPGM is accurate. But because the sample

size is small, and the individual differences are multidimensional, a researcher

can infer from our simulation results that the indirect approximation of the

variability in externalizing behavior change by SPGM is inadequate even at

the best BIC K. That is, although the large number of discrete classes, sepa-

ration among the classes, and class differences in growth coefficients together

attempt to capture the full range of individual variability in trajectories, they

will underrepresent the true range of underlying variability. Indeed, we can

gauge the degree of potential underestimation by applying the approximation

formulas in Equations (8) and (9). Compared with the HLM estimates, these

formulas indicate that SPGM accounts for 96%, 71%, 52%, and 62% of the

variability in intercepts and linear, quadratic, and cubic slopes of externalizing

behavior, respectively. Mirroring our simulation results, the SPGM will do

best at approximating variation in the aspect of change that is most domi-

nant (here, intercepts). We also have the assurance from our simulation results

that the estimates of an HLM fitted to externalizing scores are accurate even

if distributions of growth coefficients are actually nonnormal (a distributional

misspecification).

To provide an example with binary data, we dichotomized the externalizing

repeated measures to mimic clinical cutoff scores. Endorsing nine symptoms

served as the clinical cutoff. Note this binary analysis is for illustrative purposes;

dichotomizing sacrifices information and is not recommended. Figure 10 depicts

a K D 2 (best BIC K) cubic SPGM with a Bernoulli conditional response

distribution applied to these data. We again begin by visualizing how an in-

direct interpretation would manifest in Figure 10. These binary data are more

impoverished than the continuous data such that the classes mainly differ in

level—but somewhat in rate of change as well (though not enough to crisscross

here). This implies that the underlying continuum of subject-specific trajectories

of clinically significant externalizing is of lower dimension than in Figure 1.

Correspondingly, when fitting an HGLM only three random effects are now

estimable (rather than four) and the variance of only one of these is statistically

significant (intercepts); see Table 6.

Further, a researcher can infer from our simulation results that, because the

conditional response distribution is Bernoulli, SPGM’s indirect approximation

of both the mean trend and variance components can be unacceptably biased—

particularly for capturing rates of change in clinically significant externalizing.

Though in an empirical application we do not know true population values,

applying Equations (8) and (9) suggests that SPGM’s indirect approximation

is capturing < 1% of the variation in linear slopes and 2% of the variation in

quadratic slopes compared with the HGLM results. Further, the SPGM approx-
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SEMIPARAMETRIC APPROXIMATION 625

FIGURE 10 Semiparametric groups-based trajectory model of externalizing behavior

clinical cutoff scores: Two-class empirical example. Note. Time D (age in years—5.5). Solid

lines D model estimated mean per class. Dashed lines D observed mean per class, calculated

using modal class assignment. Proportions associated with each class are listed in the figure

legend. Illustrative class labels: 1 D “high-declining”; 2 D “low-stable.” Conditional response

distribution assumed Bernoulli. Details are given in the section of this article titled Empirical

Illustrations.

imated average rates of change (fixed effects) are also under- or overestimated

compared with the HGLM estimates in Table 6.

This suggests that the impoverished binary data is not able to support enough

classes with class-varying growth coefficients to recover all change variation

in the data. If the underlying individual differences distributions are skewed,

a researcher can infer from our simulation results that HGLM will also be

inaccurate—particularly for the intercept estimates. For instance, in Table 6 inter-

cept dispersion may be overestimated by the HGLM. Stepping back, a researcher

contemplating a semiparametric versus parametric model may consider where

(e.g., intercepts or slopes) the theory necessitates most accurate recovery or may

generally consider which model has best recovery on average (see Summary).

RECOMMENDATIONS FOR PRACTICE

1. Provide more concrete details on an indirect interpretation. Rather than just

citing an indirect function of classes in the abstract, researchers can explain and

concretely visualize how this approximation could manifest for different random
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626 STERBA, BALDASARO, BAUER

effect dimensionality. Previously, researchers intuitively tended to connect plots

resembling Figure 3 Panel A with indirectly approximated quantitative indi-

vidual differences and Panel C with directly interpretable qualitative individual

differences. We emphasized how both plots can be consistent with an indirect

approximation—just of different numbers of random effects. Recent literature

reviews of dozens of externalizing behavior SPGM applications have failed to

replicate basic descriptive aspects of trajectory groups (e.g., Fontaine, Carbon-

neau, Vitaro, Barker, & Tremblay, 2009; Horn, 2000; Skardhamar, 2009; van

Dulmen, Goncy, Vest, & Flannery, 2009), generating discussion as to why this

is so. For instance, in Fontaine et al.’s (2009) review, 5% of studies had over

5 classes, 29% had 5 classes, 28% had 4, 28% had 3, and 10% had 2. The

proportions and shapes of these classes also varied widely (e.g., chronic (4%)—

escalators (12%)—desistors (35%)—late-onsetters (17%)—nonoffenders (32%)

vs. high-rising (35%)—low (65%) vs. high decreasers (4%)—low-decreasers

(15%)—near-zero (81%)). From an indirect perspective on classes (Nagin &

Tremblay, 2005a) this finding is not surprising;10 for instance, it is known

that altering the number of timepoints or using coarsely categorized repeated

measures can affect the number of random effects supported by HLM/HGLM

(Fitzmaurice, Laird, & Ware, 2011; Hedeker & Gibbons, 2006). In turn, differing

extents of continuous interindividual variability from one data set to another

would require different number(s) of classes, patterns of class-varying growth co-

efficients, and proportions of class membership for their indirect approximation.

2. Consider when an indirect approximation will be adequate. Researchers

should not just cite an indirect interpretation of classes without giving consider-

ation to whether their data conditions will yield an adequate approximation of

continuous individual differences. Generally, this approximation is worse, and

often inadequate, with lower N, multidimensional individual differences, and/or

binary repeated measures. For continuous repeated measures, researchers can

quantify and report the adequacy of approximation in their specific data set

by applying Equations (8) and (9) to their SPGM results and comparing these

numbers to HLM results. Researchers should keep in mind that this is a sample-

level comparison; though HLM estimates will be consistent under distributional

violation, they, as well as SPGM estimates, will still naturally be subject to

sampling variability. Class-varying fixed coefficients in the SPGM could be

allowed fixed and random effects in the corresponding HLM. Example SAS

code is provided in the Online Appendix to implement these computations. If

the approximation is poor, a direct interpretation of classes—with its added strict

assumption that classes correspond with true population subgroups (Bauer, 2007;

10Others have sought to explain these discrepant findings more from a direct perspective (e.g.,

Fontaine et al., 2009; Van Dulmen et al., 2009; see also Eggleston et al., 2004; Jackson & Sher,

2008).
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SEMIPARAMETRIC APPROXIMATION 627

Sterba & Bauer, 2010)—would still be available for researchers fitting an SPGM.

If the approximation is good, both direct and indirect interpretations could

provide adequate explanations from a statistical perspective. (For binary repeated

measures, such a comparison would be less definitive because HGLM results

could be biased under distributional violation, particularly for the intercept

coefficient; researchers could instead simply gauge approximation adequacy by

consulting the most relevant of our simulation cells.)

Researchers should also be aware that some common practices used to sim-

plify direct interpretability of classes can actually cause the indirect approx-

imation to suffer. Researchers often choose to retain fewer classes than that

recommended by statistical fit indices on grounds that more classes do not

aid direct substantive interpretability. For instance, it is more difficult to assign

unique verbal descriptor labels to multiple classes of similar functional form and

similar level. So when adding a class splits an existing class into slightly sepa-

rated classes of similar functional form, researchers may prefer the K�1 solution

even if fit indices prefer the K class solution (e.g., Brame, Nagin, & Tremblay,

2001; Gross, Shaw, Burwell, & Nagin, 2009; Otten, Wanner, Vitaro, & Engels,

2008; Petitclerc, Boivin, Dionne, Zoccolillo, & Tremblay, 2009; van der Vorst,

Vermulst, Meeus, Dekovic, & Engels, 2009).11 Researchers need to keep in mind

that although this practice may make a direct interpretation easier and perhaps

more substantively compelling, it makes an indirect interpretation of classes

more unrealistic. For instance, in our simulated Figure 3 Panel C example,

extracting one fewer class than best BIC results in classes #5 and #6 collapsing

into one. Because the merged class had a shape similar to the originals, it could

be given a similar label (“moderate level; concave down”); thus from a direct

interpretation vantage point there may be little substantive loss. But from an

indirect interpretation vantage point, there is a cost: individual variability in

growth coefficients would be underestimated (approximation adequacy dropped

by 17% for linear slope variance and 15% for quadratic slope variance when

K was 1 less than best BIC). When researchers choose reduced K to aid direct

11For instance, Petitclerc et al. (2009) explain that “with four groups and more, a small, high

stable group was consistently found, and adding groups resulted in splitting lower level groups.

Therefore, the four-group solution was retained” (p. 1479); likewise Gross et al. (2009) write,

“Despite improved BIC scores, both the five and six group models resulted in subdividing already

modest size groups with higher levels of maternal depressive symptoms into smaller groups that

were not substantively different from one another; thus, the four group model emerged as the best

fitting and most parsimonious model” (p. 147). Beyers & Seiffge-Krenke (2007) explain that “if a

solution with K classes emerges in which certain classes are merely slight variations on a common

theme and, hence, do not have differential substantive meaning, the more parsimonious solution with

K �1 classes is chosen” (p. 563). Brame et al. (2001) similarly state, “For the adolescent aggression

data a six-group model was found to best fit the data. However, here we describe the four-group

model because the results from this more parsimonious solution are qualitatively similar” (p. 506).
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628 STERBA, BALDASARO, BAUER

substantive interpretability, but still desire an indirect interpretation of classes as

a fallback explanation, they should mention the potential disadvantages of this

practice. Moreover, researchers can quantify the drop in indirect approximation

ability for specific aspects of change by applying Equations (8) and (9) to SPGM

results before and after leaving out a class.

3. Consider when an indirect approximation will be preferable. This study

identified some intriguing trade-offs. On one hand, HGLM suffers under the

specification error of random effect nonormality. On the other hand, SPGM’s

approximation suffers specifically under high dimensional random effect distri-

butions and lower N and generally under binary data (particularly when it can

become sparse when divided into classes). For the kind of data examined here—

which mirrors developmental psychopathology applications—HLM and HGLM

performed adequately under a wider variety of circumstances than did SPGM.

Hence, it is not always the case that “if a suitable continuous distribution is not

known or tractable, the group-based, semiparametric approach is an attractive

alternative” (Nagin & Tremblay, 2001, p. 29).

In practice, certain diagnostics can be employed to aid researchers in deciding

whether their data are more susceptible to approximation error (and hence more

conducive to HGLM) or more susceptible to specification errors discussed here

(and hence more conducive to SPGM). For example, plots of ordinary least

squares (OLS) individual trajectory estimates could perhaps suggest whether in-

dividuals vary in linear, quadratic, and/or cubic slopes in addition to intercepts—

implying a high-dimension random effect distribution less conducive to SPGM

(see Singer & Willet, 2002, for interpretation considerations involving degree

of sampling variability). Also, by-timepoint frequencies of binary repeated mea-

sures may indicate a risk for sparseness upon subdivision into classes (less

conducive to SPGM). Additionally, plots of model-implied (Empirical Bayes)

random effect distributions could give some indication of normality violations

(less conducive to HGLM). However, these predicted scores are shrunken toward

a normal prior distribution during estimation, particularly when Level 1 residual

variability is large (Verbeke & Lessafre, 1996). Alternative newer diagnostics

for random effect normality are reviewed by Huang (2011).

CONCLUSIONS

SPGM’s indirect approximation is often cited in methodological and applied

work. Care must be taken when motivating its use based on an unqualified

ability to approximate continuous possibly nonnormal individual differences; this

approximation will sometimes not be adequate. Furthermore, this approximation

may often not be necessary due to the robustness of HLM and even HGLM to

moderate violations of distributional assumptions for random effects. Future
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SEMIPARAMETRIC APPROXIMATION 629

research could investigate the accuracy of alternative approximation methods

(Galindo-Garre & Vermunt, 2006; Magidson & Vermunt, 2001; Zhang & Da-

vidian, 2001) in comparison to SPGM.
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