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and Parcel-Solutions
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This article relates a still-popular motivation for using parceling to an unrecognized cost. The still-

popular motivation is improvement in fit with respect to the item-solution. The cost is uncertainty

in fit due to the selection of one out of many possible item-to-parcel allocations. A theoretical

framework establishes the reason for this relationship: The same mechanisms that cause larger

item- versus parcel-solution differences in the minimized discrepancy function also cause larger

allocation to allocation variability in the parcel-solution’s minimized discrepancy function. Study

1 illustrates that these shared causal mechanisms lead to a strong positive association between

average item–parcel differences in minimized discrepancy function values and parcel-allocation

variability in those values. Study 2 extends these results from discrepancy function values to

fit indexes, showing that the association remains positive, but varies in magnitude depending on

what quantities other than the discrepancy function are involved in computing the fit index. The

important implication for practice is that when item–parcel fit differences are large enough to

alter conclusions about model adequacy, parcel-allocation variability tends to be large enough for

parcel-solution model adequacy to depend on the particular allocation chosen.

Keywords: parceling, parcel-allocation variability, model fit, confirmatory factor analysis

Parceling involves the averaging or summing of several raw items to form a single score, which

can then be used as an indicator of a latent variable in a factor analysis model or structural

equation model. Bandalos and Finney’s (2001) and Williams and O’Boyle’s (2008) surveys of

the use of parceling in applied social science research indicate that parceling is widely used,

sometimes with the explicitly stated motivation of improving fit over the item-solution. Indeed,

Williams and O’Boyle (2008) explained that
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COMPARING ITEM- AND PARCEL-SOLUTION FIT 555

In terms of improved model fit, the advantages of parcels are also important. One of the biggest

challenges HRM [Human Resource Management] researchers face in getting their SEM papers

published is demonstrating that their model adequately fits the data. A general step in convincing

reviewers of a properly specified model involves the use of various fit indices and demonstrating

that the model meets the “gold standards” associated with the indices (for example, the recom-

mended .05–.08 range for the RMSEA): : : : So, given this, one can understand the desire of HRM

researchers to use parcels. (p. 240)

Bandalos and Finney’s (2001) survey found examples of this stated motivation in Bagozzi and

Edwards (1998), Thompson and Melancon (1996), and Takahashi and Nasser (1996); other

examples are Landis, Beal, and Tesluk (2000), Martens (2005), Rogers and Schmitt (2004),

and Nasser and Wisenbaker (2003).

Several reasons for improved fit of parcel-solutions as compared to item-solutions are often

reported (e.g., Bandalos, 2002), and will be reviewed later in detail. Reliance on expected

improvement in fit as a motivation for employing parceling has been discouraged because such

improvements can mask, or occur in spite of, measurement model misspecifications (Bandalos,

2002; Bandalos & Finney, 2001; Hall, Snell, & Foust, 1999; Lee, 2005). This critique led

Bandalos and Finney (2001) to state that “the crucial factor in a researcher’s decision to use

item parceling appears to be the degree to which he or she is willing to make the assumption

that the use of item parceling has not masked any substantively and/or theoretically important

sources of lack of fit” (p. 286). This article shows that even if a researcher correctly makes

the assumption that there is no measurement model error, choosing parcel-solutions based on

changes in fit vis-à-vis item solutions is problematic based on previously unrecognized grounds.

In this article, I first review theoretical background for changes in fit between item-solutions

and parcel-solutions. Second, drawing on this theoretical framework, I hypothesize that the

typical difference in the minimized discrepancy function value between the item-solution and

the parcel-solution should be positively and monotonically related to the variability in that

minimized discrepancy function across alternative parcel-solutions (called parcel-allocation

variability; Sterba & MacCallum, 20101 and described later). I illustrate this point using a

simulation. Third, I show that item–parcel differences in model fit indexes are also positively

related to the amount of parcel-allocation variability in that fit index. But the particular nature

and magnitude of their relation depends on certain factors, such as what information in addition

to the discrepancy function value the fit index contains (e.g., sample size or penalties for number

of parameters). A major implication of these findings for applied practice is that researchers

should expect larger observed changes in fit between item-solutions and parcel-solutions to

be accompanied, on average, by interjection of unwanted uncertainty into the parcel-solution

estimates in the form of allocation-to-allocation variability in model fit statistics. This finding

introduces an additional reason why, even for a properly specified model, it is an ill-conceived

practice to choose parcel-solutions over item-solutions based on changes in fit—particularly

without taking into account the accompanying parcel-allocation variability (discussed later).

1Sterba and MacCallum’s (2010) paper was solely focused on introducing the concept of parcel-allocation variability

and documenting its occurrence in the context of alternative parcel-solutions. Their simulation did not consider item-

solutions, nor did they relate the concept of parcel-allocation variability to differences between item- and parcel-

solutions, as done here.
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556 STERBA

REVIEW OF THEORETICAL FRAMEWORK

Recall that during model estimation for factor analysis models and SEMs, a function is

minimized that quantifies the discrepancy between observed covariances and model-implied

covariances.2 When evaluated at the final parameter estimates, this discrepancy function is at its

lowest value.3 We denote OFp as the minimized discrepancy function value for a parcel-solution

(where discrepancy between observed and model-implied parcel covariances is minimized)

and OFi as the minimized discrepancy function value for an item-solution (where discrepancy

between the observed and model-implied item covariances is minimized).

The reasons for differences between OFi and OFp are direct consequences of the theoretical

framework of MacCallum and Tucker (1991), as has been previously stated by Bandalos (2002),

Hall et al. (1999), and Sass and Smith (2006).4 However, using the extension of this framework

to include parcel-solutions, from Sterba and MacCallum (2010), we are able to relate the

typical difference between OFi and OFp , on the one hand, to the variation in OFp across alternative

allocations of items to parcels, on the other hand. I begin with a brief review of the original

framework and its extension.5

An item-level factor analytic population covariance structure for a measurement model is

E.xi x
0
i / D †i D ƒi ˆi ƒ

0
i C ‰

2
i (1)

where i denotes item-level, E is the expectation operator, xi is an m � 1 vector of mean-

centered items in the population, ƒi is an m � q common factor loading matrix, ˆi is a q � q

covariance matrix of common factors, and ‰
2
i is a (usually) diagonal m � m matrix of unique

variances. In the population, covariances of common and unique factors and covariances of

unique factors are assumed to be 0. However, in a given sample of items generated by Equation

1, covariances among common and unique factors—denoted Cuci
and Ccui

—and covariances

among unique factors—denoted Cuui
—will usually not be zero, due to sampling variability. We

thus can represent these covariances explicitly in the item-level sample covariance structure,

Ci :

Ci D ƒi Ccci
ƒ

0
i C ƒi Ccui

‰
0
i C ‰ i Cuci

ƒ
0
i C ‰ i Cuui

‰
0
i (2)

where Ccci
is the sample covariance matrix of common factors (MacCallum & Tucker, 1991).

A parcel-level factor analytic population covariance structure is constructed in the following

manner. We first form an k � m selection matrix A that selects m items for k parcels (see

Sterba & MacCallum, 2010, for a worked example). Then xp D Axi is a vector of parcels, of

order k. Given a fixed, prespecified number of parcels per factor and items per parcel, locations

of nonzero elements in A determine a particular item-to-parcel allocation and can be chosen

2The points raised in this article should apply to situations where observed and model-implied means are also

included in the discrepancy function, but this situation is not specifically considered here.
3One popular discrepancy function is the maximum likelihood discrepancy function. I use it in the simulation

described later, but this framework does not apply to just one particular discrepancy function.
4These authors used terms that were proxies or related to discrepancy function values in their articles, but it is

necessary for the purposes of this presentation to rephrase their comments in terms of discrepancy function values.
5This framework is presented in the context of confirmatory factor analysis (CFA), but concepts are generalizable

to structural equation models more generally.
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COMPARING ITEM- AND PARCEL-SOLUTION FIT 557

by any random or purposive allocation method available. An example of a purposive item-to-

parcel allocation of m D 6 items into k D 3 two-item parcels is to parcel the pair of items

with the highest correlations together, and then parcel the next highest correlated pair, and so

on. An example of a random item-to-parcel allocation of the same m D 6 items into k D 3

two-item parcels is to arbitrarily choose which items to put into each of the parcels—perhaps

parceling 1 with 4, 2 with 3, and 5 with 6; or perhaps parceling 3 with 6, 5 with 1, and 2

with 4. Pre- and postmultiplying Equation 1 by A (i.e., allocating items to parcels) yields the

parcel-level population covariance structure:

E.Axi x
0
iA

0/ D A†i A
0 D Aƒi ˆi ƒ

0
i A

0 C A‰
2
i A

0: (3)

Rewriting xp D Axi and †p D A†i A
0 and ƒp D Aƒi and ‰

2
p D A‰

2
i A

0, where a p

subscript denotes parcel-level, leaves

E.xpx0

p/ D †p D ƒpˆi ƒ
0

p C ‰
2
p: (4)

Including sources of sampling error yields the parcel-level sample covariance structure:

ACi A
0 D A.ƒiCcci

ƒ
0
i/A

0 C A.ƒi Ccui
‰

0
i /A

0 C A.‰ i Cuci
ƒ

0
i /A

0 C A.‰ i Cuui
‰

0
i /A

0 (5)

Finally, rewriting Cp D ACiA
0 and ƒp D Aƒi and ‰p D ‰

0

i A
0 D A‰ i we obtain:

Cp D ƒpCcci
ƒ

0

p C ƒpCcui
‰

0

p C ‰pCuci
ƒ

0

p C ‰pCuui
‰

0

p: (6)

STUDY 1: RELATIONSHIP OF AVERAGE ( OFi � OFp) TO

PARCEL-ALLOCATION VARIABILITY IN OFp

In light of this theoretical framework, there can be seen to be several mechanisms through

which parcel-solutions can produce smaller OFp than item-solutions’ OFi (e.g., Bandalos, 2002).

These mechanisms are reviewed here, by comparing Equations 2 and 6.

� Mechanism 1. The first mechanism is the decrease in the number of indicators per

factor—which in turn decreases the dimensionality of the Cuui
, Ccui

, and Cuci
matrices—

which then reduces the contribution of error due to unmodeled associations in these

matrices. For example, if there are unmodeled error covariances among items in the same

parcel (resulting either from sampling error or from measurement model error), parceling

decreases their effects on OF by repackaging their contribution to Cuui
into common factor

variance in Ccci
.

� Mechanism 2. The second mechanism through which OFp can improve on OFi is by reducing

the element size and dimensionality of the weight matrix ‰ i , which further decreases the

contribution of Cuui
, Ccui

, and Cuci
. The element size reduction occurs because, for

instance when item averaging is used to form parcels, the diagonal element of ‰
2
p for

a given parcel is equal to the average of its constituent items’ diagonal elements of ‰
2
i ,

divided by the number of items per parcel.
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558 STERBA

� Mechanism 3. The third mechanism is the reduction in the effects of incorrect constraints

(e.g., omitted cross-loadings) in ƒi on OF by reapportioning some of their influences into

common factor covariances in Ccci
(e.g., Bandalos, 2002; Hall et al., 1999).

Mechanisms 2 and 3 are not only responsible for the magnitude of . OFi � OFp/ differences,

however. Rather, drawing on Sterba and MacCallum (2010), Mechanisms 2 and 3 also can

be seen to cause variation in OFp across alternate item-to-parcel allocations (for a prespecified

number of items per parcel, parcels per factor, and items per factor). This parcel-allocation

variability in OFp arises because alternate A matrices (i.e., alternate item-to-parcel-allocations)

within a single sample in Equation 5 will result in alternate ƒp and ‰p across allocations,

which will then result in alternate contributions of Cuui
, Ccui

, and Cuci
to OFp across allocations.

(This dependency of OFp on the particular allocation chosen means that, across allocations within

sample, one could draw meaningfully different conclusions about a parcel-solution’s model fit

[e.g., good fit vs. poor fit], as well as meaningfully different conclusions about point estimates

and inferences for structural and measurement parameters—even despite unidimensional, nor-

mal items and no model error [Sterba & MacCallum, 2010].)

Putting together the points made by Bandalos (2002) and Sterba and MacCallum (2010)

regarding Mechanisms 2 and 3, there should be a relationship between the magnitude of the

typical within-sample . OFi � OFp/ difference and the magnitude of within-sample OFp variability.

Consider the fact that, within a given sample, there is only one item-solution, but there are

as many parcel-solutions as there are alternative item-to-parcel allocations made—say, for

instance, 100. Hence, within a given sample, we can obtain one OFi and 100 difference scores

of . OFi � OFp/,6 as well as the across-allocation variance of OFp . We designate a “typical”

item–parcel difference in the minimized discrepancy function value as the average of the 100

difference scores across allocations within sample, or Ea. OFi � OFp/. We denote the variance of
OFp across allocations within sample as VARa. OFp/. Because there is only one item-solution per

sample, VARa. OFp/ D VARa. OFi � OFp/. Ea. OFi � OFp/ will be independent of VARa. OFi � OFp/, and

thus independent from VARa. OFp/, when OFi � OFp is normally distributed. Discrepancy functions

are right-skewed, however, and thus we could expect that almost always the Ea. OFi � OFp/ for

a given sample will be positively and monotonically related to VARa. OFp/ for that sample. But

because an exact analytic expression for the relationship between Ea. OFi � OFp/ and VARa. OFp/

is not feasible, a simulation demonstration is necessary.

Hypothesis

The previous section leads to the hypothesis that within-sample average . OFi � OFp/ differences

should be positively and monotonically related to within-sample parcel-allocation variability in
OFp . Hence, we should be able to predict the amount of . OFi � OFp/ on average, with the amount of

parcel allocation variability observed in OFp (again, for a fixed number of items per factor, items

per parcel, and parcels per factor). The strength of this relationship could vary from sample

6Bandalos (2002) and Sass and Smith (2006) also allowed that there would be a different . OFi � OFp/ for different

allocations, but did not state the implications of this.
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COMPARING ITEM- AND PARCEL-SOLUTION FIT 559

to sample based on sample characteristics, and so should be most pronounced when averaging

across samples. If this hypothesis is supported, one implication is that improvements in fit from

the item- to parcel-solutions (that many researchers might view as a benefit) should on average

be associated with greater parcel-allocation variability in the parcel-solution (a cost)—to a

degree dependent on what factors the fit index incorporates other than the discrepancy function

value.

There is an important precondition for Mechanisms 2 and 3 from the previous section to

create item–parcel fit differences, or parcel-allocation variability in fit; this precondition must

be met to test our hypothesis. This precondition is the existence of some amount of error,

which can then be reduced or repackaged via parceling, to an allocation-specific extent. This

error can take the form of sampling error or measurement model error, or both. Accordingly,

parcel-allocation variability in fit has recently been found to be higher when there is more

error of either kind in the measurement model (Sterba & MacCallum, 2010). In a separate

literature, item–parcel differences in fit have generally been found to be higher when there

is more error of either kind in the measurement model (e.g., Bandalos, 2002; Hau & Marsh,

2004; Nasser & Wisenbaker, 2003). Because parceling in general, and certainly the use of

parceling in hopes of obtaining improved fit in particular, have been strongly discouraged

in the context of measurement model misspecifications, this hypothesis is tested in a sterile

context that would not violate this recommendation: where sampling error is present, but model

error is not, and furthermore, items are unidimensional and normal in the population. Sampling

error is amplified most directly by lowering sample size, but also by having fewer items per

fewer parcels, and lower communalities. This sterile context is not a necessity for testing our

hypothesis, but it serves to illustrate our points in the simplest manner.

Study 1 tests the hypothesis about the relationship between typical . OFi � OFp/ and parcel-

allocation variability in OFp using a simulation. Later, Study 2 shows that the relationship

between average item–parcel differences in fit indexes and parcel-allocation variability in fit

indexes is more complicated than when working directly with the discrepancy function value,

as in Study 1.

Methods

To test the hypothesis, a simulation was conducted. This simulation design was used to study

parcel-solutions only—not item-solutions, nor their relation—in Sterba and MacCallum (2010).

Normally distributed item-level data were generated from a correlated two-factor confirmatory

factor population model with either h D 9 items per factor or h D 15 items per factor.7

Within each factor items were unidimensional in the population. When generating item-level

data, several conditions were varied to elicit a range of high to low sampling error—and

consequently high to low parcel-allocation variability in OFp and high to low magnitude of

. OFi � OFp/—across which to test the hypothesis.

Sample sizes were N D 75, 100, 125, 150, 200, or 250; these N s are commonly employed

in SEM research (Baumgartner & Homburg, 1996; Hulland, Chow, & Lam, 1996; MacCallum

7Others have considered the generating model to be at the parcel-level, and conceive of it as being mis- or properly

specified depending on the sample allocation chosen (e.g., Kim & Hagtvet, 2003), but I believe most researchers

conceptualize their generating model at the item-level.
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560 STERBA

& Austin, 2000). Additionally, each factor had either j D 3 parcels with 3 items per parcel

(using the h D 9 items per factor generated data), or j D 5 parcels with 3 items per parcel

(using the h D 15 items per factor generated data), or j D 3 parcels with 5 items per parcel

(using the h D 15 items per factor generated data). These different combinations of number

of items and number of parcels invoke Mechanism 1 from an earlier section (i.e., change in df

and matrix dimensionality from item- to parcel-solution) to different extents.

Factor variances were both 1, the factor correlation was .25, and item loadings were: high (all

.7), medium-high (all .6), low (all .4), or medium-mixed (.4, .5, and .6). These item loadings

were chosen to imply a range of scale reliabilities for the factor that are seen in practice

(Nunnally & Bernstein, 1994)—from excellent (.90–94, depending on number of items per

factor), for high loadings, to good (.84–.89), for medium loadings, to fair (.63–.74), for low

loadings. Error variances were chosen to make item variances equal 1.

This design resulted in 6 � 3 � 4 D 72 cells. In each design cell, 100 samples of items were

generated. In each sample, 100 random item-to-parcel allocations were performed by randomly

assigning the h items per factor to j parcels per factor, where h, j , and numbers of items per

parcel were fixed across allocations within a design cell. Then, parcel indicator scores were

computed by averaging these randomly assigned items.

For each sample in a cell, an item-solution was obtained by fitting the population-generating

two-factor CFA model to that sample’s item-level dataset. For each sample in a cell, 100 parcel-

solutions were obtained by fitting a two-factor CFA to the 100 differently allocated parcel

datasets. Mplus software (L. K. Muthén & Muthén, 1998–2008) with maximum likelihood

estimation was used for model fitting. The discrepancy function value at the final parameter

estimates (for Study 1) along with a variety of fit indexes (for Study 2) were recorded for

each item-solution and each parcel-solution within a given sample. Improper solutions were

removed prior to data analysis; their removal versus inclusion did not change the pattern of

findings.

Results

Our measure of the magnitude of the difference between OFi and OFp is the sample average of the

100 raw . OFi � OFp/ difference scores per sample. Our measure of the amount of parcel-allocation

variability in OFp is the standard deviation of the across-allocation distribution of OFp within

a sample. In practice, if a researcher were relying on a single parcel allocation in his or her

given sample, the range of the parcel-allocation distribution would also be relevant. Therefore,

for perspective, note that for a cell with a medium-sized difference in OFi � OFp (N D 150, 3

items per parcel, 5 parcels per factor, medium loadings), the range of a typical sample’s OFp

allocation distribution is about five times its reported standard deviation.

We begin by investigating the association between parcel-allocation variability in OFp, and

the raw . OFi � OFp/ difference, on average—that is, averaging both quantities across all samples

within each cell, in Figure 1. Subsequently we investigate this association at the sample level.

In Figure 1, each dot is a cell average; the color of the dots corresponds to a particular

number of items and number of parcels (black D 3 items per each of 5 parcels per factor;

gray D 5 items per each of 3 parcels per factor; white D 3 items per each of 3 parcels per

factor); and the size of the dot corresponds to sample size (largest dot: N D 250; smallest
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COMPARING ITEM- AND PARCEL-SOLUTION FIT 561

FIGURE 1 Relationship between the cell-average item- versus parcel-solution difference in the discrepancy

function value and the cell-average magnitude of parcel-allocation variability in the discrepancy function value.

Note. Each dot corresponds with a cell average. The color of the dot represents the number of items per factor,

parcels per factor, and items per parcel. Specifically, black D 15 items/factor, 5 parcels/factor, and 3 items/parcel.

Gray D 15 items/factor, 3 parcels/factor, and 5 items/parcel. White D 9 items/factor, 3 parcels/factor, and 3

items/parcel. The size of the dot is proportional to sample size. The smallest dot is N D 75; one size larger dot

is N D 100; one size larger dot is N D 125; one size larger dot is N D 150; one size larger dot is N D 200,

and the largest dot size is N D 250. Each cluster of four same-size, same-color dots corresponds with the four

different loading conditions, but these are not labeled in the plot (see text for explanation).

dot: N D 75). Within each cluster of same-size, same-color dots, the four dots correspond to

different loading sizes. Because they performed equivalently here, these loading sizes are not

labeled to reduce clutter. Figure 1 tells us that, for a given number of items per number of

parcels (i.e., a given color), across levels of N there is an extremely strong positive relationship

.r > :99/ between the average amount of allocation-to-allocation variability in the minimized

parcel-solution discrepancy function and the average item–parcel difference in the minimized

discrepancy function, as hypothesized. More error in the measurement model (here sampling

error, which is mainly being driven by N ) corresponds on average with both larger item–parcel

differences and larger parcel-allocation variability.

The next thing to notice about Figure 1 is that the slope of the relationship between item–

parcel differences in the discrepancy function and allocation-variability in the discrepancy
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562 STERBA

function depends on the number of items per number of parcels. For instance, the gray dots

have the steepest slope largely because they show the biggest drop in number of indicators

from the item-solution (15 per factor) to the parcel-solution (3 per factor). The black dots have

the next steepest slope and the next biggest drop in number of indicators from the item-solution

(15 per factor) to the parcel-solution (5 per factor). The white dots show the shallowest slope

and also the smallest drop in indicators: 9 per factor in the item-solution to 3 per factor in the

parcel-solution.

Also notice that for each combination of number of items per number of parcels (i.e., each

color) in Figure 1, the implied intercept would occur where both average parcel-allocation

variability and average item–parcel differences are nil. In this special case of no model error,

this implied intercept would occur when sampling error is nil (i.e., at arbitrarily large N ) such

that both the item- and parcel-solutions fit perfectly (consistent with Sterba & MacCallum,

2010). If model error was present, arbitrarily large N could not reduce average parcel-allocation

variability or average item–parcel differences to nil.

Of course, Figure 1 describes the association between item–parcel differences and parcel-

allocation variability in the minimized discrepancy function value, collapsing across all samples.

For a given sample, the relationship between a typical item–parcel difference and the magnitude

of allocation variability might deviate from its cell average. To visually depict how this

association varies from sample to sample, Figure 2 plots 90% confidence ellipses for the cells

with 3 items per each of 5 parcels per factor (black ellipses); the cells with 5 items per each of

3 parcels per factor (gray ellipses); and the cells with 3 items per each of 3 parcels per factor

(dashed ellipses). An ellipse contains approximately 90% of samples in its designated cell. The

plus signs correspond with the cell means from Figure 1. Hierarchical linear regressions, shown

in Table 1, quantify the results in Figure 2: The majority (i.e., 88%–95%) of the variance in

a given sample’s average item–parcel difference in the minimized discrepancy function can

be explained by the standard deviation of that sample’s parcel-allocation distribution. Figure 2

suggests that the predictive ability of the parcel-allocation standard deviation is somewhat

weaker at small sample sizes (i.e., wider ellipses at the far right of the plots). This is conveyed

in Table 1 by the 1% to 3% of additional variance explained by N (most for the condition

with fewest items per fewest parcels, because it induces most sampling error), and the 2%

to 4% of additional variance explained by the interaction of N and the standard deviation of

the parcel-allocation distribution. Additional predictors (e.g., factor loadings) explain trivial

proportions of variance.8 Total R2s ranged from .92 to .98.

Summary

In sum, the findings from Study 1 support the hypothesis that was derived from the theoretical

framework presented earlier. That is, the larger the average gap between the item-solution’s

and parcel-solution’s discrepancy function value, the more the parcel-solution’s discrepancy

function value tends to vary from allocation to allocation—and thus the more it depends on the

particular allocation chosen. This association was less strong at low N . Of course, researchers

8Additional higher order interaction and power terms involving the predictors were tried in the Table 1 regression

model as well as Study 2 regression models, but because they did not explain sizable amounts of variance they were

not included for parsimony.
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COMPARING ITEM- AND PARCEL-SOLUTION FIT 563

FIGURE 2 Relationship between the sample-average item- versus parcel-solution difference in the discrep-

ancy function value and the sample magnitude of parcel-allocation variability in the discrepancy function

value. Note. Cell averages from Figure 1 are now denoted by plus signs, and the ellipse around the cell average

contains 90% of the sample estimates for that cell. Black ellipses D 15 items/factor, 5 parcels/factor, and

3 items/parcel. Gray ellipses D 15 items/factor, 3 parcels/factor, and 5 items/parcel. Dashed ellipses D 9

items/factor, 3 parcels/factor, and 3 items/parcel.

rarely examine the discrepancy function value itself; instead, they examine model fit indexes

that are usually based on the discrepancy function value—the topic of Study 2.

STUDY 2: RELATIONSHIP OF AVERAGE ITEM-PARCEL FIT

DIFFERENCES TO PARCEL-ALLOCATION VARIABILITY IN FIT

At a general level, prior literature has typically found improvements in fit from the item-solution

to the parcel-solution (e.g., Bandalos, 2002; Hau & Marsh, 2004; Nasser & Wisenbaker, 2003).

However, at a more detailed level, the magnitude of such improvements has been found to differ

according to the particular model fit index used, with some model fit indexes seemingly more

sensitive than others to differences between the item- and parcel-solution. Additionally, the

parcel-solution has not always been found to be better fitting than the item-solution for certain

fit indexes, particularly in the case of no model error and larger samples (e.g., for root mean
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COMPARING ITEM- AND PARCEL-SOLUTION FIT 565

square error of approximation [RMSEA]; Bandalos, 2002; Nasser & Wisenbaker, 2003). There

has been no integrated explanation of these complexities; rather, these findings have been

previously tied together under the expectation that fit will generally improve with parceling.

A relevant point to recall here is that, for a given number of items per number of parcels, the

second and third mechanisms identified by the theoretical framework induce item–parcel differ-

ences in the discrepancy function values ( OFi vs. OFp)—not item–parcel differences in the values

of a fit index directly. Likewise, those same mechanisms induce parcel-allocation variability in
OFp—not parcel-allocation variability in the values of a fit index directly. Therefore, any factors

that enter into the computation of a model fit index above and beyond the discrepancy function

have the potential to modulate (a) the extent to which the item-solution and parcel-solution

fit differs, as well as (b) the amount of parcel-allocation variability in that fit index. Study 2

aims to provide some additional insight into the behavior of item vs. parcel fit differences by

showing to what extent they can be predicted by allocation-to-allocation variability in that fit

index, and to what extent such prediction is affected by index-specific factors.

First consider Table 2, which juxtaposes typical item–parcel fit differences against parcel-

allocation distribution ranges for several commonly used fit indexes: RMSEA, standardized

root mean squared residual (SRMR), Tucker–Lewis Index (TLI), comparative fit index (CFI),

and the chi-square statistic (¦2). For SRMR, RMSEA, TLI, and CFI, the range of parcel-

solution fit from one allocation to another within a sample tends to be as large as or larger

than the average item–parcel difference in fit for that sample; for ¦2, the same applies to its p

value rather than the statistic itself. Consequently, when the difference between item-solution

fit and parcel-solution fit is large enough for conclusions about model fit to flip from poor

(e.g., TLI < .95, RMSEA > .06; SRMR > .08; ¦2 p value < .05; CFI < .95) to good (e.g.,

TLI � .95, RMSEA � .06; SRMR � .08; ¦2 p value � .05; CFI � .95) between the item-

and parcel-solutions, parcel-allocation variability tends to be large enough to cause model fit

to flip from poor to good across alternative allocations for a parcel-solution.9

To further illustrate the relationship between item–parcel fit differences and parcel-allocation

variability in fit, Table 3 presents the correlation between cell average item–parcel fit differences

and cell average parcel-allocation standard deviation for a given number of items and number

of parcels; it is often, but not always > .90. The relationship in a given sample, however, can

of course depart from its cell average. Hence, also consider Tables 4 through 7, where for

some fit indexes (CFI, TLI, RMSEA) most of the variability in sample-average item–parcel

fit differences is predicted by the standard deviation of the corresponding sample’s parcel-

allocation distribution, but not for other fit indexes (SRMR, ¦2).

Table 3 results differ from Figure 1, and Table 4 through 7 results differ from Table 1 because

these fit indexes now involve the discrepancy function value in complex, sometimes nonlinear

ways, as well as involve additional quantities. For instance, some of these fit indexes (the incre-

mental fit indexes CFI and TLI) are nonlinear functions of not only the discrepancy function for

the model of interest, its df, and N , but also of the discrepancy function and df for a baseline

model (that usually just involves estimating measured variable variances). Other of these fit

indexes have censored distributions (e.g., RMSEA and CFI). Still other fit indexes (SRMR)

are solely a function of residuals, which constitute only part of the discrepancy function.

9Cutoff values are often used to distinguish good fit from poor fit in SEM, but the particular choice of cutoff value

for a given index is ultimately arbitrary. Other choices for cutoff values could instead be used to make the same point

(e.g., RMSEA < .05 and SRMR < .06 as designating good fit).
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COMPARING ITEM- AND PARCEL-SOLUTION FIT 567

TABLE 3

Correlation Between the (Cell Average) Difference in Fit

Between Item- and Parcel-Solutions and the (Cell

Average) Standard Deviation of That Fit Index’s

Parcel-Allocation Distribution

Fit Index
Items/Parcel,

Parcels/Factor Correlation

RMSEA 3, 5 .996

5, 3 .997
3, 3 .996

CFI 3, 5 .971

5, 3 .970
3, 3 .980

SRMR 3, 5 .874

5, 3 .870
3, 3 .948

TLI 3, 5 .971
5, 3 .976
3, 3 .993

¦2 3, 5 .921

5, 3 .723
3, 3 .491

Note. For RMSEA only, differences in fit are absolute
not raw, for reasons discussed subsequently in the text. TLI D

Tucker–Lewis Index; CFI D Comparative Fit Index; SRMR D

standardized root mean squared residual; RMSEA D root
mean square error of approximation.

Such features of fit indexes affect the relationship between item–parcel difference and parcel-

allocation variability, largely making it less strong than was the case for the discrepancy function

values in Study 1 (i.e., Figure 1 and Table 1). Space does not permit a detailed discussion of

how each fit index’s particular formulation and its additional terms besides the discrepancy

function value (e.g., df, N ) affect this relationship. Instead, we provide such a discussion for

two example fit indexes—one with the strongest observed relationship at the sample level

between item–parcel fit differences and the parcel-allocation distribution standard deviation

(RMSEA), and one with the weakest such relationship (¦2).

RMSEA

The RMSEA (Steiger & Lind, 1980) measures misfit per df in the population. Its sample

estimate incorporates several features beyond the discrepancy function value: N, df, and a max

operator:10

RMSEA D

v

u

u

u

u

t

Max

0

B

@

OF .N � 1/

df
� 1

N � 1
; 0

1

C

A

(7)

10Mplus software employed in this simulation uses N rather than N � 1.
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572 STERBA

We next explain how each of these features can affect the prediction of typical item–parcel fit

difference .RMSEAi � RMSEAp/ with parcel allocation variability in RMSEAp. For a visual

reference, Figure 3 illustrates the RMSEA results from Table 3.

First consider division by df. This operation serves to penalize adding estimated parameters

unless they meaningfully decrease the discrepancy function value. This penalty for complexity

can be loosely thought of as counterbalancing the first mechanism responsible for item–

parcel differences in fit—the reduced df for the parcel-solution. One observed consequence

of the df penalty is that the slopes are more similar across each combination of number of

items per number of parcels in Figure 3 than in Figure 1. In Figure 3, a .10 difference of

.RMSEAi � RMSEAp/ on average is associated with nearly a .10 increase in the RMSEAp’s

allocation distribution standard deviation, regardless of the number of items per number of

parcels. A second observed consequence of the df penalty is to make it likely or plausible

for the parcel-solution to possibly fit worse, per df, than the item-solution. That is, if a

particular amount of misfit in the item-solution remains in the parcel-solution (and was not

repackaged into, say, common variance by parceling), it will be weighted more in RMSEAp .

FIGURE 3 Relationship between the cell-average item- versus parcel-solution difference in root mean square

error of approximation (RMSEA) and the cell average magnitude of parcel-allocation variability in RMSEA.

Note. Each dot corresponds with a cell average. The colors and sizes of dots have the same definitions as in

Figure 1.
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COMPARING ITEM- AND PARCEL-SOLUTION FIT 573

This upweighting of misfit will be due to the parcel-solution’s smaller df. In contrast to Figure 1,

this consequence necessitated consideration of absolute rather than raw item–parcel differences

in Figure 3, to capture the net change in RMSEAi � RMSEAp and prevent opposite-signed

differences from canceling each other out in aggregation. (Raw differences were used for all

other indexes.) Approximately one-third of the time RMSEAi < RMSEAp—although 17% of

these instances were inevitable given that RMSEAi had perfect fit of 0.11 Likewise, previous

studies have occasionally found RMSEAi to fit better than RMSEAp (e.g., Bandalos, 2002;

Nasser & Wisenbaker, 2003) in the case of no model error.

Next consider N ; the manner in which N is included in both the numerator and denominator

of the index appears to render the RMSEA no more sensitive to N than the discrepancy function

value itself. This can be seen by comparing Figures 1 and 3. Next consider the max operator,

which sets negative values of the quantity in large brackets to 0. What constitutes a negative

value of the quantity in large brackets itself depends on df. This censoring should weaken

the association between item–parcel fit difference and parcel-solution allocation variability in

particular when either RMSEAi or RMSEAp was censored at 0. Whereas the effects of the

max operator are not obvious in Figure 3, an exploratory investigation that involved removing

versus retaining the max function and radical found that the effects of the left censoring in a

given sample served to constrain the partial R2 for the RMSEAp allocation standard deviation

in Table 3.

Chi-Square

Another commonly used fit index is the chi-square statistic:12

¦2 � OF .N � 1/ (8)

The direct multiplication of the discrepancy function by N �1 served to weaken the prediction

of typical item–parcel fit differences (i.e., ¦2
i � ¦2

p) with parcel allocation variability in ¦2
p, as

seen in Table 3 (also compare Tables 1 and 7). For a visual reference, compare Figure 4, which

illustrates the chi-square results from Table 3, to Figure 1, which illustrates the discrepancy

function results from Table 3. In Figure 1, the cell means (dots) are inversely related to N , and

in Figure 4 the cell means (dots) are relatively insensitive to N . One reason for the differential

sensitivity to N between Figures 1 and 4 is as follows. Because E. OF / D
df

N�1
in the present

context of no model error (Browne & Cudeck, 1993), y-axis values in Figure 1 (i.e., means

of differences in discrepancy function values) are inversely related to N . Because E.¦2/ D df

in the present context of no model error (Browne & Cudeck, 1993), y-axis values in Figure 4

(i.e., means of differences in chi-square values) are relatively insensitive to N ; rather, they

hover around df i � df p.

11For comparison purposes, a subset of cells (24) were rerun with a purposive parceling algorithm—the correlational

algorithm from Rogers and Schmitt (2004). This correlational algorithm was designed to outperform random allocations

in terms of parcel-solution fit due to its allocation of items that highly correlate into the same parcel (thus reducing

the chance of high unaccounted for correlated uniquenesses). Using this algorithm, 23% of item-solutions had better

RMSEA fit than parcel-solutions, but 10% of these instances were inevitable due to the item solution having an

RMSEA of 0.
12Mplus software employed in this simulation uses N rather than N � 1.
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574 STERBA

FIGURE 4 Relationship between the cell-average item- versus parcel-solution differences in chi-square and

the cell-average magnitude of parcel-allocation variability in chi-square. Note. Each dot corresponds with a cell

average. The colors and sizes of dots have the same definitions as in Figure 1.

In practice, however, there would be model error, in which case E.¦2/ D df C œ, where œ

(the noncentrality parameter) is a product of N �1 and model error. As such, average .¦2
i �¦2

p/

would no longer hover around df i � df p but would increase with both sample size and model

error, which in turn would force the ¦2
p distribution’s standard deviation to do the same. Hence,

in the case of model error, we would expect to see stronger positive relationships in Figure 4

for chi-square, more similar to the other fit indexes in Table 3.

Summary

Study 2 extended the results of Study 1 from discrepancy function values to fit indexes. Study

2 illustrated that, for fit indexes, the relationship between average item–parcel differences and

parcel-allocation variability was still positive, but varied in strength in ways that could be

anticipated based on what elements other than the discrepancy function value (e.g., N or

df ) entered into the fit index computation, and precisely how they entered the computation.

Study 2 illustrated this reasoning for two fit indexes in detail—RMSEA and ¦2. The effect of

the additional elements entering the fit index computation is likely one reason why previous
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COMPARING ITEM- AND PARCEL-SOLUTION FIT 575

studies have found that some fit indexes appear more sensitive than others to item–parcel fit

differences (e.g., Bandalos, 2002; Nasser & Wisenbaker, 2003). The bottom line of Study 2,

for an applied researcher, was shown in Table 2: When the typical item–parcel fit difference

was large enough to change conclusions about model fit (e.g., from good to poor fit), parcel-

allocation variability was on average large enough to change conclusions from good to poor

fit across alternate parcel allocations.

GENERAL DISCUSSION

This article provides a crucial link between the many prior studies on item–parcel differences

in fit and the single prior study on parcel-allocation variability. It began with a theoretical

framework that implied that mechanisms causing item versus parcel differences in discrep-

ancy function values also cause parcel-allocation variability in discrepancy function values. A

simulation in Study 1 empirically demonstrated that, indeed, item–parcel differences and parcel-

allocation variability in discrepancy function values on average increase nearly in lockstep, for a

given number of items per number of parcels. Study 2 showed that the relation between average

item–parcel differences in fit and parcel-allocation variability is similarly positive, but varies in

nature and magnitude based on how the discrepancy function enters into the index computation,

and what other quantities (e.g., N, df ) are involved in the index computation. Importantly for

applied researchers, when the average item- versus parcel-solution fit difference in a sample

was large enough to change substantive conclusions about model adequacy, parcel-allocation

variability tended to be large enough for conclusions about model adequacy to depend on

the particular allocation chosen (see Table 2). The often-encountered but ill-conceived use of

parceling to obtain improved fit should be connected to its associated hidden cost: additional

uncertainty interjected into parcel-solution fit indexes in the form of parcel-allocation variability.

Limitations

Several limitations of this study should be considered. First, this study used only random

allocations. However, according to the theoretical framework, conclusions should generalize

to purposive allocations as well. Second, although the mechanisms causing item–parcel dif-

ferences and parcel-allocation variability require either the presence of sampling error and/or

measurement model error, I included only sampling error. I did so because parceling with the

goal of improving fit has already been criticized in the presence of measurement model error

due to the potential for obscuring model misspecifications (e.g., Bandalos, 2002; Hall et al.,

1999). I wanted to show that problems with the not-infrequent practice of parceling to improve

fit were even more far reaching, such that they occur even when best case scenario conditions

are upheld. Nonetheless, because some measurement model error is to be expected in the real

world, I noted instances in Study 1 and Study 2 where the pattern of the results would be

expected to meaningfully change in the presence of model error. Further, I explained what

results would be expected if model error were included (e.g., Figure 1 not having nil x-axis

and y-axis values at large N ; Figure 3 having stronger positive relationships between x-axis

and y-axis values). Finally, I used a limited number of random allocations per sample (100).
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576 STERBA

However, a sensitivity analysis varying the number of allocations in select cells recovered the

same overall pattern of findings.

Recommendations

It is suggested that, particularly when item–parcel differences in fit are observed, parcel-

allocation variability in model fit should be assessed. Researchers should report whether parcel-

allocation variability is large enough to substantively affect conclusions. A utility for assessing

parcel-allocation variability is available from http://www.vanderbilt.edu/peabody/sterba (or by

contacting the author), and reporting guidelines were provided in Sterba and MacCallum

(2010). Although previous studies have condemned using parceling to obtain improved fit

based on the potential for parceling to obscure model misspecification (e.g., Bandalos & Finney,

2001; Hall et al., 1999), we showed that—even when there is no measurement model error—

item-to-parcel improvements in fit are not the no-strings-attached benefit that Williams and

O’Boyle (2008) had in mind. Nontrivial improvements in fit are on average accompanied by

the undesirable consequence of nontrivial parcel-allocation variability in fit; hence the latter

must be investigated and reported regardless of the existence of model error.
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