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Previous research has compared methods of estimation for fitting multilevel models to binary data, but
there are reasons to believe that the results will not always generalize to the ordinal case. This article thus
evaluates (a) whether and when fitting multilevel linear models to ordinal outcome data is justified and
(b) which estimator to employ when instead fitting multilevel cumulative logit models to ordinal data,
maximum likelihood (ML), or penalized quasi-likelihood (PQL). ML and PQL are compared across
variations in sample size, magnitude of variance components, number of outcome categories, and
distribution shape. Fitting a multilevel linear model to ordinal outcomes is shown to be inferior in
virtually all circumstances. PQL performance improves markedly with the number of ordinal categories,
regardless of distribution shape. In contrast to binary data, PQL often performs as well as ML when used
with ordinal data. Further, the performance of PQL is typically superior to ML when the data include a
small to moderate number of clusters (i.e., � 50 clusters).
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Psychologists, as well as researchers in allied fields of health,
education, and social science, are often in the position of collecting
and analyzing nested (i.e., clustered) data. Two frequently encoun-
tered types of nested data are hierarchically clustered observations,
such as individuals nested within groups, and longitudinal data, or
repeated measures over time. Both data structures share a common
feature: dependence of observations within units (i.e., observations
within clusters or repeated measures within persons). Because
classical statistical models like analysis of variance and linear
regression assume independence, alternative statistical models are
required to analyze nested data appropriately.

In psychology, a common way to address dependence in nested
data is to use a multilevel model (sometimes referred to as a
unit-specific model, or conditional model). A model is specified to
include cluster-level random effects to account for similarities
within clusters and the observations are assumed to be independent
conditional on the random effects. A random intercept captures
level differences in the dependent variable across clusters (due to
unobserved cluster-level covariates), whereas a random slope im-
plies that the effect of a predictor varies over clusters (interacts
with unobserved cluster-level covariates). Alternative ways to

model dependence in nested data exist, including population-
average (or marginal) models which are typically estimated by
generalized estimating equations (GEE; Liang & Zeger, 1986).
These models produce estimates of model coefficients for predic-
tors that are averaged over clusters, while allowing residuals to
correlate within clusters. Population-average models are robust to
misspecification of the correlation structure of the residuals,
whereas unit-specific models can be sensitive to misspecification
of the random effects. However, unit-specific models are appealing
to many psychologists (and others), because they allow for infer-
ence about processes that operate at the level of the group (in
hierarchical data) or individual (in longitudinal data). Indeed, in a
search of the PsycARTICLES database, we found that unit-specific
models were used more than 15 times as often as population-
average models in psychology applications published over the last
5 years.1 To maximize relevance for psychologists, we thus focus
on the unit-specific multilevel model in this article. Excellent
introductions to multilevel modeling include Goldstein (2003),
Hox (2010), Raudenbush and Bryk (2002), and Snijders and
Bosker (1999).

Though the use of multilevel models to accommodate nesting
has increased steadily in psychology over the past several decades,
many psychologists appear to have restricted their attention to
multilevel linear models. These models assume that observations
within clusters are continuous and normally distributed, condi-

1 A full-text search of articles published in the past 5 years indicated that
211 articles included the term “multilevel model, “hierarchical linear
model,” “mixed model,” or “random coefficient model” (all unit-specific
models), whereas 14 articles included the term “generalized estimation
equations” or “GEE.” More general searches would be possible but this
brief PsychARTICLES search gives an indication of the proportion of
unit-specific to population-average applications in psychology.
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tional on observed covariates. But very often psychologists mea-
sure outcomes on an ordinal scale, involving multiple discrete
categories with potentially uneven spacing between categories. For
instance, participants might be asked whether they “strongly dis-
agree,” “disagree,” “neither disagree nor agree,” “agree,” or
“strongly agree” with a particular statement. Although there is
growing recognition that the application of linear models with such
outcomes is inappropriate, it is still common to see ordinal out-
comes treated as continuous so that linear models can be applied
(Agresti, Booth, Hobert, & Caffo, 2000; Liu & Agresti, 2005).

Researchers may be reluctant to fit an ordinal rather than linear
multilevel model for several reasons. First, researchers are gener-
ally more familiar with linear models and may be less certain how
to specify and interpret the results of models for ordinal outcomes.
Second, to our knowledge, no researchers have expressly exam-
ined the consequences of fitting a linear multilevel model to
ordinal outcomes. Third, it may not always be apparent what
estimation options exist for fitting multilevel models with ordinal
outcomes, nor what the implications of choosing one option versus
another might be. Indeed, there is a general lack of information on
the best method of estimation for the ordinal case. Unlike the case
of normal outcomes, the likelihood for ordinal outcomes involves
an integral that cannot be resolved analytically, and several alter-
native estimation methods have been proposed to overcome this
difficulty. The strengths and weaknesses of these methods under
real-world data conditions are not well understood.

Our goals in writing this article were thus twofold. First, we
sought to establish whether and when fitting a linear multilevel
model to ordinal data may constitute an acceptable data analysis
strategy. Second, we sought to evaluate the relative performance of
two estimators for fitting multilevel models to discrete outcomes,
namely penalized quasi-likelihood (PQL) and maximum likeli-
hood (ML) using adaptive quadrature. These two methods of
estimation were chosen for comparison because of their prevalence
within applications and their availability within commonly used
software (PQL is a default estimator in many software programs,
such as Hierarchical Linear and Nonlinear Modeling–6 [HLM–6,
Scientific Software International, or SSI, Lincolnwood, IL] and the
GLIMMIX procedure in SAS, and is currently the only estimator
available in SPSS; ML with adaptive quadrature is available in the
GLIMMIX and NLMIXED SAS procedures as well as Mplus
[Muthén & Muthén, 1998–2007], generalized linear latent and
mixed models [GLLAMM; Stata Corp., College Station, TX], and
SuperMix [SSI]).

We begin by presenting the two alternative model specifications,
the multilevel linear model for continuous outcomes versus a
multilevel model expressly formulated for ordinal outcomes. We
then discuss the topic of estimation and provide a brief review of
previous literature on fitting multilevel models to binary and
ordinal data, focusing on gaps involving estimation in the ordinal
case. Based on the literature, we develop a series of hypotheses
that we test in a simulation study that compares two model spec-
ifications, linear versus ordinal, under conditions that might com-
monly occur in psychological research. Further, we compare the
estimates of ordinal multilevel models fit via PQL versus ML with
adaptive quadrature. The findings from our simulation translate
directly into recommendations for current practice.

Alternative Model Specifications

Multilevel Linear Model

We first review the specification of the multilevel linear model.
For exposition, let us suppose we are interested in modeling the
effects of one individual-level (level-1) predictor Xij and one
cluster-level (level-2) predictor Wj, as well as a cross-level inter-
action, designated XijWj, where i indexes the individual and j
indexes the cluster. To account for the dependence of observations
within clusters, we will include a random intercept term, desig-
nated u0j, and a random slope for the effect of Xij, designated u1j,
to allow for the possibility that the effect of this predictor varies
across clusters. This model is represented as:

Level 1: Yij � �0j � �1jXij � rij

Level 2: �0j � �00 � �01Wj � u0j

�1j � �10 � �11Wj � u1j (1)

Combined: Yij � �00 � �01Wj � �10Xij � �11WjXij � u0j

� u1jXij � rij

All notation follows that of Raudenbush and Bryk (2002), with
coefficients at Level 1 indicated by �, fixed effects indicated by �,
residuals at Level 1 indicated by r, and random effects at Level 2
indicated by u. Both the random effects and the residuals are
assumed to be normally distributed, or

� u0j

u1j
� � N�� 0

0� , � �00

�10 �11
�� (2)

and

rij � N�0, �2� (3)

An important characteristic of Equation 1 is that it is additive in the
random effects and residuals. In concert with the assumptions of
normality in Equations 2 and 3, this additive form implies that the
conditional distribution of Yij is continuous and normal.

The use of linear models such as Equation 1 with ordinal
outcomes can be questioned on several grounds (Long, 1997, p.
38-40). First, the linear model can generate impossible predicted
values, below the lowest category number or above the highest
category number. Second, the variability of the residuals becomes
compressed as the predicted values move toward the upper or
lower limits of the observed values, resulting in heteroscedasticity.
Heteroscedasticity and nonnormality of the residuals cast doubt on
the validity of significance tests. Third, we often view an ordinal
scale as providing a coarse representation for what is really a
continuous underlying variable. If we believe that this unobserved
continuous variable is linearly related to our predictors, then our
predictors will be nonlinearly related to the observed ordinal
variable. The linear model then provides a first approximation of
uncertain quality to this nonlinear function. The substitution of a
linear model for one that is actually nonlinear is especially prob-
lematic for nested data when lower level predictors vary both
within and between clusters (have intraclass correlations exceed-
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ing zero). In this situation, estimates for random slope variances
and cross-level interactions can be inflated or spurious (Bauer &
Cai, 2009).

Multilevel Models for Ordinal Outcomes

In general, there are two ways to motivate models for ordinal
outcomes. One motivation that is popular in psychology and the
social sciences, alluded to earlier, is to conceive of the ordinal
outcome as a coarsely categorized measured version of an under-
lying continuous latent variable. For instance, although attitudes
may be measured via ordered categories ranging from “strongly
disagree” to “strongly agree,” we can imagine that a continuous
latent variable underlies these responses. If the continuous variable
had been measured directly, then the multilevel linear model in
Equation 1 would be appropriate. Thus, for the continuous under-
lying variable, denoted Yij

� , we can stipulate the model

Level 1: Yij
� � �0j � �1jXij � rij

Level 2: �0j � �00 � �01Wj � u0j

�1j � �10 � �11Wj � u1j (4)

Combined: Yij
� � �00 � �01Wj � �10Xij � �11WjXij � u0j

� u1jXij � rij

To link the underlying Yij
� with the observed ordinal response Yij,

we must also posit a threshold model. For Yij scored in categories
c � 1, 2, . . . , C, we can write the threshold model as:

Yij � 1 if Yij
� � ��1�

Yij � 2 if ��1� � Yij
� � ��2�

···

Yij � C if Yij
� � ��C	1� (5)

where ��c� is a threshold parameter and the thresholds are strictly
increasing (i.e.,��1� � ��2� . . . � ��C	1�). In words, Equation 5
indicates that when the underlying variable Yij

� increases past a
given threshold, we see a discrete jump in the observed ordinal
response Yij (e.g., when Yij

� crosses the threshold ��1�, Yij changes
from a 1 to a 2).

Finally, to translate Equations 4 and 5 into a probability
model for Yij, we must specify the distributions of the random
effects and residuals. The random effects at Level 2 are con-
ventionally assumed to be normal, just as in Equation 2. Dif-
ferent assumptions can be made for the Level 1 residuals.
Assuming rij � N�0,1� leads to the multilevel probit model,
whereas assuming rij � logistic�0,
2/3� leads to the multilevel
cumulative logit model. In both cases, the variance is fixed (at 1 for
the probit specification and at 
2/3 for the logit specification) since
the scale of the underlying latent variable is unobserved. Of the
two specifications, we focus on the multilevel cumulative logit
model because it is computationally simpler and because the
estimates for the fixed effects have appealing interpretations (i.e.,
the exponentiated coefficients are interpretable as odds ratios).

Alternatively, the very same models can be motivated from the
framework of the generalized linear model (McCullagh & Nelder,
1989), a conceptualization favored within biostatistics. Within this
framework, we start by specifying the conditional distribution of
our outcome. In this case, the conditional distribution of the
ordinal outcome Yij is multinomial with parameters describing the
probabilities of the categorical responses. By modeling these prob-
abilities directly, we bypass the need to invoke a continuous latent
variable underlying the ordinal responses.

To further explicate this approach we can define cumulative
coding variables to capture the ordered-categorical nature of the
observed responses. C – 1 coding variables are defined such that
Yij

�c� � 1 if Yij � c (the cumulative coding variable for category
C is omitted as it would always be scored 1). The expected value
of each cumulative coding variable is then the cumulative proba-
bility that a response will be scored in category c or below, denoted
as �ij

�c� � P�Yij � c� � P�Yij
�c� � 1
.

The cumulative probabilities are predicted via the linear pre-
dictor, denoted �ij, which is specified as a weighted linear com-
bination of observed covariates/predictors and random effects. For
our example model, the linear predictor would be specified through
the equations

Level 1: �ij � �0j � �1jXij

Level 2: �0j � �00 � �01Wj � u0j

�1j � �10 � �11Wj � u1j

Combined: �ij � �00 � �01Wj � �10Xij � �11WjXij � u0j

� u1jXij (6)

where the random effects are assumed to be normally distributed
as in Equation 2.

The model for the observed responses is then given as

Yij
�c� � g	1���c� � �ij
 � rij (7)

where ��c� is again a threshold parameter that allows for increasing
probabilities when accumulating across categories and g	1�·� is the
inverse link function, a function that maps the continuous range of
���c� � �ij
 into the bounded zero-to-one range of predicted values
(model-implied cumulative probabilities) for the cumulative cod-
ing variable (Hedeker & Gibbons, 2006; Long, 1997). Any func-
tion with asymptotes of zero and one could be considered as a
candidate for g	1�·� but common choices are the cumulative den-
sity function (CDF) for the normal distribution, which produces
the multilevel probit model, and the inverse logistic function,

g	1���c� � �ij
 � �ij
�c� �

exp���c� � �ij�

1 � exp���c� � �ij�
(8)

which produces the multilevel cumulative logit model.
Both motivations lead to equivalent models, with the selection

of the link function in Equation 7 playing the same role as the
choice of residual distribution in Equation 4. The two approaches
thus differ only at the conceptual level. Regardless of which
conception is preferred, however, a few additional features of the
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model should be noted. First, the full set of thresholds and overall
model intercept are not jointly identified. One can set the first
threshold to zero and estimate the intercept, or set the intercept to
zero and estimate all thresholds. The former choice seems to be
most common, and we will use that specification in our simula-
tions. Additionally, an assumption of the model, which can be
checked empirically, is that the coefficients in the linear predictor
are invariant across categories (an assumption referred to as pro-
portional odds for the multilevel cumulative logit model). This
assumption can be relaxed, for instance by specifying a partial
proportional odds model. For additional details on this assumption
and the partial proportional odds model, see Hedeker and Gibbons
(2006).

Alternative Estimation Methods

To provide a context for comparison of estimation methods, first
consider a general expression for the likelihood function for cluster j:

Lj���Yj� ��f�Yj�uj,��h�uj���duj (9)

where � is the vector of parameters to be estimated (fixed effects
and variance components), Yj is the vector of all observations on
Yij within cluster j, and uj is the vector of random effects. The
density function for the conditional distribution of Yj is denoted
f( � ), and the density function for the random effects is denoted
h( � ), both of which implicitly depend on the parameters of the
model. Integrating the likelihood over the distribution of the ran-
dom effects returns the marginal likelihood for Yj, that is, the
likelihood of Yj averaging over all possible values of the random
effects. This averaging is necessary because the random effects are
unobserved. The overall sample likelihood is the product of the
cluster-wise likelihoods, and we seek to maximize this likelihood
to obtain the parameter estimates that are most consistent with our
data (i.e., parameter estimates that maximize the likelihood of
observing the data we in fact observed).

In the linear multilevel model, both f(�) and h(�) are assumed to
be normal and in this case the integral within the likelihood
resolves analytically; the marginal likelihood for Yj is the multi-
variate normal density function (Demidenko, 2004, pp. 48–61).
No such simplification arises when f( �) is multinomial and h( �) is
normal, as is the case for ordinal multilevel models. Obtaining the
marginal probability of Yj would, in theory, require integrating
over the distribution of the random effects at each iteration of the
likelihood-maximization procedure, but this task is analytically
intractable. One approach to circumvent this problem is to imple-
ment a quasi-likelihood estimator (linearizing the integrand at each
iteration), and another is to evaluate the integral via a numerical
approximation.

The idea behind quasi-likelihood estimators (PQL and marginal
quasi-likelihood, or MQL) is to take the nonlinear model from
Equation 7 and apply a linear approximation at each iteration. This
linear model is then fit via normal-theory ML using observation
weights to counteract heteroscedasticity and nonnormality of the
residuals. This is an iterative process with the linear approximation
improving at each step. More specifically, the linear approximation
typically employed is a first-order Taylor series expansion of the

nonlinear function g	1���c� � �ij
. Algebraic manipulation of the
linearized model is then used to create a “working variate” Zij

which is an additive combination of the linear predictor ��c�

� �ij and a residual eij (see the Appendix in the online supple-
mental materials for more details). The working variate is con-
structed somewhat differently in MQL and PQL; it is constructed
exclusively using fixed effects in the former but using both fixed
effects and empirical Bayes estimates of the random effects in the
latter (see Goldstein, 2003, pp. 112–114; Raudenbush & Bryk,
2002, pp. 456–459). The residual is the original Level-1 residual
term scaled by a weight eij � rij/wij derived from the linearization
procedure to render the residual distribution approximately nor-
mal, that is, eij � N�0,1/wij�. The resultant model for the “working
variate,” Zij � ���c� � �ij� � eij, approximately satisfies assump-
tions of the multilevel linear model and can be used to construct an
approximate (or quasi-) likelihood.

An alternative way to address the analytical intractability of the
integral in Equation 9 is to leave the integrand intact but approx-
imate the integral numerically. Included within this approach is
ML using Gauss–Hermite quadrature, adaptive quadrature,
Laplace algorithms, and simulation methods. Likewise, Bayesian
estimation using Markov Chain Monte Carlo with noninformative
(or diffuse) priors can be viewed as an approximation to ML that
implements simulation methods to avoid integration. Here we
focus specifically on ML with adaptive quadrature. With this
method, the integral is approximated via a weighted sum of dis-
crete points. The locations of these points of support (quadrature
points) and their respective weights are iteratively updated (or
adapted) for each cluster j, which has the effect of recentering and
rescaling the points in a unit-specific manner (Rabe-Hesketh, Sk-
rondal & Pickles, 2002). At each iteration, the adapted quadrature
points are solved for as functions of the mean or mode and
standard deviation of the posterior distribution for cluster j. Inte-
gral approximation improves as the number of points of support
per dimension of integration increase, at the expense of computa-
tional time. Computational time also increases exponentially
with the dimensions of integration, which in Equation 9 corre-
sponds to the number of random effects. The nature of the discrete
distribution employed differs across approaches (e.g. rectangular
vs. trapezoidal vs. Guass–Hermite), where, for example, rectangu-
lar adaptive quadrature considers a discrete distribution of adjoin-
ing rectangles.

Prior Research

Fitting a Multilevel Linear Model by
Normal-Theory ML

The practice of fitting linear models to ordinal outcomes using
normal-theory methods of estimation remains common (Agresti et
al., 2000; Liu & Agresti, 2005). To date, however, no research has
been conducted to evaluate the performance of multilevel linear
models with ordinal outcomes from which to argue against this
practice. A large number of studies have, however, evaluated the
use of linear regression or normal-theory structural equation mod-
eling (SEM) with ordinal data (see Winship & Mare, 1984, and
Bollen, 1989, pp. 415–448, for review). These studies are relevant
here because the multilevel linear model can be considered a
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generalization of linear regression and a submodel of SEM (Bauer,
2003; Curran, 2003; Mehta & Neale, 2005). Overall, this research
indicates that, for ordinal outcomes, the effect estimates obtained
from linear models are often attenuated, but that there are circum-
stances under which the bias is small enough to be tolerable. These
circumstances are when there are many categories (better resem-
bling an interval-scaled outcome) and the category distributions
are not excessively nonnormal. Extrapolating from this literature,
we expect multilevel linear models to perform most poorly with
binary outcomes or ordinal outcomes with few categories and best
with ordinal outcomes with many categories (approaching a con-
tinuum) and roughly normal distributions (Goldstein, 2003, p.
104).

Fitting a Multilevel Cumulative Logit Model by
Quasi-Likelihood

Simulation research with PQL and MQL to date has focused
almost exclusively on binary rather than ordinal outcomes. This
research has consistently shown that PQL performs better than
MQL (Breslow & Clayton, 1993; Breslow & Lin, 1995; Goldstein
& Rasbash, 1996; Rodriguez & Goldman, 1995, 2001). In either
case, however, the quality of the estimates depends on the ade-
quacy of the Taylor series approximation and the extent to which
the distribution of the working variate residuals is approximately
normal (McCulloch, 1997). When these approximations are poor,
the estimates are attenuated, particularly for variance components.
In general, PQL performs best when there are many observations
per cluster (Bellamy, Li, Lin, & Ryan, 2005; Ten Have & Localio,
1999; Skrondal & Rabe-Hesketh, 2004, pp. 194–197), for it is then
that the provisional estimates of the random effects become most
precise, yielding a better working variate. The performance of
PQL deteriorates when the working variate residuals are markedly
nonnormal, as is usually the case when the outcome is binary
(Breslow & Clayton, 1993; Skrondal & Rabe-Hesketh, 2004, pp.
194–197). The degree of bias increases with the magnitude of the
random effect variances (Breslow & Lin, 1995; McCulloch, 1997;
Rodriguez & Goldman, 2001).2

Though it is well-known that PQL can often produce badly
biased estimates when applied to binary data (Breslow & Lin,
1995; Raudenbush, Yang, & Yosef, 2000; Rodriguez & Gold-
man, 1995, 2001), it is presently unknown whether this bias will
extend to multilevel models for ordinal outcomes. The assump-
tion seems to be that the poor performance of PQL will indeed
generalize (Agresti et al., 2000; Liu & Agresti, 2005), leading
some to make blanket recommendations that quasi-likelihood
estimators should not be used in practice (McCulloch, Searle, &
Neuhaus, 2008, p. 198). This conclusion may, however, be
premature. For instance, Saei and McGilchrist (1998) detected
only slight bias for a PQL-like estimator when the outcome
variable had four categories and was observed for three indi-
viduals in each of 30 clusters. Beyond the specific instance
considered by Saei and McGilchrist (1998), we believe that the
bias incurred from the use of PQL will diminish progressively
with the number of categories of the ordinal outcome due to the
increase in information with more ordered categories. To our
knowledge, this hypothesis has not previously appeared in the

literature on PQL, nor has the quality of PQL estimates been
compared over increasing numbers of categories.

Fitting the Multilevel Cumulative Logit Model by ML
With Adaptive Quadrature

ML estimation for the multilevel cumulative logit model is
theoretically preferable to quasi-likelihood estimation because it
produces asymptotically unbiased estimates. Moreover, a number
of simulation studies have shown that ML using quadrature (or
other integral approximation approaches) outperforms quasi-like-
lihood estimators such as PQL when used to estimate multilevel
logistic models with binary outcomes (Raudenbush et al., 2000;
Rodriguez & Goldman, 1995). As one would expect given its
desirable asymptotic properties, ML with numerical integration
performs best when there is a large number of clusters.

There are, however, still compelling reasons to compare the
ML and PQL estimators for the cumulative logit model. First,
although ML is an asymptotically unbiased estimator, it suffers
from small sample bias (Demidenko, 2004, p. 58; Raudenbush
& Bryk, 2002, p. 53). When the number of clusters is small, ML
produces negatively biased variance estimates for the random
effects. Additionally, this small-sample bias increases with the num-
ber of fixed effects. For ordinal outcomes, the fixed effects include
C 	 1 threshold parameters, so a higher number of categories may
actually increase the bias of ML estimates. Second, Bellamy et al.
(2005) showed analytically and empirically that when there is a
small number of large clusters, as often occurs in group-random-
ized trials, the efficiency of PQL estimates can equal or exceed the
efficiency of ML estimates. Third, as discussed earlier, PQL may
compare more favorably to ML when the data are ordinal rather
than binary, as the availability of more categories may offset
PQL’s particularly strong need for large clusters.

Research Hypotheses

From the literature previously reviewed, we now summarize the
research hypotheses that motivated our simulation study.

Hypothesis 1: A linear modeling approach may perform ad-
equately when the number of categories for the outcome is
large (e.g., 5�) and when the distribution of category re-
sponses is roughly normal in shape, but will prove inadequate
if either of these conditions is lacking.

Hypothesis 2: ML via adaptive quadrature will be unbiased
and most efficient when the number of clusters is large, but
these properties may not hold when there are fewer clusters.
In particular, variance estimates may be negatively biased
when the number of clusters is small and the number of fixed
effects (including thresholds, increasing with number of cat-
egories) is large.

2 To improve performance, Goldstein and Rabash (1996) proposed the
PQL2 estimator, which uses a second-order Taylor series expansion to
provide a more precise linear approximation. Rodriguez and Goldman
(2001) found that PQL2 is less biased than PQL, but less efficient and
somewhat less likely to converge.
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Hypothesis 3: PQL estimates will be attenuated, especially
when the variances of the random effects are large and when
the cluster sizes are small. More bias will be observed for
variance components than fixed effects.

Hypothesis 4: PQL will perform considerably better for or-
dinal outcomes as the number of categories increases. With a
sufficient number of categories, PQL may have negligible
bias and comparable or better efficiency than ML even when
cluster sizes are small.

Of these hypotheses, no prior research has been conducted
directly on Hypothesis 1, which is based on research conducted
with related models (linear regression and SEM). Hypotheses 2
and 3 follow directly from research on binary outcomes. We
believe Hypothesis 4 to be novel, notwithstanding the limited
study of Saei and McGilchrist (1998), and it is this hypothesis
that is most important to our investigation.

Simulation Study

Method

Design. To test our hypotheses, we simulated ordinal data
with two, three, five, or seven categories, and we varied the
number of clusters (J � 25, 50, 100, or 200), the cluster sizes
(nj � five, 10, or 20), the magnitude of the random effects, and
the distribution of category responses. Our population-generat-
ing model was a multilevel cumulative logit model, with pa-
rameter values chosen to match those of Raudenbush, Yang,
and Yosef (2000) and Yosef (2001), which were based on
values derived by Rodriguez and Goldman (1995) from a mul-
tilevel analysis of health care in Guatemala. Whereas Rodriguez
and Goldman (1995) considered three-level data with random
intercepts, Raudenbush, Yang, and Yosef (2000) modified the
generating model to be two levels and included a random slope
for the Level-1 covariate. We in turn modified Raudenbush,
Yang, and Yosef’s (2000) generating model to also include a

Figure 1. Marginal category distributions used in the simulation study (averaged over predictors and random
effects). Within three-, five-, and seven-category outcome conditions, marginal frequencies are held constant but
permuted across categories to manipulate the distribution shape (bell-shaped, skewed, or polarized) without
changing sparseness. Within two-category outcome conditions, it is impossible to hold marginal frequencies
constant while manipulating shape (balanced or unbalanced). Y is the outcome variable, and the numbers listed
on the x axis indicate the category of the outcome variable.
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cross-level interaction. The structure of the population-gener-
ating model was of the form specified in Equations 4 and 5 or,
equivalently, Equations 6 and 7.

The fixed effects in the population model were �00 � 0, �01 � 1,
�10 � 1, �11 � 1. Following Raudenbush, Yang, and Yosef
(2000) and Yosef (2001), the two predictors were generated to
be independent and normally distributed as Xij � N�.1,1� and
Wj � N� � .7,1�.3 In one condition, the variances of the random
effects were �00 � 1.63, �10 � .20, �11 � .25, as in Rauden-
bush, Yang, and Yosef (2000). We also included smaller and larger
random effects by specifying �00 � .5, �10 � .03, �11 � .08 and
�00 � 8.15, �10 � .50, �11 � 1.25, respectively. According to
the method described by Snijders and Bosker (1999, p. 224), these
values imply residual pseudo-intraclass correlations (ICCs) of .13,
.33, and .72, holding Xj at the mean. For hierarchically clustered
data, an ICC of .33 is fairly large, whereas an ICC of .13 is more
typical. For long-term longitudinal data (e.g., annual or biennial),
an ICC of .33 might be considered moderate, whereas the larger
ICC of .72 would be observed more often for closely spaced
repeated measures (e.g., experience sampling data). Since typical
effect sizes vary across data structures, we shall simply refer to
these conditions in relative terms as small, medium, and large.

We varied the thresholds of the model in number and placement
to determine the number of categories and shape of the category
distribution for the outcome. For the binary data, thresholds were
selected to yield both balanced, P(Y � 1) � .50, and unbalanced,
P(Y � 1) � .75, marginal distributions. Note that for binary data,
manipulating the shape of the distribution necessarily also entails
manipulating category sparseness. In contrast, for ordinal data, we
considered three different marginal distribution shapes—bell-
shaped, skewed, and polarized—while holding sparseness constant
by simply shifting which categories had high versus low proba-
bilities. For the bell-shaped distributions, the middle categories
had the highest probabilities; for the skewed distributions, the
probabilities increased from low to high categories; and for
the polarized distribution, the highest probabilities were placed on
the end-points. The resulting distributions are shown in Figure 1.4

As stated in Hypothesis 1, the bell-shaped distribution, approxi-

mating a normal distribution, was expected to be favorable for the
linear model, although in practice skewed distributions are com-
mon in examinations of risk behaviors and polarized distributions
are common with attitude data (e.g., attitudes toward abortion).
The PQL and ML estimators of the multilevel cumulative logit
model were not expected to be particularly sensitive to this ma-
nipulation.

SAS Version 9.1 was used for data generation, some analyses,
and the compilation of results. The IML procedure was used to
generate 500 sets of sample data (replications) for each of the 264
cells of the study. The linear multilevel model was fit to the data
with the MIXED procedure using the normal-theory restricted
maximum-likelihood (REML) estimator (maximum 500 itera-
tions). The multilevel cumulative logit models were fit either by
PQL using the GLIMMIX procedure (with residual subject-spe-
cific pseudo-likelihood, RSPL, maximum 200 iterations), or by
ML with numerical integration using adaptive Gauss–Hermite
quadrature with 15 quadrature points in Mplus Version 5 (with
expectation-maximization algorithm, maximum 200 iterations).5,6

The NLMIXED and GLIMMIX procedures also provide ML es-
timation by adaptive quadrature, but computational times were
shorter with Mplus. The MIXED (REML) and GLIMMIX (PQL)
procedures implement boundary constraints on variance estimates
to prevent them from going below zero (no such constraint is
necessary when using ML with quadrature).

Complicating comparisons of the three model-fitting ap-
proaches, results obtained from the linear and cumulative logit
models are not on the same scale. To resolve this problem, we
transformed linear model estimates to match the scale of the
logistic model estimates. Fixed effects and standard errors were
multiplied by the factor s � �
2/3�̂2 (where �̂2 is the estimated
Level-1 residual variance from the linear model, and 
2/3 is the
variance of the logistic distribution), and variances and covariance
parameter estimates were multiplied by s2. A similar rescaling

3 Raudenbush, Yang, and Yosef (2000) mistakenly indicated that the
variances of their predictors were .07 for Xij and .23 for Wj; however, Yosef
(2001, p. 70) correctly indicated a variance of 1 for both. When data are
generated using the lower variances of 0.07 and 0.23, both ML by adaptive
quadrature and the sixth-order Laplace estimator produce estimates with
larger root mean-square errors than PQL, opposite from the results re-
ported in Raudenbush, Yang, and Yosef (2000). This difference is likely
due to the interplay between predictor scale and effect size (i.e., a random
slope variance of 0.25 for a predictor with variance 0.07 corresponds
approximately to a slope variance of 3.7 for a predictor with variance 1).

4 Information on category thresholds and the method used to determine
these to produce the target marginal distributions can be obtained from the
first author upon request.

5 The Mplus implementation of adaptive quadrature iteratively updates
quadrature points on the basis of mean (rather than mode) and variance of
the cluster-specific posterior distribution.

6 Several consistency checks were performed to evaluate the adequacy
of the ML estimates obtained with these settings. First, nearly identical
estimates were obtained using 15 versus 100 quadrature points, or using
trapezoidal versus Gauss–Hermite quadrature. Second, results did not
differ meaningfully between Mplus and either SAS NLMIXED or SAS
GLIMMIX using adaptive quadrature (Version 9.2). Finally, the results
obtained with adaptive quadrature were also consistent with those obtained
via the sixth-order Laplace ML estimator in HLM–6.

Table 1
Top �G

2 Effect Sizes for Contrasts of Fixed-Effect
Estimates Across Model Specifications and Estimators

Design factor

Fixed-effect estimates

Xij��̂10� Wi��̂01� XijWi��̂11�

Contrast 1: Linear vs. logistic model

Main effect 0.37 0.11 0.44
� No. of categories 0.02 0.01 0.03
� Distribution shape 0.02 �0.01 0.03

Contrast 2: PQL vs. ML logistic model

Main effect 0.06 0.03 0.07
� Size of random effects 0.02 0.01 0.02
� No. of categories 0.01 �0.01 0.01
� Cluster size 0.01 �0.01 0.01

Note. “�” indicates an interaction of the designated between-subjects
factor of the simulation design with the within-subjects contrast for method
of estimation. PQL � penalized quasi-likelihood; ML � maximum like-
lihood.
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strategy has been recommended by Chinn (2000) to facilitate
meta-analysis when some studies use logistic versus linear regres-
sion (see also Bauer, 2009).

Performance measures. We examined both the bias and
efficiency of the estimates. Bias indicates whether a parameter
tends to be over- or underestimated, and is computed as the
difference between the mean of the estimates (across samples) and
the true value, or

B � E��̂r� � � (10)

where � is the parameter of interest, �̂r is the estimate of � for
replication r, and E(�̂r) is the mean estimate across replications. A
good estimator should have bias values near zero, indicating that
the sample estimates average out to equal the population value.
Bias of 5%–10% is often considered tolerable (e.g., Kaplan, 1989).
Likewise, to evaluate efficiency, one can examine the variance of
the estimates,

V � E���̂r � E��̂r��
2
 (11)

A good estimator will have less variance than other estimators,
indicating more precision and, typically, higher power for infer-
ential tests.

Bias and variance should be considered simultaneously when
judging an estimator. For instance, an unbiased estimator with high
variance is not very useful, since the estimate obtained in any
single sample is likely to be quite far from the population value.
Another estimator may be more biased but have low variance, so
that any given estimate is usually not too far from the population
value. An index that combines both bias and variance is the mean
squared error (MSE), which is computed as the average squared
difference between the estimate and the true parameter value
across samples

MSE � E���̂r � ��2
. (12)

It can be shown that MSE � B2 � V, thus MSE takes into
account both bias and efficiency (Kendall & Stuart, 1969, Section
17.30). A low MSE is desirable, as it indicates that any given
sample estimate is likely to be close to the population value.

Results

We first consider the estimates of the fixed effects, then the
dispersion estimates for the random effects. To streamline presen-
tation, we have provided some results in an online Appendix. In
particular, bias in threshold estimates is presented in the online
Appendix as thresholds are rarely of substantive interest (and are
not estimated with the linear model specification). The pattern of
bias in threshold estimates obtained from PQL and ML was
(predictably) the mirror image of the pattern described for the
other fixed effects.7

Fixed-effect estimates. Our first concern was with identifying
factors relating to bias in the estimators. Accordingly, we fit a pre-
liminary analysis of variance (ANOVA) model for each fixed effect,
treating model-fitting approach as a within-subjects factor and all
other factors as between-subjects factors, and used Helmert contrasts
to (a) compare the linear model estimates to the estimates obtained
from the logistic (cumulative logit) model estimates and (b) differen-
tiate between the two logistic model estimators, PQL and ML. The

7 Threshold bias was anticipated to be opposite in sign to the bias of other fixed
effects given the sign difference of thresholds and fixed effects in the function
g	1���c� � �ij�. Bias would be in the same direction had we used an alternative
parameterization of the multilevel cumulative logit model that includes a unique
intercept for each cumulative coding variable but no threshold parameters, e.g.,
g	1(	�ij

�c�) with �ij
�c� � �00

�c� � �01Wj � �10Xij � �11WjXij � u0j � u1jXij. The
intercepts obtained with this alternative parameterization and the thresh-
olds obtained with the parameterization used in our study differ only in
sign, that is, � 1���c�� � �00

�c�. Given this relationship, threshold bias results
are consistent with the bias results observed for other fixed effects.

Figure 2. Average bias for the three fixed-effect estimates (excluding thresholds) across estimator, number of
outcome categories, and distribution shape. The normal-theory REML (restricted maximum likelihood) estima-
tor was used when fitting the linear multilevel model. The estimators of PQL (penalized quasi-likelihood) or ML
(maximum likelihood with adaptive quadrature) were used when fitting the multilevel cumulative logit (logistic)
model. Points for two-category conditions are not connected to points for the three- through seven-category
conditions because their distribution shapes do not correspond. Results show that bias is large and sensitive to
distribution shape when using the linear model but not when using the cumulative logit model (either estimator).
Results are collapsed over the number of clusters, cluster size, and the magnitude of the random effects.
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three fixed-effect estimates of primary interest were the main effect of
the lower level predictor Xij, the main effect of the upper level
predictor Wj, and the cross-level interaction XijWj. Binary conditions
were excluded from the ANOVAs (since the binary distribution
shapes differed from the ordinal distribution shapes), but summary
plots and tables nevertheless include these conditions. Given space
constraints, we provide only brief summaries of the ANOVAs, fo-
cusing on the contrasts between estimators. Effect sizes were com-
puted with the generalized eta-squared (�G

2 ) statistic (Bakeman, 2005;
Olejnik & Algina, 2003). �G

2 values computed for mixed designs are
comparable to partial �G

2 values for fully between-subject designs. Our
interpretation focuses on contrast effects with �G

2 values of .01 or
higher, shown in Table 1.

The largest effect sizes were obtained for the main effect of the first
Helmert contrast, comparing the estimates obtained from the linear
versus cumulative logit model specifications. As hypothesized, two
interaction effects involving the first contrast were identified for all
three fixed effects: the number of categories and the distribution
shape. Table 1 shows that effect sizes were larger for the effects of X
and XW than W, but the pattern of differences in the estimates was
similar (see online Appendix). As depicted in Figure 2, averaging
over the three fixed effects, the bias of the linear REML estimator was
quite severe with binary data, especially when the distribution was
unbalanced. The degree of bias for this estimator diminished as the
number of categories increased and was least pronounced with the
bell-shaped distribution. The bias of the linear REML estimator ap-
proached tolerable levels (�10%) only with seven categories and a

bell-shaped distribution. In comparison, both estimators of the mul-
tilevel cumulative logit model produced less biased estimates that
demonstrated little sensitivity to the shape of the distribution.

The second Helmert contrast, comparing the PQL and ML esti-
mates of the multilevel cumulative logit model, resulted in the second
largest effect sizes. As hypothesized, the top three factors influencing
differences in PQL versus ML estimates of all three fixed effects were
the magnitude of the variance components, number of categories, and
cluster size. Figure 3 presents the average bias of the three fixed
effects as a function of these three factors (results were similar across
fixed effects; see online Appendix). In general, PQL produced nega-
tively biased estimates, whereas ML produced positively biased esti-
mates. As expected, PQL performed particularly poorly with binary
outcomes, especially when the variances of the random effects were
large and the cluster sizes were small. With five to seven categories,
however, PQL performed reasonably well even when the random
effect variances were moderate. With very large random effects, PQL
performed well only when cluster sizes were also large. In absolute
terms, the bias for ML was consistently lower than PQL. Somewhat
unexpectedly, ML estimates were more biased with binary outcomes
than with ordinal outcomes.

To gain a fuller understanding of the differences between the PQL
and ML estimators of the multilevel cumulative logit model, we
plotted the MSE, sampling variance, and bias of the estimates in
Figure 4 as a function of all design factors except distribution shape.
In the figure, the overall height of each vertical line indicates the MSE.
The MSE is partitioned between squared bias and sampling variance

Figure 3. Average bias for the three fixed-effect estimates (excluding thresholds) across logistic estimators, number
of outcome categories and cluster size. Logistic estimators were either PQL (penalized quasi-likelihood) or ML
(maximum likelihood) with adaptive quadrature. Results show that PQL produces somewhat negatively biased fixed
effect estimates, particularly when random effects have large variances, whereas the estimates obtained from logistic
ML show small, positive bias. In both cases, bias decreases with the number of categories of the outcome. Results are
collapsed over number of clusters and distribution shape and do not include linear multilevel model conditions.
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by the symbol marker (dot or diamond). The distance between zero
and the marker is the squared bias, whereas the distance between the
marker and the top of the line is the sampling variance. Note that the
scale differs between panels to account for the naturally large effect of
number of clusters on the sampling variance, and the increase in
sampling variance associated with larger random effects. There is also
a break in the scale for the upper right panel due to exceptionally high
sampling variance observed for ML with binary outcomes and few,
small clusters.

Figure 4 clarifies that, in most conditions, the primary contributor
to the MSE was the sampling variance, which tended to be lower for
PQL than ML. An advantage was observed for ML only when there
were many clusters and the random effects were medium or large,
especially when there were also few categories and low cluster sizes.
In all other conditions, PQL displayed comparable or lower MSE,
despite generally higher bias, due to lower sampling variance. Both
bias and sampling variance decreased with more categories, consid-
erably lowering MSE.

Finally, we also considered the quality of inferences afforded by
PQL versus ML for the fixed effects. Bias in the standard error
estimates was computed for each condition as the difference between
the average estimated standard error (SE) for an effect and that effect’s
empirical standard deviation across replications. Figure 5 presents the
average SE for the fixed effects in the same format as Figure 3 (results
were again similar across fixed effects; see online appendix). SE bias
was generally minimal for both estimators except for ML with binary
outcomes and small cluster size. Given the low level of SE bias, the
quality of inferences is determined almost exclusively by point esti-
mate bias. Indeed, confidence interval coverage rates (tabled in the
online Appendix) show that ML generally maintains the nominal

coverage rate, whereas PQL has lower than nominal coverage rates
under conditions when PQL produces biased fixed effects.

Estimates of dispersion for the random effects. An initial
examination of the variance estimates for the random effects
revealed very skewed distributions, sometimes with extreme val-
ues. We thus chose to evaluate estimator performance with respect
to the standard deviations of the random effects (i.e.,��00 and
��11), rather than their variances. Stratifying by the magnitude of
the random effects, preliminary ANOVA models were fit to de-
termine the primary sources of differences in ��̂00 and ��̂11

between the three estimators. The same two Helmert contrasts
were used as described in the previous section. Effect sizes are
reported in Table 2.

In all the ANOVA results for the dispersion estimates, larger
random effect sizes resulted in more pronounced estimator differ-
ences and more pronounced factor effects on estimator differences.
The largest effect sizes were again associated with overall differ-
ences in estimates produced by the linear model versus cumulative
logit models. For ��̂00, interactions with the first contrast were
detected for the number of categories of the outcome and, to a
much smaller degree, cluster size. For ��̂11, no interactions with
the first contrast consistently approached �G

2 values of .01.
Results for the second contrast indicated that PQL and ML

estimates of dispersion also diverged with the magnitude of the
random effects. The number of categories had an increasing effect
on estimator differences with the magnitude of the random effects,
as did cluster size. The number of clusters also had a small effect
on estimator differences.

To clarify these results, Tables 3–6 display the mean and stan-
dard deviation of the dispersion estimates ��̂00 and ��̂11, respec-

Figure 5. Average bias for the standard errors of the three fixed effect estimates (excluding thresholds) across
number of outcome categories and cluster size. Results are plotted for multilevel cumulative logit models; PQL
denotes penalized quasi-likelihood, and ML denotes maximum likelihood with adaptive quadrature. This plot
does not include linear multilevel model conditions.
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tively, as a function of characteristics of the outcome variable and
estimator. For both the random intercept (Table 3) and slope
(Table 4), the estimates obtained from the linear model show the
most bias, but they improve markedly as the number of categories
increases. Like the linear model estimator, PQL performance im-
proves markedly as the number of categories increases, whereas
the estimates obtained from ML are generally less biased (but
more variable) when there are fewer categories. Indeed, the ML
estimates actually become negatively biased as the number of
categories increases, a trend that is consistent with the known
negative bias of ML dispersion estimates as a function of the
number of fixed effects (with more categories requiring the addi-
tion of more thresholds).

Similarly, Tables 5 and 6 present the mean and standard deviation
of the dispersion estimates ��̂00 and ��̂11, respectively, as a function
of sample size. Both the linear model and PQL showed decreased
levels of negative bias as the cluster sizes increased. For the linear
model, the effect of cluster size was most evident with the random
slope. For the random intercept, ML typically produced negatively
biased dispersion estimates, attenuating as the number of clusters
increased. In contrast, the bias of the PQL estimates increased slightly
with the number of clusters. For the random slope, ML performed
well when the population random effect was medium or large,
but showed some positive bias when the population random
effect was small, particularly at the smallest sample sizes. As
anticipated, PQL was again negatively biased and generally
benefited from larger cluster sizes. PQL estimates generally
exhibited less sampling variability than ML estimates, with ML
estimates being particularly unstable for the combination of
large random effects, few clusters, and small cluster sizes.

To contextualize these differences between the PQL and ML esti-
mators, Figures 6 and 7 present (squared) bias, variance, and MSE for
the ��̂00 and ��̂11 estimates in the same format as Figure 4. The results
generally parallel the results presented previously for the fixed effects.
Although the PQL random effect dispersion estimates are more
biased, their sampling variance is also often smaller. PQL thus
produces lower MSE values than ML in many conditions. A
consistent and appreciable MSE advantage for ML is observed
only when there are many clusters (e.g., 100 or 200) and

medium to large random effects. Further, this advantage dimin-
ishes as the cluster size or number of categories increases.

Discussion

Summary. An initial question we sought to address was,
“When can the results of a multilevel linear model fit to an ordinal
outcome be trusted?” Our results suggest the answer, “Rarely.” Only
when the marginal distribution of the category responses was roughly
normal and the number of categories was seven did the negative bias
of the linear model decrease to the acceptable level of approximately
10% for the fixed effects. The dispersion estimates of the random
effects were similarly negatively biased. In almost all cells of the
design, the linear model estimates were inferior to the cumulative logit
model estimates (from either PQL or ML). In contrast, neither PQL
nor ML estimators of the multilevel cumulative logit model demon-
strated much sensitivity to the category distribution. In sum, these
results argue against the practice of fitting multilevel linear models to
ordinal outcomes.8

The second major aim of this study was to evaluate the relative
performance of two estimators of the multilevel cumulative logit
model, PQL versus ML with adaptive quadrature. In general, our
results suggest that PQL has been somewhat unfairly maligned.
While we did indeed find that PQL estimates of fixed effects, and
especially dispersion parameters, were negatively biased in many
conditions, PQL nevertheless often outperformed ML in terms of
MSE. In other words, the degree of excess bias associated with
using PQL was often within tolerable levels and compensated for
by lower sampling variability (similar to what Bellamy et al., 2005,
found for binary outcomes). As shown in other studies, PQL

8 Indeed, the linear model estimates were generally unacceptable despite
the fact that data were generated under something of a best-case scenario.
Because Xij was simulated with an ICC of zero, misspecification of the
nonlinear relation between Yij and Xij could not spuriously inflate estimates
for the random slope variance or cross-level interaction (Bauer & Cai,
2009). That is, the linear model would likely have performed even more
poorly had Xij been simulated with an appreciable ICC.

Table 2
Top �G

2 Effect Sizes for Contrasts of Random Effect Dispersion Estimates Across Model Specifications and Estimators

Design Factor

Variance components

Small Medium Large

�̂00 �̂11 �̂00 �̂11 �̂00 �̂11

Contrast 1: Linear vs. logistic model

Main effect �0.01 �0.01 0.05 0.02 0.21 0.11
� No. of categories 0.01 �0.01 0.02 �0.01 0.04 0.01
� Cluster size �0.01 0.01 �0.01 �0.01 0.01 0.01

Contrast 2: PQL vs. ML logistic model

Main effect �0.01 �0.01 0.02 0.01 0.27 0.15
� No. of Categories �0.01 �0.01 0.01 0.01 0.07 0.05
� Cluster size �0.01 �0.01 0.01 0.01 0.05 0.05
� No. of Clusters 0.01 �0.01 0.01 �0.01 0.01 0.01

Note. “�” indicates an interaction of the designated between-subjects factor of the simulation design with the within-subjects contrast for method of
estimation. PQL � penalized quasi-likelihood; ML � maximum likelihood.
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performed best when the random effects were small and the cluster
sizes were large. In addition, a new finding of our study is that the
performance of PQL greatly improves with the number of catego-
ries for the outcome. The ML estimator also behaved as expected.
Consistent with asymptotic theory, ML was least biased and most
efficient for data with 100 or 200 clusters. With 25 or 50 clusters,
however, ML estimates were more variable and often had higher
MSE than PQL estimates.

A final finding worth noting is that all of the estimators gener-
ally perform better for ordinal than binary data. Furthermore, there
is a sharp reduction in MSE associated with increasing the number
of categories available for analysis, particularly in moving from
two levels to three or more. These results indicate that ordinal
scales are generally preferable to binary and underscore previous
pleas for researchers to abandon the practice of dichotomizing
ordinal scales (Sankey and Weissfeld, 1998; Strömberg, 1996).

Limitations and directions for future research. As with all
simulation studies, the conclusions we draw from our results must
be limited by the range of conditions we evaluated. We discuss
these limitations here as potentially fruitful directions for future
research. First, we studied only one model for ordinal outcomes,
the cumulative logit model. We did not evaluate model perfor-
mance with alternative link functions, such as the probit. Also, as
mentioned previously, the cumulative logit model imposes an
assumption of invariant slopes across categories (i.e., proportional
odds), which is not always tenable in practice. A generalized logit
or partial proportional odds model might then be preferable. For

the interested reader, Hedeker and Gibbons (2006, pp. 191–194,
202–211) have provided a useful discussion of the proportional
odds assumption, how to check this assumption empirically, and
models that relax this assumption.

Second, we manipulated the shape of the ordinal outcome dis-
tributions while holding category sparseness constant. Although
we regard it as a strength of our design that shape and sparseness
were not confounded for ordinal outcomes, these two factors are
inextricably confounded for binary outcomes. Our binary outcome
results should be interpreted in light of this fact. Additionally,
because we did not manipulate the sparseness of the ordinal
outcomes, our results do not speak to the possible effects of
sparseness on model estimates.

Third, our study was limited to multilevel models with random
effects. A worthy topic of future research would be a comparison
of the results of models fit by PQL or ML with the results obtained
using GEE. Although unit-specific and population-average model
estimates differ in scale and interpretation, marginalized estimates
obtained from PQL or ML are comparable to the estimates ob-
tained from GEE (Liang & Zeger, 1986).

Fourth, there are different approaches to implementing ML with
numerical integration beyond adaptive quadrature (e.g. Laplace
algorithms), different versions of adaptive quadrature (e.g. quadra-
ture points iteratively updated based on mode versus mean of
posterior), and different modifications of PQL in use (e.g. PQL2;
Goldstein & Rabash, 1996). The generalization of these results

Table 3
Mean and Standard Deviation of Random Intercept Dispersion Estimate,��̂11, as a Function of the Number of Categories, Collapsing
Over Number of Clusters, Cluster Size, and Category Distribution

Categories

Small random-effect variance
(�00 � 0.50)

Medium random-effect variance
(�00 � 1.63)

Large random-effect variance
(�00 � 8.15)

Population ��00 � 0.71 Population ��00 � 1.28 Population ��00 � 2.85

Linear–REML Logistic–PQL Logistic–ML Linear–REML Logistic–PQL Logistic–ML Linear–REML Logistic–PQL Logistic–ML

2 0.57 (0.16) 0.63 (0.19) 0.69 (0.23) 0.94 (0.16) 1.07 (0.20) 1.26 (0.28) 1.75 (0.26) 1.95 (0.32) 2.91 (0.97)
3 0.63 (0.16) 0.66 (0.17) 0.68 (0.19) 1.07 (0.17) 1.16 (0.19) 1.25 (0.22) 2.10 (0.27) 2.27 (0.33) 2.84 (0.46)
5 0.67 (0.16) 0.69 (0.15) 0.68 (0.16) 1.17 (0.17) 1.21 (0.18) 1.25 (0.19) 2.42 (0.27) 2.52 (0.32) 2.81 (0.39)
7 0.69 (0.15) 0.69 (0.15) 0.68 (0.15) 1.21 (0.18) 1.23 (0.17) 1.24 (0.19) 2.54 (0.31) 2.62 (0.32) 2.81 (0.36)

Note. Standard deviation of estimates presented in parentheses. REML � restricted maximum likelihood; PQL � penalized quasi-likelihood; ML �
maximum likelihood.

Table 4
Mean and Standard Deviation of the Random Slope Dispersion Estimate ��̂11 as a Function of the Number of Categories, Collapsing
Over Number of Clusters, Cluster Size, and Category Distribution

Categories

Small random effect variance
(�11 � 0.08)

Medium random effect variance
(�11 � 0.25)

Large random effect variance
(�11 � 1.25)

Population ��11 � 0.28) Population ��11 � 0.50 Population ��11 � 1.12

Linear–REML Logistic–PQL Logistic–ML Linear–REML Logistic–PQL Logistic–ML Linear–REML Logistic–PQL Logistic–ML

2 0.23 (0.16) 0.21 (0.20) 0.31 (0.23) 0.35 (0.17) 0.32 (0.22) 0.49 (0.27) 0.68 (0.19) 0.64 (0.30) 1.14 (0.63)
3 0.23 (0.16) 0.24 (0.19) 0.28 (0.18) 0.38 (0.17) 0.39 (0.19) 0.47 (0.20) 0.79 (0.18) 0.83 (0.25) 1.09 (0.30)
5 0.25 (0.16) 0.26 (0.18) 0.27 (0.16) 0.42 (0.17) 0.45 (0.18) 0.47 (0.17) 0.91 (0.18) 0.97 (0.20) 1.08 (0.24)
7 0.25 (0.16) 0.27 (0.18) 0.27 (0.15) 0.44 (0.17) 0.48 (0.17) 0.47 (0.17) 0.95 (0.18) 1.02 (0.19) 1.08 (0.21)

Note. Standard deviation of estimates presented in parentheses. REML � restricted maximum likelihood; PQL � penalized quasi-likelihood; ML �
maximum likelihood.
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across these other estimation algorithms cannot be fully guaran-
teed.

Recommendations. Notwithstanding the limitations noted,
we believe that our results can be used to better inform the analysis

of ordinal outcomes in nested data. As noted, our results clearly
indicate that use of a linear model with ordinal outcomes should be
avoided. With our selection of the multilevel cumulative logit
model as more appropriate for ordinal outcomes, the central ques-

Table 5
Mean and Standard Deviation of the Random Intercept Dispersion Estimate ��̂00 as a Function of the Number of Clusters and
Cluster Size, Collapsing Over Number of Categories and Category Distribution

Clusters/cluster
size

Small random effect variance
(�00 � 0.50)

Medium random effect variance
(�00 � 1.63)

Large random effect variance
(�00 � 8.15)

Population ��00 � 0.71 Population ��00 � 1.28 Population ��00 � 2.85

Linear–REML Logistic–PQL Logistic–ML Linear–REML Logistic–PQL Logistic–ML Linear–REML Logistic–PQL Logistic–ML

25 clusters
5 members 0.63 (0.33) 0.68 (0.33) 0.66 (0.35) 1.11 (0.34) 1.17 (0.34) 1.22 (0.42) 2.28 (0.57) 2.30 (0.54) 2.92 (1.41)
10 members 0.64 (0.21) 0.68 (0.22) 0.65 (0.23) 1.11 (0.25) 1.20 (0.26) 1.21 (0.28) 2.26 (0.50) 2.45 (0.49) 2.80 (0.62)
20 members 0.64 (0.15) 0.68 (0.16) 0.66 (0.16) 1.11 (0.22) 1.22 (0.22) 1.21 (0.23) 2.24 (0.47) 2.56 (0.45) 2.76 (0.53)

50 clusters
5 members 0.64 (0.23) 0.65 (0.23) 0.67 (0.25) 1.12 (0.24) 1.14 (0.24) 1.26 (0.28) 2.26 (0.44) 2.21 (0.42) 2.87 (0.57)
10 members 0.65 (0.14) 0.67 (0.15) 0.68 (0.16) 1.11 (0.19) 1.18 (0.18) 1.25 (0.20) 2.45 (0.40) 2.40 (0.38) 2.83 (0.42)
20 members 0.65 (0.11) 0.68 (0.11) 0.68 (0.11) 1.11 (0.17) 1.21 (0.15) 1.25 (0.16) 2.23 (0.39) 2.53 (0.34) 2.81 (0.36)

100 clusters
5 members 0.65 (0.15) 0.65 (0.16) 0.69 (0.17) 1.11 (0.18) 1.12 (0.17) 1.26 (0.19) 2.24 (0.38) 2.16 (0.37) 2.85 (0.37)
10 members 0.65 (0.10) 0.67 (0.10) 0.69 (0.11) 1.11 (0.15) 1.17 (0.13) 1.26 (0.14) 2.23 (0.36) 2.37 (0.33) 2.83 (0.29)
20 members 0.65 (0.08) 0.68 (0.08) 0.70 (0.08) 1.11 (0.14) 1.21 (0.11) 1.26 (0.12) 2.23 (0.34) 2.52 (0.28) 2.83 (0.25)

200 clusters
5 members 0.65 (0.11) 0.65 (0.11) 0.70 (0.12) 1.11 (0.14) 1.12 (0.13) 1.27 (0.13) 2.23 (0.34) 2.14 (0.34) 2.84 (0.26)
10 members 0.65 (0.08) 0.67 (0.07) 0.70 (0.08) 1.11 (0.13) 1.17 (0.10) 1.27 (0.10) 2.24 (0.33) 2.35 (0.30) 2.85 (0.20)
20 members 0.65 (0.07) 0.68 (0.05) 0.70 (0.05) 1.11 (0.12) 1.21 (0.08) 1.27 (0.08) 2.23 (0.32) 2.51 (0.25) 2.84 (0.18)

Note. Standard deviation of estimates presented in parentheses. REML � restricted maximum likelihood; PQL � penalized quasi-likelihood; ML �
maximum likelihood.

Table 6
Mean and Standard Deviation of the Random Slope Dispersion Estimate ��̂11 as a Function of the Number of Clusters and Cluster
Size, Collapsing Over Number of Categories and Category Distribution

Clusters/cluster
size

Small random effect variance
(�11 � 0.08)

Medium random effect variance
(�110.25)

Large random effect variance
(�11 � 1.25)

Population ��11 � 0.28 Population ��11 � 0.50 Population ��11 � 1.12

Linear–REML Logistic–PQL Logistic–ML Linear–REML Logistic–PQL Logistic–ML Linear–REML Logistic–PQL Logistic–ML

25 clusters
5 members 0.26 (0.28) 0.34 (0.33) 0.37 (0.31) 0.37 (0.32) 0.44 (0.35) 0.51 (0.37) 0.82 (0.39) 0.80 (0.42) 1.12 (0.94)
10 members 0.24 (0.20) 0.26 (0.23) 0.28 (0.20) 0.39 (0.22) 0.42 (0.25) 0.44 (0.24) 0.84 (0.24) 0.92 (0.30) 1.05 (0.36)
20 members 0.25 (0.15) 0.25 (0.17) 0.24 (0.14) 0.42 (0.14) 0.45 (0.18) 0.45 (0.18) 0.85 (0.19) 1.00 (0.23) 1.06 (0.26)

50 clusters
5 members 0.22 (0.22) 0.26 (0.25) 0.32 (0.23) 0.36 (0.25) 0.38 (0.27) 0.48 (0.28) 0.83 (0.28) 0.74 (0.34) 1.09 (0.41)
10 members 0.24 (0.16) 0.24 (0.18) 0.27 (0.16) 0.40 (0.16) 0.41 (0.19) 0.45 (0.19) 0.86 (0.18) 0.91 (0.22) 1.10 (0.24)
20 members 0.26 (0.11) 0.24 (0.13) 0.25 (0.12) 0.43 (0.10) 0.45 (0.12) 0.47 (0.13) 0.86 (0.15) 1.00 (0.16) 1.09 (0.17)

100 clusters
5 members 0.21 (0.18) 0.23 (0.20) 0.29 (0.19) 0.36 (0.20) 0.35 (0.22) 0.47 (0.23) 0.83 (0.21) 0.73 (0.29) 1.10 (0.28)
10 members 0.24 (0.13) 0.23 (0.15) 0.26 (0.14) 0.42 (0.11) 0.42 (0.14) 0.48 (0.14) 0.85 (0.15) 0.90 (0.18) 1.10 (0.17)
20 members 0.27 (0.08) 0.25 (0.10) 0.26 (0.09) 0.43 (0.07) 0.46 (0.08) 0.49 (0.09) 0.86 (0.13) 1.00 (0.13) 1.11 (0.12)

200 clusters
5 members 0.21 (0.15) 0.21 (0.17) 0.28 (0.16) 0.37 (0.15) 0.35 (0.19) 0.47 (0.17) 0.84 (0.15) 0.73 (0.26) 1.11 (0.19)
10 members 0.25 (0.10) 0.23 (0.12) 0.26 (0.11) 0.42 (0.08) 0.42 (0.11) 0.49 (0.10) 0.86 (0.13) 0.90 (0.15) 1.11 (0.12)
20 members 0.28 (0.06) 0.26 (0.07) 0.27 (0.07) 0.44 (0.06) 0.46 (0.06) 0.49 (0.06) 0.86 (0.12) 0.99 (0.11) 1.11 (0.09)

Note. Standard deviation of estimates presented in parentheses. REML � restricted maximum likelihood; PQL � penalized quasi-likelihood; ML �
maximum likelihood.
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tion then is which estimator is to be preferred, PQL or ML with
adaptive quadrature?

The answer to this question depends not only on the bias and
sampling variability of the estimates, but also on other factors. For
instance, one issue that must be considered when choosing be-
tween PQL and ML is whether one wishes to evaluate the relative
fit of competing models. Because PQL uses a quasi-likelihood,
rather than a true likelihood, it does not produce a deviance
statistic that can be used for model selection (e.g., by likelihood
ratio test or penalized information criteria). This is a significant
limitation of PQL that is not shared by ML. If comparison of
competing models is a key goal of the analysis, then ML may be
preferred to PQL on these grounds alone. Another factor that might
influence estimator selection is computational efficiency. PQL is
much faster, particularly when the number of random effects
(dimensions of integration) is large. Finally, a third factor related
to estimator selection is model complexity. Some models may only
be feasible with one estimator or the other. For instance, PQL
readily allows the incorporation of serial correlation structures for
the Level-1 residuals.

Beyond these factors, our simulation results suggest that the
preferred choice between PQL and ML depends on the character-
istics of the data. If data are obtained on 100 or more clusters,
cluster sizes are small, dispersion across clusters is anticipated to
be moderate to large, and the outcome variable has only two or
three categories, then ML is the best choice. Under virtually all
other conditions, however, PQL is a viable, often superior alter-
native. In particular, if data are available on 50 clusters or fewer,
PQL will generally have lower MSE—even with just two- or
three-category outcomes. The bias of the PQL estimates is also
tolerable when either cluster sizes are large or outcomes have five
or more categories.

Table 7 translates our results for PQL and ML into a table of
working recommendations for fitting multilevel cumulative logit
models (primarily based on MSE but also considering bias). These are
gross recommendations, and we encourage researchers to consider the
more detailed results of our simulation before making a final selec-
tion. Situations under which ML with adaptive quadrature (AQ) or
PQL perform similarly (and thus either could be chosen) are denoted
with the table entry “PQL, ML–AQ.” Situations under which PQL is

preferable are denoted “PQL” and situations where ML–AQ is clearly
preferable are denoted “ML–AQ.” Note that the cell of Table 7
corresponding to few clusters, small cluster size, binary outcomes,
and large random effects is empty because the performance of both
estimators was unacceptable (PQL showed excessive bias, whereas
ML showed excessive sampling variability). For this situation, re-
searchers will need to look outside the two estimators studied here
(e.g., Markov chain Monte Carlo might perform better through the
implementation of mildly informative priors that prevent estimates
from becoming excessively large).

To see how Table 7 might be used in practice, we will consider two
common situations. First, many samples of hierarchical data consist of
a relatively small number of groups but a fairly large number of
individuals in each group. For instance, a study might sample 30
students from each of 30 schools. In this instance, the variance
components are likely to be on the smaller side, and PQL can be
expected to perform as well or better than ML regardless of the
number of categories of the outcome. Second, many experience
sampling studies include a modest number of participants, say 25–50,
but many repeated measures per person. Experience suggests that
variance components are often sizeable in such studies. If our out-
come is binary, we might choose ML due to the higher bias of PQL
(despite similar MSE). Alternatively, if our outcome is a five-level
ordinal variable then PQL becomes a more attractive option: the bias
of PQL will then be within tolerable levels, and PQL will have lower
MSE than ML. One additional factor that might tip the balance in
favor of PQL is that PQL easily incorporates serial correlation struc-
tures for the residuals at Level 1, and serial correlation is often present
with experience sampling data.

In conclusion, although further research on the estimation of mul-
tilevel models with ordinal data is warranted, it is our hope that the
results of the present study can help analysts to make better-informed
choices when fitting multilevel models to ordinal outcomes.
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