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Different random or purposive allocations of items to parcels within a single

sample are thought not to alter structural parameter estimates as long as items

are unidimensional and congeneric. If, additionally, numbers of items per parcel

and parcels per factor are held fixed across allocations, different allocations of

items to parcels within a single sample are thought not to meaningfully alter

model fit—at least when items are normally distributed. We show analytically

that, although these statements hold in the population, they do not necessarily

hold in the sample. We show via a simulation that, even under these conservative

conditions, the magnitude of within-sample item-to-parcel-allocation variability

in structural parameter estimates and model fit can alter substantive conclusions

when sampling error is high (e.g., low N , low item communalities, few items per

few parcels). We supply a software tool that facilitates reporting and ameliorat-

ing the consequences of item-to-parcel-allocation variability. The tool’s utility is

demonstrated on an empirical example involving the Neuroticism-Extroversion-

Openness (NEO) Personality Inventory and the Computer Assisted Panel Study

data set.

Parceling—averaging or summing raw items and using the resultant score as a

factor indicator—has a long history in psychology (e.g., Cattell, 1956, 1974) and

remains quite common. For example, a review of 1998–2001 issues of several

Correspondence concerning this article should be addressed to Sonya K. Sterba, L. L.

Thurstone Psychometric Laboratory, UNC-CH CB#3270, Chapel Hill, NC 27599-3270. E-mail:

ssterba@email.unc.edu

322

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
K
a
n
s
a
s
]
 
A
t
:
 
2
0
:
5
5
 
1
6
 
A
u
g
u
s
t
 
2
0
1
0



PARCEL-ALLOCATION VARIABILITY 323

psychology journals found that 20% of structural equation modeling (SEM)

applications used parcel scores as factor indicators (Bandalos & Finney, 2001).

Although a variety of methods exist for allocating items to parcels (i.e., assigning

items to parcels for a prespecified number of parcels/factor and items/parcel),

Bandalos and Finney found random or quasi-random1 parceling methods (45%)

to be the most common. In contrast, purposive parceling methods (e.g., allocating

items to parcels based on item content or allocating items to parcels based on

similar factor loadings in a preliminary exploratory factor analysis) were used

in only 15% of studies.2

The long-standing use of parceling is motivated by several benefits of parcel-

solutions compared with item-solutions. Parceling improves model fit (Banda-

los, 2002; Nasser & Wisenbaker, 2003), increases communalities (Bandalos &

Finney, 2001; Cattell, 1974), and, for parallel items, increases indicator reliability

(Coffman & MacCallum, 2005) compared with item-level solutions. Parceling

also ameliorates some effects of coarsely categorized indicators without requiring

categorical variable estimation (Bandalos, 2002; West, Finch, & Curran, 1995)

and ameliorates some effects of nonnormal continuous indicators (Hau & Marsh,

2004; Nasser & Wisenbaker, 2003; Nasser-Abu & Wisenbaker, 2006) without

requiring data transformation, robust normal theory estimation, or distribution-

free estimation—some of which require large samples (B. O. Muthén, du Toit,

& Spisic, 1997). However, these benefits of parceling are less pronounced under

conditions of high item communalities and large sample sizes (e.g., Hau &

Marsh, 2004; Marsh, Hau, Balla, & Grayson, 1998). The use of parceling is

also subject to several drawbacks (but see counterarguments in Little, Cun-

ningham, Shahar, & Widaman, 2002). Parceling has been shown to potentially

obscure unspecified secondary factors or correlated uniquenesses (Hall, Snell, &

Foust, 1999, Simulation 2-3) and to potentially obscure measurement variance

in multiple group models (Meade & Kroustalis, 2006).

Hence, parceling has been recommended for situations that maximize these

benefits and minimize these weaknesses (Little et al., 2002). To maximize

benefits, parceling has been particularly recommended for small samples and

low item communalities (e.g., Bagozzi & Edwards, 1998; Marsh et al., 1998;

Meade & Kroustalis, 2006, p. 372; Nasser-Abu & Wisenbaker, 2006; West et al.,

1995). To minimize drawbacks, conservative circumstances for parceling would

be (a) a single-group analysis, when (b) there is good a priori knowledge that

items to be parceled are, indeed, unidimensional (i.e., no cross loadings, no error

covariances, no secondary factors) and congeneric (i.e., each item only loads on

one factor) in the population and when (c) the research objective is to study the

1Quasi-random allocations could involve parceling adjacent items or even and odd items.
2The other 40% of studies did not report the item-to-parcel allocation method used.
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324 STERBA AND MACCALLUM

structural relationship among latent variables rather than develop scales (e.g.,

Bandalos & Finney, 2001; Meade & Kroustalis, 2006). This study concerns the

use of parceling in this most highly recommended and conservative setting: uni-

dimensional, congeneric items, low sample size, and low item communalities.3

Moreover, this study uses the most popular method of parceling—random item-

to-parcel allocations—to illustrate key points. However, our analytic results hold

for purposive item-to-parcel allocations as well (as discussed later). Additionally,

this study concerns characteristics of parcel-solutions as compared with each

other, not as compared with item-solutions.

Because applied researchers usually make a single (random or purposive)

item-to-parcel allocation for a given sample, before using parceling in this most

highly recommended setting, one would want to verify the following. One would

want assurance that the parcel-solution’s structural parameter estimates do not

vary a great deal according to the particular item-to-parcel allocation made in

that sample, and—at least when the number of parcels/factor and items/parcel is

held fixed and items are normally distributed—neither does model fit. We might

be assured by prior conclusions that, when items are unidimensional, congeneric,

and normally distributed in the population, “it is clear that using item parcels : : :

will not affect the structural model parameters if the scale is unidimensional”

(Sass & Smith, 2006, p. 572). Or, “The use of item parceling had negligible

effects on parameter bias and on the standard errors of the estimated factor

correlations” (Nasser-Abu & Wisenbaker, 2006, abstract). Or, that “in situations

in which a set of items truly measures a single underlying factor, the choice

of composite formation strategy should not substantially influence model fit”

(Landis, Beal, & Tesluk, 2000, p. 190). Or, that “the choice of item parceling

strategy was essentially arbitrary when no secondary influences were present”

(Hall et al., 1999, p. 249). These conclusions have been sometimes based on

one type of evidence, and sometimes on another.

The first type of evidence contributing to these conclusions involves the

within-allocation sampling distribution of structural parameter and model fit

estimates. An example of a within-allocation sampling distribution, from Nasser

and Wisenbaker (2003) and Nasser-Abu and Wisenbaker (2006), is the allo-

cation of 12 items to three 4-item parcels in the same way for 500 samples:

Items 1, 2, 11, and 12 to Parcel 1; Items 3, 4, 9, and 10 to Parcel 2; and

3Note that throughout this study we assume that the population-generating model of theoretical

interest is an item-level model, and parceling is simply used as a tool to facilitate model estimation.

This premise lies in contrast to the program of work by Hagtvet, Kim, and colleagues (e.g.,

Hagtvet & Nasser, 2004; Kim, 2000; Kim & Hagtvet, 2003). They consider there to be one true

population-generating parcel-level model, which may or may not be misspecified depending on how

the researcher allocates items to parcels in his or her sample. We believe our premise is in line with

typical motives for parceling in much of psychological research (e.g., Sterba, Egger, & Angold,

2007).
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PARCEL-ALLOCATION VARIABILITY 325

Items 5, 6, 7, and 8 to Parcel 3. Across repeated samples, within this sin-

gle, fixed item-to-parcel allocation of unidimensional/congeneric/normal items,

researchers have found little bias in structural parameter estimates (Hau &

Marsh, 2004; Marsh et al. 1998; Nasser-Abu & Wisenbaker, 2006), modest

variability in model fit (Hau & Marsh, 2004; Marsh et al., 1998; Nasser &

Wisenbaker, 2003), and decreasing variability in both with larger N and larger

item communalities.

The second type of evidence contributing to these conclusions involves the

within-sample parcel-allocation distribution of structural parameter and model

fit estimates. An example of a within-sample parcel-allocation distribution, from

Hall and colleagues (1999, Simulation 1), is the allocation of six items to two

three-item parcels in 15 ways for the same sample. Whereas a number of studies

have compared alternate within-sample item-to-parcel allocations for simulated

multidimensional item sets (Bandalos, 2002; Rogers & Schmitt, 2004), or empir-

ical item sets (where item dimensionality is indeterminate; Kishton & Widaman,

1994; Landis et al., 2000; Sass & Smith, 2006, Study 2), we know of only two

studies that have done so for simulated unidimensional, congeneric, normal item

sets. Across repeated allocations of unidimensional/congeneric/normal items to

parcels within a single sample, researchers have found that structural parameter

estimates remain unchanged and model fit is nonmeaningfully changed—as long

as numbers of parcels/factor and items/parcel are fixed across allocations (Hall

and colleagues, 1999, Simulation 1: 15 allocations; Sass & Smith, 2006, Study

1: 2 allocations).

These two sources of evidence are currently used to inform applied re-

searchers regarding the consequences of parceling on structural parameter es-

timates and model fit for their sample of unidimensional, congeneric items.

However, we argue that the first source of evidence is less relevant to the issue

at hand and we argue that the second source of evidence has been underinves-

tigated, possibly leading to unsupported conclusions.

The first source of evidence is practically less relevant to the applied re-

searcher with one sample and many potential ways of allocating items to parcels

for that one sample. Such a researcher would likely want to know if Nasser and

Wisenbaker (2003) and Nasser-Abu and Wisenbaker (2006) would have obtained

similar results for a given sample if they had happened to allocate Items 7, 1,

11, and 3 to Parcel 1; Items 8, 10, 5, and 6 to Parcel 2; and Items 4, 9, 12, and

2 to Parcel 3, or otherwise happened to allocate their 12 items to three 4-item

parcels in any of the other .pŠ/=.p1Šp2Šp3Š/ D 34,650 possible ways.

The second source of evidence is promising. However, because Hall et al.

(1999, Study 1) and Sass and Smith (2006, Simulation 1) considered only data

conditions with minimal sampling error, the generalizability of Hall et al.’s and

Sass and Smith’s results to other circumstances is questionable. Both employed

large item loadings (œi D .65–.85) and large samples (N D 500–1,000) and,
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326 STERBA AND MACCALLUM

most important, Hall et al. further minimized sampling error by averaging across

500 samples within-allocation before comparing results across their 15 alloca-

tions. No studies have investigated the effects of alternative parcel-allocations

within a sample of unidimensional/congeneric/normal items when sampling error

is nontrivial.

OVERVIEW OF CURRENT STUDY

In this article we first show analytically why, within a single sample, al-

ternate item-to-parcel allocations can differentially affect structural parameter

estimates—even when (a) items are unidimensional and congeneric and (b) the

properly specified item-generating model is fit to parceled data. We also show

analytically why, within a single sample, alternate item-to-parcel allocations

can differentially affect model fit—even if (c) number of items/parcel and

parcels/factor are held fixed across allocations and (d) items are normally

distributed and normal theory estimation is employed. Our analytic results

indicate that the settings showing the most variability in model fit and structural

parameter estimates across item-to-parcel allocations should be precisely those

settings in which parceling is most recommended—low item communalities

and low sample size. That is, within-sample parcel-allocation variability in

model fit and structural parameter estimates should depend on sampling error—

which is precisely why it remained undetected by Hall et al. (1999, Simulation

1) and Sass and Smith (2006, Study 1), who both minimized sampling

error.

Second, we then use a simulation involving random item-to-parcel allocations

to provide proof of concept of our analytic results. We also use this simulation

to connect the present work on within-sample parcel allocation variability to

prior parceling literature on within-allocation sampling variability (e.g., Hau

& Marsh, 2004; Marsh et al., 1998; Nasser & Wisenbaker, 2003; Nasser-Abu

& Wisenbaker, 2006). Specifically, we compare the amount of within-sample

parcel-allocation variability to the amount of within-allocation sampling vari-

ability for these outcomes, and show both to be magnified by the same data

characteristics.

Third, because our simulation was conducted under the conservative con-

ditions of no model error and unidimensional, congeneric, normal items, we

present an empirical illustration of the magnitude of parcel-allocation variability

that might be more typically encountered in the real world. The empirical

illustration involves the Neuroticism-Extroversion-Openness (NEO) Personality

Inventory (Costa & McCrae, 1985) and uses the Computer Assisted Panel Study

data set (Latane, 1989). Fourth, we provide an SAS macro that can be used when

sampling error is large in order to ameliorate parcel-allocation variability; the
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PARCEL-ALLOCATION VARIABILITY 327

macro provides the mean and variability of parameter and model fit estimates

across a large distribution of random item-to-parcel allocations.

THEORETICAL FRAMEWORK

Yuan, Bentler, and Kano (1997, Equations 2.1 and 2.2) presented analytic results

showing that, when items are unidimensional and congeneric in the population

(and other model assumptions are upheld), structural parameters in the popula-

tion will be invariant to the parceling method used (or item-to-parcel allocation

made; see also Sass & Smith, 2006, pp. 570–571). Yuan and colleagues’ finding

is guaranteed to hold only in the population, however, not necessarily in the

sample. Because no population model ever holds exactly in the sample (Mac-

Callum, 2003), we present a generalization of Yuan and colleagues’ results for

the case of population data, and then extend these results to sample data, using

the theoretical developments of MacCallum and Tucker (1991) and MacCallum,

Widaman, Zhang, and Hong (1999).

Population-Level Data

Suppose that we wish to construct n parcels from a set of m items measuring q

factors in the population. Let an i -subscript denote item level. Let xi be a vector

of deviation scores on items in the population, of order m, and let E denote

the expectation operator, ƒi denote a m � q common factor loading matrix, ˆi

denote a q � q covariance matrix of common factors, and ‰
2
i denote an m � m

diagonal matrix of unique variances. The population covariance structure of the

items can be derived as

E.xi ; x0
i/ D †i D ƒi ˆi ƒ

0
i C ‰

2
i (1)

—under the assumption that the unique factors are uncorrelated with each other

and with common factors in the population. In these developments and in the

subsequent simulation, we also assume that at the item-level the model fits per-

fectly in the population, but this assumption could be relaxed (see MacCallum,

Widaman, Preacher, & Hong, 2001).

Now let A be an m�n selection matrix that allocates items to parcels, given a

prespecified number of parcels/factor and items/parcel. Let a p-subscript denote

parcel level. Then xp D Axi is a vector of parcels, of order n. To illustrate,

suppose we have m D 12 items and q D 2 factors, with Items 1–6 loading on

the first factor and Items 7–12 loading on the second factor, and suppose we
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328 STERBA AND MACCALLUM

construct two parcels per factor as follows:

2

6
6
4

xp1

xp2

xp3

xp4

3

7
7
5

„ ƒ‚ …

xp

D

2

6
6
4

1
3

1
3

1
3

0 0 0 0 0 0 0 0 0

0 0 0 1
3

1
3

1
3

0 0 0 0 0 0

0 0 0 0 0 0 1
3

1
3

1
3

0 0 0

0 0 0 0 0 0 0 0 0 1
3

1
3

1
3

3

7
7
5

„ ƒ‚ …

A

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

xi1

xi2

xi3

xi4

xi5

xi6

xi7

xi8

xi9

xi10

xi11

xi12

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

„ ƒ‚ …

xi

D

2

6
6
4

.xi1 C xi2 C xi3 /=3

.xi4 C xi5 C xi6 /=3

.xi7 C xi8 C xi9 /=3

.xi10 C xi11 C xi12 /=3

3

7
7
5

:

Here xp1 and xp2 load on the first factor and xp3 and xp4 load on the second

factor. Note that it makes no difference here whether the locations of nonzero

elements in A are chosen randomly or purposively. The population covariance

matrix of the parcels is then denoted by

†p D E.xpx0
p/; (2)

which can be rewritten as

†p D E.Axi x
0
i A

0/ D A†i A
0; (3)

which implies that

†p D Aƒiˆi ƒ
0

i A
0 C A‰

2
i A

0: (4)

Now, rewriting ƒp D Aƒi and ‰
2
p D A‰

2
i A

0 we have

†p D ƒpˆi ƒ
0
p C ‰

2
p : (5)

In other words, the following conditions will hold in the population when the

factor model fits perfectly at the item level. The factor loading of a parcel

(i.e., element of ƒp) will equal the average of the factor loadings of its con-

stituent items in an item-level analysis (i.e., constituent elements of Aƒi ) when
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PARCEL-ALLOCATION VARIABILITY 329

parcels are formed by averaging items.4 It is important to note that the previous

statement refers to comparisons of unstandardized parcel loadings with averaged

unstandardized item loadings in the population (not standardized parcel loadings

with averaged standardized item loadings). Furthermore, whenever we refer to

item-level or parcel-level parameters or estimates in the remainder of these

theoretical developments, we are always referring to unstandardized parameters

or estimates. The unique variance of a parcel (i.e., element of ‰
2
p) will equal

the average of the unique variances of its constituent items in an item-level

analysis—divided by the number of items per parcel (i.e., constituent elements

of A‰
2
i A

0),5 when parcels are formed by averaging items.6 And, the factor

covariances (structural parameters) will be the same for a parcel-level or item-

level analysis (i.e., ˆi D ˆp). Importantly, these results will apply in the

population for any A matrix—that is, for any purposive or random item-to-

parcel allocation.

Sample-Level Data

Suppose we draw a sample of observations from the population described earlier

and we consider the structure of the item-level sample covariance matrix, Ci .

The following developments are based directly on work by MacCallum and

Tucker (1991) and MacCallum et al. (1999). We can no longer assume that

correlations among common and unique factors are zero, nor that correlations

among unique factors are zero, due to sampling variability. Instead, we represent

these covariances explicitly as Cuui for the sample covariance matrix of unique

factors, Ccui for the sample covariance matrix of common and unique factors,

and Cuci for the sample covariance matrix of unique and common factors

(MacCallum et al., 1999). For example, even if items are unidimensional and

congeneric in the population, they may still have small error covariances or

small shared secondary loadings in the sample, which would inflate Cuui if the

population-generating model was fit (Bandalos, 2002). The item-level sample

covariance structure is then given by

Ci D ƒi Ccci ƒ
0

i C ƒi Ccui ‰
0

i C ‰ i Cuci ƒ
0

i C ‰ i Cuui ‰
0

i ; (6)

4If we had summed rather than averaged items to form parcels, Equations (4) and (5) imply that

unstandardized parcel loadings would be the sum of constituent unstandardized item loadings in the

population.
5Suppose we were instead comparing standardized item versus parcel solutions in the population

(i.e., item variances, parcel variances, and factor variances all 1.0). This decrease in residual

variance of parcel-indicators as items/parcel increase would force standardized parcel loadings to

systematically increase with items/parcel to ensure that parcel variances stay at 1.0.
6If we had summed items to form parcels, Equations (4) and (5) imply that residual variance of

parcel-indicators would be the sum of the residual variances of constituent item-indicators.
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330 STERBA AND MACCALLUM

where Ccci is the sample covariance matrix of common factors. This means that

we can denote the parcel-level sample covariance structure by

Cp D A.ƒi Ccci ƒ
0

i /A
0 CA.ƒi Ccui ‰

0

i /A
0 CA.‰ i Cuci ƒ

0

i/A
0 CA.‰ i Cuui ‰

0

i /A
0:

(7)

And, rewriting ƒp D Aƒi and ‰p D ‰
0
i A

0 D A‰ i we have

Cp D ƒpCcci ƒ
0

p C ƒpCcui ‰p C ‰pCuci ƒ
0

p C ‰pCuui ‰p: (8)

Following MacCallum et al. (2001), it is possible to simplify the expression for

the item-level sample covariance structure by representing all lack of fit due to

sampling error with �SEi
:

Ci D ƒi Ccci ƒ
0

i C ‰
2
i C �SEi : (9)

This representation means that we can denote the parcel-level sample covariance

structure by

Cp D Aƒi Ccci ƒ
0
i A

0 C A‰
2
i A

0 C A�SEi
A

0: (10)

And, rewriting ƒp D Aƒi and ‰
2
p D A‰

2
i A

0 and �SEp D A�SEi A
0 we have

Cp D ƒpCcci ƒ
0
p C ‰

2
p C �SEp : (11)

With this theoretical background, several points can now be made about the

effects of alternative item-to-parcel allocations (i.e., alternative A matrices) from

random or purposive parceling methods, in the sample, even when items are

unidimensional and congeneric and the item-level model holds exactly in the

population.

Structural Parameter Estimates

Upon first observation, the sample covariance matrix of common factors would

seem to be invariant across alternate parcel-allocations because the term Ccci

appears in the parcel-level sample covariance structure Equation (11) for any A.

Furthermore, upon first observation, the sample covariance matrix of common

factors would seem to be invariant across parcel-level versus item-level solu-

tions because the term Ccci appears in both Equations (9) and (11). However,

neither will necessarily be the case because the sampling error in the parcel-

analysis will be differentially altered for each item-to-parcel allocation matrix

A (that is, �SEp
D A�SEi

A
0)—even though the number of parcels/factor and

items/parcel is held fixed. And, “sources of sampling error : : : will have a
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PARCEL-ALLOCATION VARIABILITY 331

general and random influence on parameter estimates” (MacCallum & Tucker,

1991, p. 507). Moreover, the effects of alternate A matrices (i.e., effects of

parcel-allocation variability) on parameter estimates will be minimized when

the effects of sampling error on parameter estimates is minimized. Following

MacCallum and Tucker, this will occur when (a) sample size is large; (b) item

communalities are high (i.e., unique loadings ‰ i are low, so that Cuui , Ccui , and

Cuci matrices are given little weight in Equation (7)); and (c) Cuui , Ccui , and

Cuci matrices have smaller dimensions (e.g., because more items are allocated

to each parcel).

Model Fit

It is already well known that parcel-solutions usually have better fit than item-

solutions because parceling ameliorates some effects of sampling error on model

fit (Bandalos, 2002; Bandalos & Finney, 2001). Our concern here, however, is

not the differences in model fit between parcel-solutions and item-solutions but

rather the variations in model fit across parcel-solutions based on different A

matrices—given that items are unidimensional and congeneric in the population,

the item-level model is properly specified, and numbers of items/parcel and

parcels/factor are held fixed across allocations. We can see from Equation (10)

that, even under these conditions, model fit in the sample will vary across parcel-

allocations A because �SEp
D A�SEi

A
0. Note that this result is independent

of any distribution assumptions. That is, no distributional assumptions of a

particular estimation method need be violated for this result to hold. Therefore,

this result should hold even if normally distributed items are parceled and

normal theory estimation is used. We can also see from Equation (7) that the

influences that decrease the effects of sampling error on model fit will also

decrease the variation in model fit across alternative item-to-parcel allocations

A. These influences are (a) larger sample size, (b) higher item communalities,

and (c) more items per parcel.

Based on the aforementioned theoretical framework, we are now able to

propose hypotheses to be tested in the simulation in the next section, which

employs random item-to-parcel allocations. We posit that these hypotheses will

hold even under the following restrictive conditions: items are unidimensional,

congeneric, and normally distributed in the population; a properly specified

item-generating model is fit to parceled data; and numbers of items/parcel and

parcels/factor are fixed across allocations.

Hypothesis 1. As sample size decreases, item communalities decrease,

and the item/parcel ratio decreases, structural parameter estimates will be more

variable across random item-to-parcel allocations, within-sample.
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332 STERBA AND MACCALLUM

Hypothesis 2. As sample size decreases, item communalities decrease, and

the item/parcel ratio decreases, model fit estimates will be more variable across

random item-to-parcel allocations, within-sample.

Hypothesis 3. Although structural parameter estimates and model fit will

be affected by random variation due to item-to-parcel allocating and random

variation due to sampling, the effects of the former can be minimized. To do

so, researchers need to compute and report average structural parameter and

model fit estimates across a distribution of item-to-parcel allocations for a given

sample. We term this distribution a parcel-allocation distribution.

Given that Hypotheses 1–2 have been previously investigated across samples

within a single allocation (Hau & Marsh, 2004; Marsh et al., 1998; Nasser

& Wisenbaker, 2003; Nasser-Abu & Wisenbaker, 2006), but not—as we do

here—across allocations within a single sample, it is desirable to relate our

present results to such prior results. To this end, when testing these hypotheses

we relate the magnitude and consistency of within-sample parcel-allocation

variability to the magnitude and consistency of within-allocation sampling vari-

ability. We define within-sample parcel-allocation variability as the variability

in the outcome of interest (parameter estimate or fit measure) across repeated

(and, in our simulation, random) assignments of items to parcels for a single

sample—and for prespecified, fixed numbers of parcels/factor and items/parcel.

Henceforth, we refer to this simply as parcel-allocation variability unless the

context requires more detail. We define within-allocation sampling variability

as the variability in the outcome of interest (parameter estimate or fit measure)

across random sampling, for a single item-to-parcel allocation. Henceforth,

we refer to this simply as sampling variability unless the context requires

more detail.

SIMULATION METHODS

Simulation Design

Item-level data were generated from a correlated two-factor confirmatory factor

analysis (CFA) population model with either 9 or 15 item indicators/factor. Items

were normally distributed, congeneric, and unidimensional in the population.

These item characteristics were chosen in order to provide proof of concept:

that parcel-allocation variability exists and is practically consequential even

under such restrictive, idealized conditions. When generating item-level data,

we manipulated item loading size (four levels) and sample size (six levels).

When constructing parcels from items, we varied the number of items per
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PARCEL-ALLOCATION VARIABILITY 333

parcel/number of parcels (three levels). This design resulted in a total of 4 � 6 �

3 D 72 cells in our simulation.

The numbers of items/parcel were either 3 items per each of three parcels

(using the 9-item generated data), or 3 items per each of five parcels (using the

15-item generated data), or 5 items per each of three parcels (using the 15-item

generated data). These item/parcel combinations were chosen so that we could

compare the effect of number of items per parcel (three vs. five), for the same

number of parcels (three), and so that we could compare the effect of number

of parcels (three vs. five), for the same number of items (15).

Sample sizes (N D 75, N D 100, N D 125, N D 150, N D 200, N D

250) were chosen to include those often used in SEM research in psychology

with special focus on low sample sizes, where parcel-allocation variability was

hypothesized to be greatest. Baumgartner and Hornberg’s (1996) review of SEM

applications found an average sample size of 178 and MacCallum and Austin

(2000) and Hulland, Chow, and Lam (1996) found that 18–22% of studies used

samples < 100. Population-generating parameters, and the scale reliabilities they

imply, are shown in Table 1. Values of “high” factor loadings (.70) were chosen,

using the Spearman-Brown prophecy formula, to imply a scale reliability for the

factor � .90, which is often considered excellent scale reliability (Nunnally &

Bernstein, 1994). Values of “medium-high” factor loadings (.60) were chosen

to imply a scale reliability for the factor � .80, which is often considered

good scale reliability (Nunnally & Bernstein, 1994). Values for “low” factor

loadings (.40) were chosen to imply a scale reliability for the factor that fell

below .80. Additionally, a “medium-mixed” loading condition included a range

of loadings sizes from medium-high to low, with an average of .50. Population

error variances were chosen to make all item variances D 1.0.

TABLE 1

Population-Generating Parameters

Factor (Co-)

Variances Factor Loadings (Error Variances in Parentheses)

¥11 D 1

¥22 D 1

¥12 D :25

High loadings: all œi D :70 (all §2

i
D :51)

implied scale reliability D .94 for 15 items/factor and .90 for 9 items/factor

Medium-high loadings: all œi D :60 (all §2

i
D :64)

implied scale reliability D .89 for 15 items/factor and .84 for 9 items/factor

Medium-mixed loadings: œi D :40, .50, .60, alternating (§2

i
D :84, .75, or .64)

implied scale reliability D .83 for 15 items/factor and .75 for 9 items/factor

Low loadings: all œi D :40 (all §2

i
D :84)

implied scale reliability D .74 for 15 items/factor and .63 for 9 items/factor
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334 STERBA AND MACCALLUM

Sample and Parcel-Allocation Generation

Data were generated so as to allow for the study of two sources of variabil-

ity within and across design cells: sampling variability and parcel-allocation

variability. Consider a single example design cell. Figure 1 shows that, within

this cell, 100 samples were independently generated. Additionally, within this

cell, 100 random item-to-parcel allocations were independently generated—by

randomly assigning the k items per factor for a given sample to p parcels per

factor, where k, p, and numbers of items/parcel were fixed across allocations

within a design cell. Then, parcel scores were computed by averaging these

randomly assigned items. The same set of 100 allocations within that particular

cell was saved and used to generate parcels from items in each of the 100

samples in that cell, as shown in Figure 1. Thus samples and parcel-allocations

were fully crossed within a cell. Therefore, in a cell, a statistic has a distribution

across parcel-allocations within each sample (i.e., a parcel-allocation distribu-

tion) and a distribution across samples within parcel-allocation (i.e., a sampling

distribution). The full crossing of the 100 samples and 100 allocations in a cell

yielded 10,000 parcel-level data sets in that cell. Across all 72 cells, there was

a total of 720,000 parcel-level data sets.

For each of these 720,000 parcel-level data sets, a two-factor CFA model with

correlated factors and unidimensional, congeneric items was fit using Mplus 5.2

(L. K. Muthén & Muthén, 1998–2008) and maximum likelihood estimation.

Analyses were performed in a covariance metric (i.e., unstandardized parcel

solutions were obtained). In each case, the item-level model was true in the

population, and the parcel-level model was fit in the sample. Structural parameter

estimates (factor correlation) and model fit statistics (e.g., Root Mean Square

Error of Approximation (RMSEA), Standardized Root Mean Square Residual

(SRMR), Comparative Fit Index (CFI), Tucker-Lewis Index (TLI), ¦2) were

FIGURE 1 Crossed data generation schematic.
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PARCEL-ALLOCATION VARIABILITY 335

recorded for each fitted model. Data analysis involved descriptive comparisons

of characteristics (mean, standard deviation, and range) of the parcel-allocation

distributions versus sampling distributions of parameter estimates and model fit

statistics, for each design cell.

SIMULATION RESULTS

Nonconvergence and Improper Solutions

On average, the proportion of converged and proper allocations per cell was

9,976/10,000 (range 9,302 to 10,000). Proper solutions have positive definite

factor and error covariance matrices. Within cell, the average proportion of

converged and proper allocations per sample was 99.68/100 (range 46 to 100).

Only 36 out of 7,200 samples had < 90% converged and positive definite

allocations. Analyses were rerun including versus omitting improper solutions,

and the same pattern of results was obtained. Results presented here omit

improper solutions.

Structural Parameter Estimates

When are substantive conclusions about structural parameters sensitive to the

particular allocation chosen from the within-sample allocation distribution?

To orient ourselves, we first simply consider the distribution of the factor cor-

relation estimates, O¥, across 100 parcel allocations within a single sample/cell.

Recall from Table 1 that in the population ¥ D :25. Figure 2 presents the

distribution of O¥ across 100 allocations of three items/three parcels for one

sample at each loading size and at each sample size. Error bars denote the

maximum and minimum O¥ across allocations within sample. Figure 2 indicates

that, given a single sample, and, say, low loadings, a researcher could anticipate

obtaining O¥ as low as .13 or as high as .43 (i.e., a range of .30), at N D 75, or

obtaining O¥ as low as .01 or as high as .18 (i.e., a range of .17), at N D 250—

based simply on the item-to-parcel allocation chosen via random allocating. For

medium-mixed loadings, the range is .30 for N D 75 and .10 for N D 250 in

Figure 2. For medium-high loadings, the range is .18 for N D 75 and .05 for

N D 250. For high loadings, the range is .10 for N D 75 and near-zero at

N D 250.

It is next relevant to consider whether this magnitude of parcel-allocation

variability in Figure 2 is “large enough” for a researcher with one sample to

actually change substantive conclusions about ¥. If the result of a researcher’s

hypothesis test H0 W ¥ D 0 was completely robust to choice of parcel-allocation,
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336 STERBA AND MACCALLUM

FIGURE 2 The parcel-allocation distribution of a factor correlation estimate ( O¥) within a

single sample per cell. Note. Each allocation in this figure involved three parcels, each with

three items. A parcel allocation distribution of O¥ is the distribution of this parameter estimate

across alternate allocations of items to parcels within a sample.

then all allocations would give a unanimous hypothesis testing result (either all

significant or all nonsignificant). If a researcher’s hypothesis testing result was

maximally sensitive to the allocation chosen, then 50% of allocations would

yield statistical significance, and 50% would yield nonsignificance. For the

sample with N D 100 and low loadings, 64% of allocations gave a statistically

significant O¥ and 36% of allocations gave a nonsigificant O¥. Similarly, for the

sample with N D 125 and medium-mixed loadings, 46% of allocations gave a

statistically significant O¥ and 54% of allocations gave a nonsignificant O¥. But,

for any sample in Figure 2 with N � 150 or medium-high/high loadings, 91–

100% of allocations yielded the same significance value. These results show

that a researcher’s hypothesis test results can sometimes change markedly de-

pending on the particular parcel allocation chosen for their single sample. But

a researcher’s conclusions about the significance of ¥ are less likely to change

across allocations at higher sample size and loading size.

Next, rather than just consider a single sample’s O¥ allocation distribution per

cell, we consider 100 samples’ O¥ allocation distributions per cell. Specifically,

for the 100 samples per cell, we calculate the range of each sample’s O¥ allocation

distribution (i.e., Ra
O¥
) and standard deviation of each sample’s O¥ allocation
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PARCEL-ALLOCATION VARIABILITY 337

distribution (i.e., SDa
O¥
). Moreover, for each of these 100 samples per cell, we

also calculate the proportion of allocations with statistically significant O¥. This

results in 100 Ra
O¥
, 100 SDa

O¥
, and 100 proportions of significant O¥ per cell. For

each cell, we plotted the distribution of the 100 Ra
O¥
, in Figure 3, Panel 1, and

the distribution of the 100 SDa
O¥
, in Figure 4, Panel 1. Due to space constraints,

results for high loadings are not presented in Figures 3 and 4; they showed, on

average, near-zero allocation variability in O¥.

FIGURE 3 Ranges of within-sample O¥ allocation distributions versus ranges of within-

allocation O¥ sampling distributions.
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338 STERBA AND MACCALLUM

FIGURE 4 Standard deviations of within-sample O¥ allocation distributions versus standard

deviations of within-allocation O¥ sampling distributions.

In Figure 3, Panel 1, error bars denote ˙2 SD around the cell mean of the

Ra
O¥
’s. The cell mean of Ra

O¥
’s occurs where the line intersects the error bars.

For few parcels and few items/parcel, the average Ra
O¥

is sizable (e.g., � .10

correlation units) at low loadings when N � 250, at medium-mixed loadings

when N � 150, and at medium-high loadings when N � 100. This means that

the amount of allocation variability depicted for single samples in Figure 2 is

typical of the other samples in those cells. For few parcels and many items/parcel,

the average Ra
O¥

is sizable at low loadings when N � 150, for medium-mixed
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PARCEL-ALLOCATION VARIABILITY 339

loadings when N � 100, and for medium-high loadings when N D 75. For

many parcels, average Ra
O¥

is sizable at low loadings, when N � 125, and at

medium-mixed loadings, when N D 75. That is—given unidimensional and

congeneric items—only for medium loadings together with larger N is the

average Ra
O¥

near-zero for any item/parcel combination.

A similar pattern occurs in Figure 4, Panel 1, as was found in Figure 3,

Panel 1. In Figure 4, Panel 1, error bars now denote ˙2 SD around the cell

mean of SDa
O¥
’s and the cell mean of the SDa

O¥
’s occurs where the line intersects

the error bars. On average, the within-sample allocation distribution standard

deviations SDa
O¥

are largest for N D 75 and low loadings—specifically, .04–.06

correlation units in magnitude. Average SDa
O¥

decreases for larger loadings and

for larger N . If larger loadings are combined with larger N , average SDa
O¥

is

near zero—again, assuming unidimensional, congeneric normal items and no

model error.

Finally, Table 2 shows the degree to which substantive conclusions about

structural parameter estimates are sensitive to parcel-allocation variability. Specif-

ically, Table 2 shows the proportion of samples per cell in which > 5% of alloca-

tions per sample switch statistical significance of O¥ (i.e., nonsignificant to/from

significant) across that sample’s allocation distribution. Samples with N � 150

and medium-mixed or low loadings most commonly show such switching of

structural parameter estimate significance level across allocations within sample.

However, nearly a quarter of allocations per sample switch statistical significance

TABLE 2

Percentage of Samples in Which > 5% of Allocations/Sample

Changed O¥ Significance Level

Sample Size

Loading Items/Parcels 75 100 125 150 200 250

Low 3/5 18 23 17 15 12 7

Low 5/3 31 27 29 22 16 11

Low 3/3 43 44 38 30 25 20

Medium-mixed 3/5 26 25 20 11 8 4

Medium-mixed 5/3 23 20 17 13 7 12

Medium-mixed 3/3 42 27 19 23 14 11

Medium-high 3/5 14 12 5 2 1 3

Medium-high 5/3 13 12 8 9 2 3

Medium-high 3/3 24 23 19 13 11 7

High 3/5 11 9 4 2 3 1

High 5/3 12 7 9 4 3 0

High 3/3 15 7 9 6 6 4
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340 STERBA AND MACCALLUM

even for (a) low loadings C high samples or (b) medium-high loadings C low

samples—in the context of few items/parcel and few parcels.

Does the variation in structural parameter estimates differ across-allocations

within-sample versus across-samples within allocation?

To answer this question, we reanalyzed the simulation data in the opposite

way. That is, instead of looking at within-sample allocation variability in struc-

tural parameter estimates, we looked at within-allocation sampling variability

in structural parameter estimates. Specifically, for the 100 allocations per cell,

we calculated the range .Rs
O¥
) and standard deviation (SDs

O¥
) of each allocation’s

O¥ sampling distribution. This resulted in 100 Rs
O¥
’s and 100 SDs

O¥
’s per cell. For

each cell, we plotted the distribution of the 100 Rs
O¥
, in Figure 3, Panel 2, and

the distribution of the 100 SDs
O¥
, in Figure 4, Panel 2.

In Figure 3, Panel 2, error bars denote ˙2 SD around the cell mean of

Rs
O¥
’s and the cell mean of the Rs

O¥
’s occurs where the line intersects the error

bars. Figure 3, Panel 2, shows that the average within-allocation sampling

distribution ranges, Rs
O¥
, are larger than the average Ra

O¥
, and unlike parcel-

allocation variability, sampling variability does not decrease all the way to zero

for larger loading and sample sizes. In Figure 4, Panel 2, error bars denote ˙2

SD around the cell mean of SDs
O¥
’s and the cell mean of the SDs

O¥
’s occurs where

the line intersects the error bars.

Comparing Figure 4, Panel 1, with Panel 2, average within-allocation sam-

pling distribution standard deviations, SDs
O¥
, are always greater than the average

SDa
O¥
, but the variability (error bars) in SDa

O¥
can be greater than the variability

(error bars) in SDs
O¥
, particularly for few items/parcel and few parcels. Moreover,

as in Figure 3, Panels 1 and 2, both parcel-allocation variability and sampling

variability are maximized under the same data conditions: lower loadings, lower

sample size, and fewer items/parcels.

After controlling for parcel-allocation error, does sampling variability in struc-

tural parameter estimates remain and, after controlling for sampling error, does

allocation variability in structural parameter estimates remain?

To answer this question, we calculate the average O¥, across allocations within-

sample (i.e., M a
O¥
). Hence, there are 100 M a

O¥
’s per cell. And we calculate the

average O¥, across-samples within-allocation (i.e., M s
O¥
). Hence, there are 100

M s
O¥
’s per cell. Figure 5, Panel 1, tells us that if we ameliorate/eliminate parcel-

allocation error by averaging across 100 allocations within each sample, how
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PARCEL-ALLOCATION VARIABILITY 341

FIGURE 5 Means of within-sample O¥ allocation distributions versus means of within-

allocation O¥ sampling distributions.

much sample-to-sample variability will remain in the distribution of M a
O¥
’s per

cell, and will the cell mean of M a
O¥
’s be on target at the population-generating pa-

rameter? Figure 5, Panel 2, tells us that if we ameliorate/eliminate sampling error

by averaging across 100 samples within each allocation, how much allocation-

to-allocation variability will remain in the distribution of M s
O¥
’s per cell, and will

the cell mean of the M s
O¥

be on target at the population-generating parameter?

Note that, in Figure 5, Panel 1, error bars now denote ˙2 SD around the cell
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342 STERBA AND MACCALLUM

mean of the M a
O¥
’s and in Figure 5, Panel 2, error bars now denote ˙2 SD around

the cell mean of the M s
O¥
’s. In Figure 5, Panel 1, we can see from where the line

intersects the error bars that, after averaging across allocations within-sample,

the mean of the distribution M a
O¥

of closely matches the population-generating

value for all cells. Likewise, in Figure 5, Panel 2, we can see from where the line

intersects the error bars that, after averaging across samples within-allocation, the

mean of the distribution of M s
O¥

matches the population-generating value for all

cells. Importantly, in Figure 5, Panel 1, after averaging across parcel-allocations

within-sample, considerable sample-to-sample variability remains among the

100 M a
O¥

per cell. Whereas, in Figure 5, Panel 2, after averaging across samples

within-allocation, essentially no allocation-to-allocation variability remains in

the 100 M s
O¥

per cell. (Of course, within any single sample, across-allocation

variability similar to that shown in Figure 2 would still remain.) We discuss in

a later section how this point demonstrated in Figure 5 motivates our solution

to the problem of parcel-allocation variability in finite samples with unreliable

items. To summarize this point, there is little parcel-allocation variability in the

absence of sampling error, but there can be substantial sampling variability in

the absence of parcel-allocation variability.

Model Fit

When are substantive conclusions about model adequacy sensitive to the par-

ticular allocation chosen from the within-sample allocation distribution?

To orient ourselves, we first simply consider the distribution of model fit indices

across the 100 parcel allocations within each single sample per cell from Fig-

ure 2. Recall that this set of single samples from Figure 2 included one sample

at each loading size and at each N , for three items/three parcels. Table 3 shows

that parcel-allocation variability in model fit indices within this set of single

samples exists at all sample sizes and all loading sizes. Moreover, the ranges of

these within-sample allocation distributions often—even at some high loading

or high sample sizes—include conventional cutoff values of CFI, TLI, RMSEA,

and SRMR. In such cases, substantive conclusions about model adequacy could

change based on the particular allocation chosen. Also, the ranges of ¦2 across

allocation per sample are around twice the mean ¦2 statistic per sample.

Next, we consider whether the parcel-allocation distributions of model fit

indices, which were documented for single samples in Table 3, are representative

of all 100 samples per cell and all cells. To consolidate results and make

their implications for practice maximally clear, we made the following three

simplifications. First, because the same general pattern of results was found for
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344 STERBA AND MACCALLUM

RMSEA, SRMR, CFI, TLI, and ¦2, we just focus on RMSEA. Second, because

in practice fit in SEM is commonly evaluated using extremity cutoff criteria,

we focus on the parcel-allocation distribution of RMSEA nonclose fit for all

100 samples per cell and for all cells. We selected a recommended cutoff value

for RMSEA nonclose fit (� .06; Hu & Bentler, 1999) that yielded 21–31% of

converged, proper solutions per cell nonclose fitting at N D 75; 12–26% at

N D 100, 6–20% at N D 125, 3–17% at N D 150, 1–10% at N D 200,

and <1–7% at N D 250. (Because cutoff values are ultimately arbitrary, we

performed a sensitivity analysis using a variety of cutoff values for RMSEA

(.05, .06, .08), which produced the same overall pattern of results). As a third

simplification, we present results only for the low and high loading conditions,

not the medium-mixed or medium-high loading conditions, because results were

similar across all loading sizes.

Figure 6 addresses how the parcel-allocation distribution of RMSEA nonclose

fit varies from sample to sample within cell. Figure 6 contains 36 boxplots,

each corresponding to a cell of the simulation design (i.e., 72 total cells—

36 cells for the medium loading results not shown). The data points for con-

structing each cell’s boxplot are percentages of nonclose fitting (but converged

and proper) allocations per sample. Thus if model fit was completely robust to

parcel-allocation variability, we would expect to see that either all allocations

per sample were nonclose fitting (i.e., all samples’ data points at 100) or no

allocations per sample were nonclose fitting (i.e., all samples’ data points at

0) in the boxplot. Instead, there are no samples in any cell where 100% of

allocations are nonclose fitting and there are only four cells where nearly all

FIGURE 6 Distribution of RMSEA nonclose fit: Parcel-allocations nested in samples.

Note. RMSEA D Root Mean Square Error of Approximation.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
K
a
n
s
a
s
]
 
A
t
:
 
2
0
:
5
5
 
1
6
 
A
u
g
u
s
t
 
2
0
1
0



PARCEL-ALLOCATION VARIABILITY 345

samples had 0% of allocations nonclose fitting. We can glean more detailed

information about parcel allocation variability in nonclose fit from inspecting

particular characteristics of the boxplots: the C signs, box lengths, and whisker

lengths.

The C sign denotes the average percentage of nonclose fitting alloca-

tions/sample within that cell. Comparing the location of the C’s across cells,

on average, 20–30% of allocations/sample are nonclose fitting at N D 75

regardless of loading size. For three parcels/factor, on average, 20–25% of alloca-

tions/sample are nonclose fitting at N D 100 or 125; 15% of allocations/sample

are nonclose fitting at N D 150; and � 10% of allocations/sample are nonclose

fitting at N D 200 or 250—regardless of loading size. Whereas, for five

parcels/factor, � 10% of allocations/sample are nonclose fitting for N � 125—

regardless of loading size. In other words, parcel-allocation variability in model

fit (Figure 6) is meaningful under a wider variety of sample size and loading

conditions than was parcel-allocation variability in structural parameter estimates

(Panel 1 of Figures 3 and 4). Specifically, for structural parameter estimates,

medium-high to high loadings and/or sample sizes > 150 generally corresponded

with little allocation variability, whereas for model fit, high loadings at N D 200

can still lead to frequent (more than 1 out of 10) allocations switching between

inadequate and adequate fit statistics within a sample.

The length of each box in Figure 6 denotes the interquartile range of the

percentage of allocations/sample that are nonclose fitting within that cell. The

length of each set of whiskers in Figure 6 denotes the range of the percentage

of allocations/sample that are nonclose fitting within that cell. For example, for

high loadings at N D 125 and five items per three parcels (Box #16 from left),

one quarter of samples have over 24% ill-fitting allocations and one quarter

of samples have less than 11% ill-fitting allocations. Together, box length and

whisker length for cells in Figure 6 indicate considerable variability from sample

to sample in the the percentage of nonclose fitting allocations/sample, regardless

of loading size. Reduced variability occurred for many parcels and N � 150

but only as a by-product of the fact that the net amount of nonclose fit from

sampling error approached zero under these conditions.

Is the amount of nonclose-fit per cell differentially distributed within-samples

versus within-allocations?

This second question is addressed by comparing features of the boxplots in

Figure 6 with Figure 7. Each of the 36 boxplots in Figure 7 correspond to a cell

of the simulation design—presented in the same order as in Figure 6. Whereas

the data points for making boxplots in Figure 6 were percentages of nonclose

fitting allocations per sample, the data points for making boxplots in Figure 7

are percentages of nonclose fitting samples per allocation. Whereas the Figure 6
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346 STERBA AND MACCALLUM

FIGURE 7 Distribution of RMSEA nonclose fit: Samples nested in parcel-allocations.

Note. RMSEA D Root Mean Square Error of Approximation.

data points can be thought of as cluster sizes where nonclose fitting allocations

are Level 1 units and samples are clusters, the Figure 7 data points can be

thought of as cluster sizes where nonclose fitting samples are Level 1 units and

allocations are clusters. Using these terms, the C sign denotes average cluster

size in both panels. In both panels, box length denotes the interquartile range of

these cluster sizes, and whisker length denotes the range of these cluster sizes.

The following pattern is evident: (a) average cluster size (C sign) is often

quite similar from Figure 6 to 7, but (b) variability of cluster sizes is typically

much greater in Figure 6 than in Figure 7, both in terms of the interquartile

range (box length) and range (whisker length). That is, clusters in Figure 7 are

more balanced than clusters in Figure 6. To illustrate this pattern of results,

consider the boxplot that has N D 150, high loadings, and three items per three

parcels (Boxplot #24 from left). Its average cluster size in Figure 6 is large: 17%

allocations/sample nonclose fitting. Its variability in cluster sizes in Figure 6 is

also large (interquartile range of cluster sizes: 8–24% allocations/sample non-

close fitting; full range: 0–49%). Its average cluster size in Figure 7 is similarly

large: 17% of samples/allocation nonclose fitting. However, its variability in

cluster sizes in Figure 7 is modest (interquartile range of cluster sizes: 14–

20% samples/allocation nonclose fitting; full range: 10–27%). This pattern of

results means that there is greater predictability and regularity in the sampling

variability of RMSEA (Figure 7) than in the parcel-allocation variability of

RMSEA (Figure 6). That is, for a given set of data characteristics (N , loading

size, numbers of items/parcel and parcels/factor) the likelihood of obtaining

nonclose RMSEA fit will be similar from one sample to another, within a

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
K
a
n
s
a
s
]
 
A
t
:
 
2
0
:
5
5
 
1
6
 
A
u
g
u
s
t
 
2
0
1
0



PARCEL-ALLOCATION VARIABILITY 347

particular allocation, but the likelihood of obtaining nonclose RMSEA fit will

differ considerably from one allocation to another, within a particular sample.

In sum, the amount of nonclose fit is differentially distributed among al-

locations within samples (much more variable) versus among samples within

allocations (much less variable). But this differential distribution of nonclose fit

is minimized when variability in cluster sizes is minimized and/or when nonclose

fit is minimized altogether—that is, for large N or for medium-to-large N plus

larger numbers of parcels.

After controlling for parcel-allocation error, does sample-to-sample variability

in model nonclose fit remain and, after controlling for sampling error, does

allocation-to-allocation variability in model nonclose fit remain?

Our approach for answering this question, as in the parameter estimates sec-

tion, is to average over allocations within sample and then consider whether

meaningful sample-to-sample variability remains in the distribution of these

means (Table 4, Panel 1). We also average over samples within allocation and

then consider whether meaningful allocation-to-allocation variability remains in

the distribution of these means (Table 4, Panel 2). Table 4, Panel 2, indicates

that upon ameliorating/removing sampling error, parcel-allocation variability

becomes practically insignificant. That is, the rows of maximum cluster means

never exceed .06, and so—controlling for sampling error—parcel-allocation

variability would rarely, if ever, lead us to erroneously conclude that a correctly

specified model was nonclose fitting. This means that if a researcher were to

report average model fit indices across a distribution of parcel-allocations (rather

than report model fit indices for a single allocation), the effects of parcel-

allocation variability on model fit would be greatly minimized and no longer of

practical concern (even for low N , small loadings, and few items/few parcels).

On the other hand, Table 4, Panel 1, indicates that upon ameliorating/removing

parcel-allocation error, considerable sampling variability is still present; for

example, when N < 150, the range of cluster means includes .06. Note that the

mean of the cluster mean columns are the same, to three decimals, in Panel 1

versus Panel 2.

EMPIRICAL EXAMPLE

Our simulation provided proof of concept of parcel-allocation variability under

conditions where it was previously thought not to exist: unidimensional, con-

generic, normal items with no model error. However, these are sterile conditions

and so our simulation results likely represent a conservative estimate of the

amount of parcel-allocation variability that would be encountered in the real
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348 STERBA AND MACCALLUM

TABLE 4

RMSEA Nonclose Fit Controlling for Parcel-Allocation Error

Vs. Controlling for Sampling Error

1. Average Across Allocations

Within Sample

2. Average Across Samples

Within Allocation

Loadings Items/Parcels

Min of

Cluster

Means

Max of

Cluster

Means

M of

Cluster

Means

SD of

Cluster

Means

Min of

Cluster

Means

Max of

Cluster

Means

M of

Cluster

Means

SD of

Cluster

Means

Low 3/5 .006 .053 .029 .010 N D 75 .022 .036 .029 .003

5/3 .013 .070 .036 .012 .027 .046 .036 .004

3/3 .008 .072 .032 .014 .023 .042 .032 .004

High 3/5 .010 .068 .033 .011 .026 .040 .033 .003

5/3 .011 .056 .033 .011 .024 .043 .033 .004

3/3 .003 .073 .034 .016 .025 .041 .034 .003

Low 3/5 .009 .045 .024 .008 N D 100 .018 .030 .024 .002

5/3 .005 .060 .028 .010 .018 .036 .028 .004

3/3 .002 .071 .027 .014 .019 .035 .027 .003

High 3/5 .007 .048 .027 .009 .021 .034 .027 .003

5/3 .008 .055 .027 .010 .017 .037 .027 .004

3/3 .004 .069 .028 .013 .019 .035 .028 .003

Low 3/5 .008 .041 .021 .008 N D 125 .014 .026 .021 .002

5/3 .010 .066 .026 .009 .018 .033 .026 .003

3/3 .002 .052 .025 .012 .015 .031 .025 .003

High 3/5 .006 .056 .022 .008 .017 .027 .022 .002

5/3 .006 .054 .025 .009 .019 .032 .025 .003

3/3 .004 .061 .026 .011 .016 .035 .026 .004

Low 3/5 .004 .044 .019 .007 N D 150 .012 .024 .019 .002

5/3 .007 .043 .023 .008 .017 .032 .023 .003

3/3 .006 .056 .024 .011 .017 .030 .024 .003

High 3/5 .007 .038 .020 .007 .014 .025 .020 .002

5/3 .008 .043 .022 .008 .016 .030 .022 .003

3/3 .002 .053 .024 .012 .017 .034 .024 .003

Low 3/5 .005 .037 .016 .006 N D 200 .012 .019 .016 .002

5/3 .008 .038 .021 .007 .014 .026 .021 .002

3/3 .004 .046 .020 .009 .016 .026 .020 .002

High 3/5 .003 .031 .016 .006 .010 .020 .016 .002

5/3 .006 .036 .018 .007 .010 .023 .018 .003

3/3 .003 .050 .020 .010 .016 .026 .020 .002

Low 3/5 .004 .027 .014 .005 N D 250 .010 .017 .014 .001

5/3 .005 .032 .018 .007 .011 .022 .018 .002

3/3 .003 .044 .017 .008 .012 .022 .017 .002

High 3/5 .002 .030 .013 .005 .010 .017 .013 .001

5/3 .003 .035 .017 .007 .011 .021 .017 .002

3/3 .001 .040 .016 .008 .012 .021 .016 .002

world. To give a more realistic depiction of the magnitude of parcel-allocation

variability encountered in the real world, we provide an empirical example. This

empirical example involves items from the Big Five personality factors (NEO

Personality Inventory; Costa & McCrae, 1985) for which parceling has been

previously recommended when the goal is understanding structural relationships
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PARCEL-ALLOCATION VARIABILITY 349

rather than dimensionality testing (e.g., Little et al., 2002) and has been exten-

sively used (e.g., Clara, Cox, & Enns, 2003; Benet-Martinez & Karakitapoglu,

2003; Saucier, 2002). Indeed, a brief literature review found over 20 articles

applying parceling to Big Five inventory items.

This empirical example also involves a more complex structural model than

the simple model considered in the simulation. Following Asendorpf and Wilpers

(1998), our example model posits that two correlated Big Five factors (agree-

ableness and conscientiousness) predict two correlated kinds of social support:

belonging (perceived availability of people to do things with) and tangible

support (perceived availability of material aid). Figure 8 presents a path diagram

of this four-factor model. Prior literature suggested all four factors should each

be unidimensional. The eighteen 5-point agreeableness items were allocated

100 times to three parcels of 6 items. The eighteen 5-point conscientiousness

items were also allocated 100 times to three parcels of 6 items. The 12 binary

belonging items (from the Cohen-Hoberman, 1983, Interpersonal Support Eval-

uation List) were allocated 100 times to three parcels of 4 items, as were the

12 binary tangible items from the same measure. This parceling of nonmetric

items introduces some model error, again making this example more realistic.

Participants were N D 102 undergraduate students in the 1988 Computer

Assisted Panel Study (Latane, 1989). Note that these empirical example results

can be compared most closely with the condition of our simulation with low

loadings, N D 100, and five items per three parcels. (Although an item-level

FIGURE 8 Path diagram of empirical example model.

Notes. Consc. D Conscientiousness; Agree. D Agreeableness.
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analysis of the empirical data encountered estimation problems—not surprising

given the large number of items for an N of 100—the across-allocations average

of unstandardized parcel loadings ranged from below to above our simulation’s

low item loadings conditions: .29–.34 for agreeableness, .15–.16 for conscien-

tious, .45–.48 for tangible support, and .34–.35 for belonging support).

Results in Table 5 show that under these real-world conditions (e.g., more

complex model, some model error), allocation variability in structural parameter

estimates was larger than in the most nearly comparable simulation cells. For

example, the across-allocation ranges of structural parameter estimates were each

one to four times the size of their parameter’s point estimate. Importantly, the

range and standard deviation of allocation distributions for structural parameter

estimates were so large that a researcher’s hypothesis test results could change

TABLE 5

Within-Sample Parcel-Allocation Variability in an Empirical Example

Across-Allocation Distribution

Structural Parameters M SD Minimum Maximum Range

% Allocations w/

Significant Est.

O“31 �.450 .110 �.756 �.142 .615 78

O“32 .277 .099 �.021 .521 .542 11

O“41 �.233 .080 �.437 �.005 .432 6

O“42 �.076 .058 �.244 .062 .306 0

O¥21 .256 .067 .079 .407 .328 100

O¥43 .489 .061 .342 .616 .274 20

O“31 SE .205 .033 .148 .341 .193

O“32 SE .191 .024 .148 .265 .118

O“41 SE .186 .024 .143 .295 .152

O“42 SE .178 .013 .144 .224 .080

O¥21 SE .162 .021 .136 .226 .089

O¥43 SE .143 .013 .119 .191 .072

Model Fit

Chi-square (df D 48) 62.378 10.609 39.062 87.343 48.281 41

Chi-square p value .162 .190 .000 .818 .818

CFI .933 .043 .843 1.000 .157

TLI .910 .064 .785 1.059 .274

RMSEA .049 .024 .000 .090 .090

SRMR .068 .007 .054 .088 .034

Note. SE D Standard Error; CFI D Comparative Fit Index; TLI D Tucker-Lewis Index;

RMSEA D Root Mean Square Error of Approximation; SRMR D Standardized Root Mean Square

Residual.
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PARCEL-ALLOCATION VARIABILITY 351

depending on the particular allocation chosen (see the Table 5 column listing

the percentage of allocations yielding significant estimates). For example, the

correlation between tangible and belonging support was significant in 20%

of allocations and nonsignificant in the other 80%. Moreover, a researcher’s

substantive conclusions about whether the model fits well also change markedly

across allocations in Table 5. For example, the chi-square is significant in 41%

of allocations. Also, a one standard deviation span of the allocation distributions

of RMSEA, CFI, and TLI include values ranging from close fit to nonclose fit,

as does the range of SRMR.

DISCUSSION

Previous studies have focused on comparing item-solutions versus parcel-solu-

tions with respect to model fit and structural parameter estimates, and have

focused on assessing the degree of within-allocation bias and sampling variabil-

ity of parcel-solutions. In this study, we drew a distinction between two kinds

of variability in parcel-solutions: sampling variability, referring to variability of

solutions obtained across repeated samples given a single allocation of items to

parcels, and allocation variability, referring to variability of solutions obtained

across repeated allocations of items to parcels given a single sample. We showed

that within-sample parcel-allocation variability has not been well studied—and

not at all under the most highly recommended conditions for applying parceling

(unidimensional, congeneric items for low N and low item communalities). In

the few instances in which parcel-allocation variability has been investigated to

date, circumscribed conditions were considered (Hall et al., 1999, Simulation 1;

Sass & Smith, 2006, Study 1), leading to the premature conclusion that parcel-

allocation variability in structural parameter estimates and model fit (for given

numbers of items/factor, parcels/factor, items/parcel) is effectively nonexistent.

First, we extended MacCallum and Tucker’s (1991) theoretical framework

to show analytically that, even when items are unidimensional and congeneric

in the population, alternative item-to-parcel allocations can affect model fit and

structural parameter estimates in the sample—even though not in the popula-

tion. Second, from this theoretical framework, we generated three hypotheses

about the conditions under which parcel-allocation variability in model fit and

structural parameter estimates should be most pronounced. Our simulation study

employing repeated random allocations found support for each hypothesis. That

is, parcel-allocation variability in model fit and structural parameter estimates is

most pronounced for smaller samples, lower item communalities, and/or fewer

number of parcels and items/parcel. Moreover, under these data conditions, the

magnitude of parcel-allocation variability is practically concerning: a structural

parameter estimate such as a factor correlation can range as much as .5 cor-
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352 STERBA AND MACCALLUM

relation units (but usually .1, .2, or .3) across allocations within such samples.

And, for 14–44% of samples in these cells, > 5% allocations/sample switched

statistical significance of the structural parameter estimate. Furthermore, model

fit in a given sample varies substantially depending on the particular randomly

chosen allocation (e.g., between 1 out of 4 and 1 out of 10 allocations within

such samples differ in whether or not model fit is close). More generally, parcel-

allocation variability in nonclose fit consistently approached zero only in cells

where the proportion of samples with nonclose fit itself approached zero—a

degenerate case. That is, anytime there was nonclose fit, there was meaningful

parcel-allocation variability in that nonclose fit (see Figure 6). Our empirical

example showed that these effects of parcel-allocation variability documented in

the simulation—given no model error; a simple model; and unidimensional,

congeneric, normal items—were conservative compared with what could be

encountered in the real world when some of these idealized conditions do

not hold.

Third, we related our findings on within-sample allocation variability to

earlier findings on within-allocation sampling variability. In line with theoret-

ical predictions, we replicated the results of Hau and Marsh (2004), Marsh

et al. (1998), Nasser and Wisenbaker (2003), and Nasser-Abu and Wisenbaker

(2006) in Panel 2 of Figures 4 and 5. Figure 5, Panel 2, showed that, within-

allocation, across-sample averages of the structural parameter estimate had no

bias. Figure 4, Panel 2, showed that, within-allocation, across-sample standard

deviations of the structural parameter estimate decreased with increasing N

and item communalities. Then, comparing parcel-allocation variability in the

structural parameter estimate, for each of 100 samples with sampling variability

in the structural parameter estimate, for each of 100 allocations, in a fully

crossed design (Panel 1 vs. 2 in Figures 3 and 4), we showed that the same data

conditions that create large sampling variability create large parcel-allocation

variability. These conditions are small N , low item communalities, and fewer

items/parcels. But, even under these conditions, Figure 5 showed that parcel-

allocation variability in structural parameter estimates could be effectively ame-

liorated by statistically “removing” sampling error (Figure 5, Panel 2; in line

with Hall et al., 1999, Simulation 1; Sass & Smith, 2006, Study 1). Regarding

model fit, on the other hand, we showed that within a given cell of the simulation

design, (a) sampling variability in model nonclose fit was quite similar for any

allocation chosen, whereas (b) parcel-allocation variability in model nonclose

fit varied considerably depending on the particular sample chosen. That is,

model nonclose fit showed balanced clustering among samples within allocation

(Figure 7) but unbalanced clustering among allocations within sample (Figure 6).

But, again, if we statistically “removed” sampling error by averaging across

samples within allocation, little/no allocation-to-allocation variability remained

(Table 4, Panel 2; in line with Sass & Smith, 2006; Hall et al., 1999).
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PARCEL-ALLOCATION VARIABILITY 353

Implications of Different Patterns of Allocation Variability in

Parameter Estimates Versus in Model Fit Statistics

Our simulation and empirical demonstration have important implications for the

use of parceling in applied research. In practice, parceling is sometimes treated

as an omnibus tool for ameliorating the effects of a variety of suboptimal data

conditions (e.g., unreliable items, small samples, nonnormal items; Bagozzi &

Edwards, 1998; Marsh et al., 1998) as well as for improving model fit compared

with item solutions—as long as certain restrictions are met (e.g., unidimen-

sional, congeneric items). We demonstrated that there are underappreciated

costs associated with employing parceling under suboptimal data conditions:

the introduction of an additional, nontrivial source of variability into model

estimates. Investigators planning to employ parcels need be mindful of the

sources and amount of sampling error in their analyses, which, in turn, fosters

parcel-allocation variability in parameter and model fit estimates. In general,

if parceling is to be used when sampling error is high (such as for N � 150

for a small model and/or item communalities � .25), we recommend that an

applied researcher report and correct for parcel-allocation variability in model

fit and parameter estimates. However, these cutoffs for reporting and correcting

for parcel-allocation variability are not hard and fast for several reasons.

One reason these cutoffs are not hard and fast is that our simulation results

evidenced nuanced compensatory trade-offs that are not captured in omnibus cut-

offs. Moreover, these compensatory trade-offs differed for structural parameters

versus model fit. An example trade-off is that as long as N > 100, medium-

high communalities (.36) offset allocation variability for structural parameter

estimates but not model fit. Another trade-off is that, as long as N > 100, more

parcels (five rather than three) offset allocation variability for both structural

parameter estimates and model fit. However, for few parcels (three), an N of

250 is needed—regardless of loading size—to offset allocation variability in

model fit but not structural parameter estimates. In general, larger numbers of

parcels was the most effective buffer of allocation variability in model fit whereas

loading size was the most effective buffer of allocation variability in structural

parameter estimates. Consequently, higher sample sizes and loading sizes can

still be subject to meaningful allocation variability in model fit, even if they are

not subject to meaningful allocation variability in structural parameter estimates.

Researchers need be aware of the fact that parcel-allocation variability does not

operate in the same way for structural parameter estimates as for model fit.

Another reason these cutoffs are not hard and fast is that they assume no or

low measurement model error. Measurement model error (e.g., unmodeled cross

loadings, unmodeled error covariances, misspecified number of factors) could

create parcel-allocation variability at larger N ’s—(i.e., where sampling error

is low). That is, in our model-error-free simulation we were able to eliminate
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354 STERBA AND MACCALLUM

parcel-allocation variability simply by reducing the amount of sampling error

to a sufficient degree, but in the real world measurement model error could

drive some parcel-allocation variability regardless of the amount of sampling

error. However, characterizing the amount of parcel-allocation variability caused

by commonly occurring forms of measurement model error was not a goal of

this article.

Correcting for and Reporting Parcel-Allocation Variability:
ParcelAlloc.sas Macro

Our results suggest a straightforward method for implementing our recommen-

dation to report and control for parcel-allocation variability in model fit and

parameter estimates when sampling error is high. Instead of reporting a single

structural parameter estimate and model fit estimate from a single item-to-parcel

allocation, a researcher would report the average structural parameter estimate,

average analytic standard error, and average model fit estimate across an entire

parcel-allocation distribution, and also would report how much these estimates

are affected by parcel-allocation variability (i.e., the standard deviation of each

estimate’s parcel-allocation distribution). We also recommend reporting the per-

centage of allocations in which parameter estimates are found statistically signif-

icant. Examples of these reporting practices are: columns 2, 3, and 7 in Table 5.

Reporting the average structural parameter estimates and average model fit

statistics serves to ensure that these estimates are not unduly affected by a

chance, extreme allocation of items to parcels. In support of reporting the across-

allocation mean of a structural parameter estimate, note that Figure 5, Panel 1,

showed that the across-allocation mean is an unbiased estimate of its corre-

sponding population parameter (.25), in the absence of model error. Reporting

the standard deviation of the allocation distribution of these estimates clarifies

for consumers of the parcel-analysis the amount of uncertainty introduced into

the analysis through parceling. In support of reporting the standard deviation of

an estimate’s allocation distribution to communicate the magnitude of allocation

variability, note that this logic parallels the accepted practice of reporting a

standard error to communicate the magnitude of sampling variability.

To facilitate these recommended reporting practices, we have made available

software tools (see http://www.unc.edu/�ssterba/parcel.htm or contact S. Sterba)

for creating many parcel-level data sets from a random item-to-parcel allocation

distribution, and then analyzing and compiling results from the created set of

parcel-level data sets. These software tools are compatible with any SEM model

and also with missing data. A user submits an item-level data set with the

variables to be included in the final statistical model. The user identifies how

many items/parcel and parcels/factor are desired and how many random item-to-

parcel allocations are desired. A SAS macro called ParcelAlloc.sas then performs
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PARCEL-ALLOCATION VARIABILITY 355

random item-to-parcel allocations and generates a set of parcel-level data sets

formatted to be read directly into the Monte Carlo utility of Mplus (L. K. Muthén

& Muthén, 1998–2008).7 The user then specifies the SEM model as usual in

Mplus code, adding a few words of code that indicate to Mplus to analyze not one

parcel-level data set but the entire set of parcel-level data sets (e.g., adding the

TYPE=MONTECARLO command). Mplus then automatically provides model

fit indices, parameter estimates, and analytic standard errors averaged across the

entire parcel-allocation distribution, as well as the standard deviations of these

distributions. Mplus also automatically provides the percentage of allocations

for which a parameter estimate was statistically significant. We have provided a

detailed manual, along with three fully worked examples (including input files,

output files, item-level data set, and parcel-level data sets) for different SEM

and CFA models (see website or contact the first author).

Limitations and Future Directions

First, although the simulation and empirical example portions of this study

focused on random rather than purposive item-to-parcel allocations, our analytic

developments indicate that parcel-allocation variability will be a problem for

purposive allocations as well.8 To report and control for variability in purposive

item-to-parcel allocations, researchers would first need to create a list of possible

allocations using the chosen purposive method. This list would constitute the

parcel-allocation distribution. A set of parcel-level data sets could be manually

constructed from this list. These data sets could then be read into Mplus, using

the code provided, for analysis and automatic compilation across purposive

allocations.

Second, our empirical example suggested that parcel-allocation variability

increases under a variety of real-world conditions, such as model error and

coarsely categorized data, which were not included in our simulation. The

effects of such conditions on parcel-allocation variability need to be studied

more systematically.

7The researcher does not have to analyze these parcel-level data sets in Mplus; however, Mplus’s

Monte Carlo facility makes it easy to do so. A researcher could instead analyze these parcel-level

data sets in batch mode, in other software programs, and compile the results independently.
8Of historical interest, we note a relation between the present research on parcel-allocation

variability and early concern regarding variation in split half reliability across alternate splits of

test items. Specifically, the former is analogous to taking a set of items, forming two parcels, and

looking at the variation in the correlation between those two parcels. Cronbach (1951, pp. 309–

311) discussed topics similar to those covered here, such as random versus purposive splitting,

obtaining the mean of the distribution of all possible splits (i.e., coefficient alpha), and the fact that

smaller variability was found within-sample across splits than within-split across-sample. Further

connections are possible but are not pursued here.
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Third, our simulations used 100 allocations per sample to conserve computing

time. Selected checks with 500 allocations per sample yielded the same overall

pattern of simulation results. Future research is needed to investigate how large

the parcel-allocation distribution needs to be in order to obtain a stable allocation

distribution standard deviation and range for a single sample—given size of the

model, number of items, and number of parcels. In practice, researchers with

a single sample should ensure that if they incremented their chosen number of

allocations (e.g., from 100 to 150) their results remain stable; if they do not, the

number of allocations should be increased.

Fourth, space did not permit a detailed presentation of parcel allocation

variability in standard errors. Standard errors of parameter estimates vary across

allocations within sample, just as parameter estimates do. Such parcel alloca-

tion variability in standard errors can be inferred from the varying statistical

significance rates across allocations in Tables 2 and 5. For further details, we

have provided an online appendix with plots similar to Figures 3, 4, and 5 but

for analytic standard errors of the factor correlation rather than the correlation

estimate itself (see website or contact the first author).

CONCLUSIONS

Many researchers currently use parceling (Bandalos & Finney, 2001)—

presumably often under low item communalities and low N , as is commonly

recommended. We showed that under these conditions, the amount of within-

sample parcel-allocation variability in structural parameter estimates and model

fit can be concerning—enough to alter substantive conclusions. Under these

circumstances, we recommend using our software tools to report the magnitude

of parcel-allocation variability and to minimize the effects of allocation-to-

allocation variability on substantive conclusions.
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