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Supplemental Online Appendix 

 

This online appendix accompanies Sterba and Bauer (2010)  “Matching method with theory in 

person-oriented developmental psychopathology research” Development & Psychopathology, 22, 

239-244. Here we present model equations for each person-oriented method discussed in the 

manuscript. Here we also provide examples of how to test person-oriented principles listed in 

manuscript Table 1—where possible—using a given method. In each case rejecting the null 

hypothesis listed ( oH ) constitutes support for the person-oriented principle. 

 

Less-restrictive variable oriented methods 

 

         Latent growth model (LGM). Like all structural equation models, the LGM consists of a 

measurement model and a structural model.  Let iy  be a p x 1 vector of repeated measures for 

person i. In Figure 1 Panel A, p=5. The measurement model is 

i i i= + +y υ Λη ε  where often ~ (0, )i Nε Θ .   (1) 

The structural model is 

i i= +η α ς  where ~ (0, )i Nς Φ .   (2) 

υ  is a p x 1 vector of item intercepts fixed to 0 (not shown in Figure 1 Panel A).Λ is a p x q 

matrix of factor loadings (fixed to 1, 1, 1, 1, 1 for the first column and 0, 1, 2, 3, 4 for the second 

column in Figure 1 Panel A to define intercept and slope growth factors). iη is a q x 1 vector of 

latent growth factor scores, and in Figure 1 Panel A q=2. iε  is a p x 1 vector of time-specific 

residuals. Θ is a typically-diagonal p x p covariance matrix of iε . α is a q x 1 vector of growth 

factor means (not shown in Figure 1 Panel A). iς is a q x 1 vector of individual deviations from 

those growth factor means. Φ is a typically-unstructured q x q covariance matrix of iς . 

Manuscript Table 2 lists which person-oriented principles are testable with LGM. Next we give 

examples of how these principles could be tested.  

(1) Interindividual differences/intraindividual change principle. Assuming pattern 

summarization and pattern parsimony principles are invalid, an example of testing the 
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interindividual differences/intraindividual change principle is 0 11: 0H φ =  in Figure 1 Panel A 

(i.e. no slope variability). 

(2) Individual specificity principle. Under the same assumption, an example of testing the 

individual specificity principle is 0 : 0H =Φ (i.e. no variance or covariance in growth factors). 

(3) Complex-interactions principle. Under the same assumption, an example of testing the 

complex-interactions principle in the LGM in Figure 1 Panel A is to expand the structural model 

in Equation (2) to regress growth factors on a vector of person-level predictors. An example 

vector of person-level predictors is 1 2 1 2[ ,  ,  ]i i i i ix x x x ′=x ,  though more predictors and interaction 

terms could certainly be included. This yields: 

i i i= + +η α Γx ς   (3) 

where iη , iς , and α  are 2 x 1, ix  is 3 x 1, and Γ is a 2 x 3 matrix of regression coefficients. 

Then, we can, for example, test: 0 23: 0H γ =  (time by 1ix by 2ix interaction). 

(4) Holism principle. Limited testing of the holistic principle in the LGM is possible by 

expanding the univariate Equation (1)-(2) to include one or more parallel growth processes. 

Supposing the original growth process (labeled (a)) and additional growth process (labeled (b)) 

each had p=5 and q=2, this would entail stacking the vectors of repeated measures, intercepts, 

and residuals for the two processes 
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iε are now each 10 x 1. We would also stack vectors of growth factor scores, growth factor 

means and mean deviations for the two processes, 
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that iη , iς , and α  are now each 4 x 1. We would expand 
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to be 10 x 4 and 

block diagonal with 5 x 2 blocks and expand 
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( )bΘ , and ( , )a bΘ are each 5 x 5 diagonal matrices. Finally, we would expand 
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to be 4 x 4 where ( )aΦ , ( )bΦ , and ( , )a bΦ are each 2 x 2 and unstructured. Testing the 

interdependency aspect of the holism principle could involve seeing if growth factors track 



       Appendix: Person-oriented methods and theory 

               A3

together over time, i.e.
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. Testing the reciprocity aspect of the holism 

principle could involve instead seeing if growth factors predict each other by reparameterizing 

the model so that Φ  is block diagonal with 2 x 2 blocks, and then expanding the structural model 

into Equation (4): 

i i i= + +η α βη ς   (4) 

 Here again iη , iς , and α  are 4 x 1, and β is 4 x 4. Then, an example of testing the reciprocity 

aspect of the holism principle would be 0 : 0H =β .  

 

Classification methods 

 

          Latent class growth model (LCGM). The measurement model for p repeated measures 

on person i in latent class k is: 

ik k k ik ik= + +y υ Λ η ε where often ~ (0, )ik kNε Θ   (5) 

The structural models are 

ik k=η α   (6) 

1
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Here iky  is a p x 1 vector of repeated measures for person i in class k, where p=4 in Figure 1 

Panel B. There are a total of K classes. kυ  is a p x 1 vector of class-specific item intercepts fixed 

to 0 (not shown in Figure 1 Panel B). kΛ is a p x kq  matrix of loadings of repeated measures on 

kq growth parameters in class k. ikη is a kq  x 1 vector of class-specific latent growth 

parameters. ikε  is a p x 1 vector of time-specific residuals for class k. kΘ is a typically-diagonal p 

x p covariance matrix of ikε . kα is a kq  x 1 vector of class-specific means (not shown in Figure 1 

Panel B). Finally kπ is the probability of membership in class k which is calculated from a no-

predictor multinomial logistic regression with intercept kν . 

Manuscript Table 2 lists which person-oriented principles are testable with LCGM. Next we give 

examples of how these principles could be tested. 
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 (1) Pattern parsimony. Assuming that the pattern summary principle is valid, testing the pattern 

parsimony principle in the LCGM could involve comparing the fit of K=2, 3…class models and 

ascertaining whether the optimally fitting number of classes is < a predefined ‘small’ number.  

(2) Complex interactions principle. Under the same assumption, testing the complex interactions 

principle in the LCGM could involve adding a vector of person-level predictor(s) of class k 

membership such as 1 2 1 2[ ,  ,  ]ik ik ik ik ikx x x x ′=x  in Equation (7)  

1

exp( )( ) =
exp( )

k k ik
k i K

k k ik
k
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ν

=

+

+∑
δ x

δ x
     (7) 

Where here kδ is 1 x 3 and here ikx is 3 x 1. Then testing implicitly for interactions in the 

prediction of growth parameter values could entail, 0 : .kH =δ δ   

(3) Holism principle. Limited testing of the holism principle is possible by expanding the 

univariate equation (5)-(6) to also model, for example, a second longitudinal behavior, having 

j=1…J  trajectory classes. For each of j classes in the second growth process, a jΛ would need to 

be specified and jΘ  and jα would need to be estimated. Finally, the two growth processes would 

be longitudinally linked by estimating |k jπ  , the conditional probability of membership in class k 

of process 1 given membership in class j of process 2 (see Nagin & Tremblay, 2001). Given that 

jπ was estimated from the first process in Equation (6) and |k jπ was estimated from the second 

process, both of these quantities can be used to solve for: |j kπ ,  the conditional probability of 

membership in class j of process 1 given membership in class k of process 2, and jkπ ,the joint 

probability of membership in class j and k. Then, testing the interdependency aspect of the 

holism principle could involve 0 |:" k jH π  not different than chance or |j kπ not different than 

chance or jkπ not different than chance” and testing its reciprocity aspect could involve 

0 :H ” |k jπ  not different than chance and |j kπ not different than chance.” 

 

          Latent Markov model. The latent Markov model for a response pattern on one binary 

variable measured at 4 timepoints (e.g. 1,0,1,1 or 0,0,0,1 or 1,1,0,0), as shown in Figure 2 Panel 

C, is   
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| | |
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Here, δ and ρ ’s are scalar, measurement model parameters and τ ’s are scalar, structural model 

parameters. Here also there are K latent statuses at time 1, M at time 2, N at time 3 and O at time 

4. kδ are initial latent status probabilities, which sum to 1 across K. kρ is the probability of item 

endorsement at timepoint 1 given membership in latent status k at timepoint 1. mρ is the 

probability of item endorsement at timepoint 2 given membership in latent status m at timepoint 

2. nρ is the probability of item endorsement at timepoint 3 given membership in latent status n at 

timepoint 3. oρ is the probability of item endorsement at timepoint 4 given membership in latent 

status o at timepoint 4. (Note that if there were not one but J measures per timepoint, as in a 

latent transition model, we would simply replace kρ , mρ , nρ , oρ  with 

| | | |
1 1 1 1

, , ,
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∏ ∏ ∏ ∏  in Equation (8). Note also that the latent Markov 

model requires kρ = mρ = nρ = oρ but the latent transition model does not.) kρ , mρ , nρ , oρ each 

sum to 1 across their respective binary response categories.τ ’s are scalar transition probabilities 

from a particular latent status at a prior timepoint to a particular latent status at the current 

timepoint. Hence, |m kτ denotes the probability of transitioning to membership in status m at 

timepoint 2 given membership in status k at timepoint 1 (there are a K x M such probabilities). 

|n mτ  denotes the probability of transitioning to membership in status n at timepoint 3 given 

membership in status m at timepoint 2 (there are a M x N such probabilities). Finally, |o nτ  

denotes the probability of transitioning to membership in status o at timepoint 4 given 

membership in status n at timepoint 3 (there are N x O such probabilities).   

Manuscript Table 2 lists which person-oriented principles are testable with latent Markov model. 

Next we give examples of how these principles could be tested. 

(1) Pattern parsimony principle. Assuming that the pattern summary principle is valid, testing 

the pattern parsimony principle in the latent Markov model could involve comparing the fit of 

K=2, 3…statuses, M=2, 3…statuses, N=2, 3…statuses, O=2, 3…statuses and ascertaining 

whether the optimally fitting number of statuses/timepoint is < a predefined ‘small’ number.  
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(2) Complex interactions principle. Under the same assumption, testing the complex interactions 

principle in the latent Markov model could involve, for example, adding a vector, ix , of person-

level predictor(s) of latent transition probabilities. This would entail including a multinomial 

logistic regression to predict latent transition probabilities: 

|

1

exp( )( )
exp( )

m km m i
m k i M

m km m i
m

α βτ
α β

=

+ +
=

+ +∑
γ x

γ x
 (9) 

In Equation (9), kmβ denotes the difference in log odds of being in class m vs. the reference class 

at time 2 for persons in class k at time 1—compared to the reference class. The mγ  allows the 

effect of ix  on k-to-m transition probabilities to differ across latent statuses m (see Nylund, 2007 

for examples). Testing for a status by ix  interaction could be accomplished by  0 : mH =γ γ . 

(3) Holism principle. Limited testing of the holism principle in the latent Markov model would 

be possible if the longitudinal sequence of another, entirely different, behavior were modeled 

simultaneously (not multiple indicators of the same repeated construct as in latent transition 

analysis). This is called an associative latent Markov model (Flaherty, 2008). Suppose the second 

behavior had V latent statuses at time 1, W at time 2, X at time 3, and Z latent statuses at time 4. 

Then, in the associative latent Markov model, kδ would be estimated as in Equation (8), but now 

transition probabilities would be conditional on current status on the second behavior as well (i.e. 

| , | , | ,,  , and k m v m n w n o xτ τ τ ), and response probabilities for each item would be conditional on current 

latent statuses for both behaviors (i.e. , , , ,,  ,  ,and k v m w n x o zρ ρ ρ ρ ). As well, initial status for the 

second behavior would be conditional on initial status of the first behavior (i.e. |v kδ ), and 

transition probabilities for the second behavior would be conditional on prior and current latent 

status for the first behavior (i.e., | , , | , , | , ,,  ,  w v k m x w m n z x n oτ τ τ  ; see Flaherty’s 2008 Appendix for 

similar model). Then, testing the reciprocity aspect of the holism principle from timepoint 1 to 2, 

for example, could involve evaluating: 0 | , , | | , |:  =  and =  w v k m w v k m v k mH τ τ τ τ (i.e. that transition 

probabilities on one behavior do not depend on current and/or prior latent status membership in 

the other behavior). Testing the interdependency aspect of the holism principle at timepoint 1, for 

example, could involve evaluating 0 |: v k vH δ δ= (i.e. that initial latent status probabilities on the 

second behavior do not depend on initial latent status probabilities on the first behavior). (Note: 
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although such models can in principle be fit in structural equation modeling programs, estimation 

problems can arise with increasing numbers of states/timepoint and timepoints.) 

 

Hybrid classification methods 

 

             Growth mixture model (GMM). The measurement model for p=4 repeated measures 

on person i in latent class k from Figure 1 Panel D is: 

ik k k ik ik= + +y υ Λ η ε  where often ~ (0, )ik kNε Θ . (10)                         

The structural models are  

ik k ik= +η α ς  where ~ (0, )ik kNς Φ   (11) 

1
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All notation is as defined in the LCGM except for ikς , which is a kq  x 1 vector of class-specific 

individual deviations from growth factor means and kΦ , which is a typically-unstructured 

kq x kq  variance-covariance matrix of ikς  for class k. 

Manuscript Table 2 lists which person-oriented principles are testable with the GMM. Next we 

give examples of how these principles could be tested.  

(1) Pattern summary. Assuming that trajectory classes represent population subgroups, testing 

the pattern summary principle in GMM could entail 0 : 0H K = , but see qualifications/cautions 

in the text.  

(2) Pattern parsimony. Under the same assumption, testing the pattern parsimony principle 

could entail 0 :H K < ‘predefined small number’, but see qualifications in the text. 

(3) Interindividual differences/intraindividual change. Under the same assumption, an example 

of testing whether there is remaining interindividual variability in change, over and above that 

which was accounted for by kα differences would be 0 11: ( ) 0kH φ = , in Figure 1 Panel D.  

 (4) Individual specificity principle. Under the same assumption, an example of testing whether 

there is remaining individual specificity, after accounting for kα differences, is 0 : 0.kH =Φ   

(5) Complex interactions principle. Under the same assumption, testing the complex-interactions 

principle in the GMM in Figure 1 Panel D could involve both adopting strategies employed for 
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detecting explicit interactions in the prediction of growth factors from LGM (i.e. including a 

vector of person-level predictor(s) 1 2 1 2[ ,  ,  ]ik ik ik ik ikx x x x ′=x  of growth factors within-class): 

ik k k ik ik= + +η α Γ x ς   (12) 

and strategies employed for detecting implicit interactions in the prediction of growth parameter 

values from LCGM (i.e. including a vector of person-level predictor(s) ikx of class membership): 

1

exp( )( ) =
exp( )

k k ik
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k k ik
k

νπ
ν

=

+

+∑
δ x

δ x
  (13) 

 Then we could, for example, test 0 23: ( ) 0kH γ =  (i.e. that there is no time by 1ix by 

2ix interaction) from Equation (12) and test 0 : kH =δ δ from Equation (13). 

(6) Holism principle. Finally, in theory, limited testing of the holism principle in GMM could be 

possible using the same procedures discussed for the LCGM model. 

          Mixed latent Markov model. The mixed Latent Markov model for a response pattern on 

one binary variable measured at 4 timepoints (e.g. 1,0,1,1 or 0,0,0,1 or 1,1,0,0), as shown in 

Figure 2 Panel E, is  

| | | , | | , | | , |
1 1 1 1 1

( )
C K M N O

c k c k c k m c m c m n c n c n o c o c
c k m n o

P y π δ ρ τ ρ τ ρ τ ρ
= = = = =

=∑∑∑∑∑  (14) 

Here, there are C latent chains which allow for across-chain heterogeneity in longitudinal status-

to-status behavioral sequences. The proportion of membership in chain c is denoted cπ and all 

other model parameters are as defined in the latent Markov model—except that they are now 

conditioned on chain membership also. Note that, in this model, parameters are often constrained 

equal across chain or fixed in one chain / free the other. 

Manuscript Table 2 lists which person-oriented principles are testable with the mixed latent 

Markov model. Next we give examples of how these principles could be tested.  

(1) Pattern parsimony principle. Assuming that the pattern summary principle is valid, testing 

the pattern parsimony principle in the mixed latent Markov model could involve comparing the 

fit of K=2, 3…statuses/chain, M=2, 3…statuses/chain, N=2, 3…statuses/chain, O=2, 

3…statuses/chain ascertaining whether the optimally fitting number of statuses/timepoint in each 

chain is < a predefined ‘small’ number.  
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(2) Individual specificity principle. Under the same assumption, testing the individual specificity 

principle could involve 0: =1 H C .  

(3) Interindividual differences/intraindividual change principle. Under the same assumption, 

testing the interindividual differences/intraindividual change principle could involve the more 

specific hypothesis that the transition probabilities are the same across chain: 

0 | , | | , | | , |:  ;  ;  k m c k m m n c m n n o c n oH τ τ τ τ τ τ= = = .  

(4) Complex interactions principle. Under the same assumption, testing the complex interactions 

principle in the mixed latent Markov model could involve adding person-level predictors of 

within-chain latent transition probabilities (much like in Equation (9)).  

(5) Holism principle. Finally, although limited testing of the holism principle using similar 

procedures to those described in the latent Markov section is in principle possible, in practice it 

is unlikely that multiple chains and multiple Markov processes within chain would be estimable. 

 

Single subject methods 

 

P-technique factor model. The measurement model for p variables on t occasions for 

one person is 

t t t= +y Λη ε  where often ~ (0, )t Nε Θ .         (15) 

The structural model is  

t t=η ς  where ~ ( , )t Nς 0 Φ .    (16) 

Note that the conventional p-technique model has no mean structure. Here ty  is a p x 1 vector of 

observed variables, where in Figure 1 Panel F p=20 . q=number of process-factors, which in 

Figure 1 Panel F is 2. Λ is a p x q matrix of process-factor loadings, where q is the number of 

process-factors. tη is a q x 1 vector of process-factor scores that vary across timepoints t. tε  is a p 

x 1 vector of residuals. Θ is a typically-diagonal p x p covariance matrix of tε . tς is a q x 1 

vector of time-specific deviations from process factor means; (these means are assumed to be 0). 

Φ is a typically-unstructured q x q covariance matrix of tς . 
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We only describe testing person-oriented principles with respect to the dynamic factor model 

below, as the p-technique model was only presented as an intermediate step to build up to the 

dynamic factor model. 

Dynamic factor model. The measurement model for p variables on t occasions for one 

person and for only 1 lag (as in Figure 2 Panel G) is 

= +y Λη ε  where ~ (0, )Nε Θ .  (17) 

The structural model allowing for mean trend (Molenaar, de Gooijer, & Schmitz, 1992) (not 

shown in Figure 1 Panel G) is: 

τ= +η γ ς  where ~ (0, )Nς Φ .    (18) 

This particular dynamic factor model is often called a white noise factor model with 

nonstationarity of means or a shock factor model with nonstationarity of means (Browne and 

Nesselroade, 2005). However, this model still requires that there be no systematic trend in 

variances/covariances of the repeated measures, or that such a trend has been removed. Here 
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y
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y
 is a 2p x 1 vector which contains ty , a p x 1 vector of lag-0 measured variables, 

stacked on top of 1t−y , a p x 1 vector of lag-1 measured variables. In Figure 2 Panel G y  would 

be of dimension 40 x 1, as there are 20 lag-0 measures constituting the vector ty and 20 lag-1 

counterparts constituting the vector 1t−y . q is the number of process factors, where in Figure 2 

Panel G q=2.Λ is dimension 2p x 3q and contains lag-0 p x q factor loading matrix (0)Λ and lag-

1 p x q factor loading matrix (1)Λ in the following pattern: 
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η
is a 3q x 1 vector which contains factor scores for process 

factors at lag-0, i.e. tη and lag-1, i.e. 1t−η  and lag-2 2t−η . Note that 2t−η  are included even though 

this is only a 1-lag model because they are needed to specify the initial condition/history of the 

two processes prior to the first measurement occasion. 
1

t

t−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

ε
ε

ε
is a 2p x 1 vector of residuals. 
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Θ Θ
is a 2p x 2p covariance matrix of the ε ’s, and has a specialized (block-
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Toeplitz) form such that (0)Θ   =COV ( tε , tε  ) =COV( 1t−ε , 1t−ε  ), which is p x p and diagonal, and 

(1)Θ  =COV( tε , 1t−ε ), which is  p x p and diagonal. This allows residuals to be correlated across 

but not within lag. γ is a 3q x 1 vector of slopes relating process factors to time. τ is a scalar time 

variable denoting the occasion. 1

2

t

t

t

−

−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

ς
ς ς

ς
is a 3q x 1 vector of stochastic terms. Φ  is a 3q x 3q  

block-diagonal covariance matrix of the ς  , with equal blocks, where ς ’s have variances of 1 

and are allowed to be correlated only within lag.  Fitting this model using structural equation 

modeling software requires first adding a time variable τ  (e.g. with values 1 to 71 if there were 

71 occasions) to the occasion by variables data matrix and then converting this matrix into a 

Block Toeplitz form; (SAS Macro for doing so is available from Wood & Brown, 1994). See 

Hershberger (1998) for code for fitting this model. 

Manuscript Table 2 lists which person-oriented principles are testable with the dynamic factor 

model. Next we give examples of how these principles could be tested. 

(1) Pattern summary principle.  If we had p variables on t occasions for more than one person, 

we could denote this as  

i i i i= +y Λ η ε  where ~ ( , )i iNε 0 Θ . (19) 

i i iτ= +η γ ς  where ~ ( , )i iNς 0 Φ . (20) 

Then we could test whether there is evidence of measurement invariance of intra-individual 

processes across persons. That is, we could test (a) :oH “ the same number of process factors q is 

best-fitting across persons.” If so, we could test (b) :o iH =Λ Λ , (i.e. that the magnitude of lag-0 

and lag-1 loadings in iΛ  is equal across persons). If so, we could test (c) :o iH =Θ Θ , (i.e. 

residual variances in iΘ are equal across persons). If the above three hypotheses (a)-(c) were 

supported within groups of persons, but not across groups of persons, this yields evidence for the 

pattern summary principle.  

(2) Pattern parsimony principle. The pattern-parsimony principle is supported to the extent that 

the number of groups (i.e. number different best-fitting models) is much less than the number of 

persons whose data were modeled.  
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(3) Individual-specificity principle. We may further test whether structural parameters, for 

example, still vary across persons within each group, i.e. :o iH =Φ Φ and :o iH =γ γ , which 

would be indicative of some remaining individual-specificity. Also, if certain individuals have 

their own unique best-fitting dynamic factor model, this too supports the individual specificity 

principle. 

(4) Interindividual differences/intraindividual change. Although no variance trends are allowed 

here, if mean trends were found and included in the model, we could test whether these 

intraindividual mean changes had interindividual variability with :o iH =γ γ . 

 

 

 

 


