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Alternative Model-Based and
Design-Based Frameworks for

Inference From Samples to Populations:
From Polarization to Integration

Sonya K. Sterba
University of North Carolina at Chapel Hill

A model-based framework, due originally to R. A. Fisher, and a design-based

framework, due originally to J. Neyman, offer alternative mechanisms for inference

from samples to populations. We show how these frameworks can utilize different

types of samples (nonrandom or random vs. only random) and allow different

kinds of inference (descriptive vs. analytic) to different kinds of populations

(finite vs. infinite). We describe the extent of each framework’s implementation

in observational psychology research. After clarifying some important limitations

of each framework, we describe how these limitations are overcome by a newer

hybrid model/design-based inferential framework. This hybrid framework allows

both kinds of inference to both kinds of populations, given a random sample.

We illustrate implementation of the hybrid framework using the High School and

Beyond data set.

Nonrandom sampling involves selecting units (e.g., persons) with unknown

probabilities of selection from a finite population of units. This finite population

may be poorly defined (e.g., all persons who saw a flier posted on a community

bulletin board) or well defined (e.g., all children attending licensed daycare

centers in Dayton, Ohio). Nonrandom, or purposive, sampling is common in

observational psychology research. For example, 76% of observational studies
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712 STERBA

in 2006 issues of Journal of Personality and Social Psychology, Developmen-

tal Psychology, Journal of Abnormal Psychology, and Journal of Educational

Psychology used nonrandom samples (Sterba, Prinstein, & Nock, 2008). Psy-

chologists often raise the following two questions about nonrandom samples in

observational research (e.g., Jaffe, 2005; Peterson, 2001; Sears, 1986; Serlin,

Wampold, & Levin, 2003; Sherman, Buddie, Dragan, End, & Finney, 1999;

Siemer & Joorman, 2003; Wintre, North, & Sugar, 2001).

1. Can statistical inferences be made from nonrandom samples; if so, under

what conditions and to what population?

2. Do inferences made from nonrandom samples differ from those possible

under random sampling?

According to some psychology research methods texts, the answer to the first

question is no: “Although these purposive sampling methods are more practical

than formal probability sampling, they are not backed by a statistical logic

that justifies formal generalizations” (Shadish, Cook, & Campbell, 2002, pp.

24, 356; see also Cook & Campbell, 1979, pp. 72–73).1 However, according

to other psychology research methods texts, formal statistical inferences from

nonrandom samples are possible under certain conditions (e.g., Cronbach, 1982,

pp. 255, 158–166).

Again consulting psychology research methods texts, the answer to the second

question remains unclear. For example, Shadish et al. (2002) note that randomly

selecting units—that is, sampling units with known probabilities of selection

from a well-defined finite population of units—facilitates generalization from

those sample units to the finite population by ensuring a “match between sample

and population distributions on measured and unmeasured attributes within

known limits of sampling error” (p. 343; see also Cook & Campbell, 1979,

p. 75).2 But specifics are not provided as to whether the known probabilities of

selection actually feature in statistical inference. We also are not told whether

different methods of analysis need or can be used with random samples versus

nonrandom samples in order to achieve such inference.

1Cook and Campbell (1979, pp. 72–73) indicate that nonrandom sampling precludes statistical

inference (which they term strict generalizing) from samples to populations. They further state that

generalizing from a sample to a population logically presupposes generalizing across subgroups

within a population (e.g., boys vs. girls). Nevertheless, because of the rarity of random samples,

they state that they will deemphasize the first step (generalizing to a population) to focus on the

second step (generalizing across subpopulations).
2For this reason, Shadish et al. (2002, pp. 472–473) state that randomly selecting units facilitates

external validity. Moreover, Shadish et al. (2002, pp. 55–56) also imply that random selection would

facilitate internal validity by decreasing risk of selection bias (defined later).
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ALTERNATIVE INFERENTIAL FRAMEWORKS 713

The first goal of this article is to comprehensively address these two questions

by describing alternative inferential frameworks for nonrandom and random

samples. To answer the first question, we present a model-based statistical

framework, due originally to Ronald Fisher, for inference from nonrandom or

random samples to what we will term infinite populations. We make explicit the

statistical logic that allows formal generalization under this framework, and we

describe the extent of this framework’s implementation in psychology. To answer

the second question, we then present a design-based3 statistical framework, due

originally to Jerzy Neyman, for inference from random samples only to what

we will term finite populations. We make explicit that different methods of

analysis and different kinds of inferences are available exclusively under random

sampling, and we describe the extent of this framework’s implementation in

psychology. However, we then show that each framework has a set of important

limitations. The second goal of this article is to explain how these limitations can

be overcome using a newly developed hybrid model/design-based framework.

The hybrid framework allows inference from random samples to finite or infinite

populations and offers some unique strengths. We demonstrate its strengths by

showing that it can correct potential limitations of an often-cited High School

and Beyond study analysis (Raudenbush & Bryk, 2002; Singer, 1998).

BACKGROUND: BEFORE SAMPLING

To orient ourselves, consider that no statistical framework for inference from

a sample to a population was available until the early 20th century. Before

that point, social, health, and economic data on a state or country was gen-

erally gathered via complete enumeration (Stephan, 1948). However, desire to

obtain estimates at lower cost eventually prompted consideration of sampling.

Kiaer (1895) suggested nonrandom sampling whereas Bowley (1906) suggested

random sampling. Initially, both sampling methods were distrusted for lacking

a viable statistical framework for inference from the sample to a population.

But instead of one inferential framework, two were proposed. Philosophical

differences between prominent statisticians (Fisher vs. Neyman/Pearson) re-

garding the definition of a population and the role of models in data analysis

resulted in these two alternative frameworks (Lenhard, 2006). Fisher’s (1922)

inferential framework came to be called the model-based framework. Neyman’s

3Note that the term “design-based inference” is not used here in the familiar research design

sense. That is, by design-based, we are not referring to using research designs (e.g., regression

discontinuity design) to aid causal inference and minimize validity threats. As discussed later, we

are referring to using random selection probabilities (i.e., sampling design) as the sole basis for

analysis and inference once the data are collected.
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714 STERBA

(1934) inferential framework came to be called the design-based framework. In

what follows, we deemphasize the rhetoric of Fisher and Neyman’s often-heated

disagreements (they clashed on many other topics as well, including statistical

hypothesis testing and confidence intervals; Dawid, 1991; Fienberg & Tanur,

1987). We focus instead on their frameworks’ requirements and logic.4

MODEL-BASED INFERENTIAL FRAMEWORK

Fisher’s perspective was that empirical random sampling would not always be

feasible, particularly for observational studies in sociology and economics (e.g.,

Fisher, 1958, p. 264). Fisher also held that statistical modeling should play a

central role in data analysis; that is, model building and modification should

mediate between real-world problems and mathematical testing with the data

at hand (Fisher, 1955, pp. 69–71; Lenhard, 2006). Hence, Fisher developed

an inferential framework that relied on modeling—particularly, distributional

assumptions—to mimic random sampling, even when empirical random sam-

pling was absent.

Fisher’s model-based framework acknowledged at the outset that nonrandom

sampling indeed affords no statistical basis for generalizing from sample statis-

tics to parameters of a particular finite population. Here, a finite population

is defined as all units which had a nonzero probability of selection into that

particular sample (see Figure 1). However, although nonrandom sampling does

not permit finite population inference, Fisher (1922) showed that a different

type of inference was possible using nonrandom sampling—infinite population

inference. To implement Fisher’s framework for infinite population inference,

three prerequisite steps were necessary, as follows (see also Cronbach, 1982,

chaps. 5–6). As we discuss later, psychology researchers often implement the

first two required steps but partially or fully neglect the third.

Step 1. As a first step, a statistical model needs to be formulated by the

researcher (Fisher, 1922, pp. 311–312). A statistical model describes how the

dependent variable(s) are thought to have been generated. An example statistical

model is a simple linear regression model which posits that the dependent

variable yi is generated as a function of a known, fixed independent variable

(xi) and error:

yi D “0 C “1xi C ©i : (1)

4Fisher and Neyman had some agreements as well, including the importance of random

assignment to treatment in experiments (Fisher, 1925, 1935; Neyman, 1923). However, Fisher kept

his work on experimentation (not discussed here) and inference (discussed here) markedly separate,

such that he ironically advocated at times for minimizing scope of modeling in experimental data

analysis (Kempthorne, 1976).
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ALTERNATIVE INFERENTIAL FRAMEWORKS 715

FIGURE 1 Schematic of alternative populations of inference and mechanisms for infer-

ence.

All possible y-values that could be generated by the model make up a hypothet-

ical, infinite population (Fisher, 1922, pp. 311–312). The targets of inference

under Fisher’s framework are the model parameters (e.g., regression coefficients,

“), which characterize this hypothetical, infinite population. The purpose of

the statistical model is to provide a link between the observed units in the

sample and the unobserved units in the infinite population, enabling causal or

analytic inferences to pertain to these unobserved units as well (Royall, 1988;

see Figure 1). In Cronbach’s (1982) terms, “The model is used to reach from u

[sampled units : : : ] to U [population units]” (p. 161; see also p. 163).5

Step 2. Naturally, we need to be able to consider our observed y-values as re-

alizations of a random variable in order to be able to explain their variability. But

5Cronbach (1982) is not only concerned with inferences from sample to population units (e.g.,

persons) but also generalizations from sample to population observations, settings, and treatments—

together called utos. We focus on u in this article.
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716 STERBA

this leap is not automatic. Indeed, at this point, we have established no grounds

under which to consider observed y-values as anything but fixed quantities

pertaining to sampled units. One rationale for considering y-values as realizations

of a random variable would be if each y-value was associated with a known,

nonzero probability of selection. However, this rationale is not available to us

because such selection probabilities are unknown under nonrandom sampling.

Instead, as a second step, a parametric distributional assumption needs to be

imposed on the model in order to convert the fixed y-values obtained for the

sampled units into realizations of a random variable y (Fisher, 1922, p. 313).

An example of a parametric distributional assumption is the requirement ©i
iid
�

N.0; ¢2/, that is, that the errors in our regression model are independently and

identically distributed with mean 0 and variance ¢2. This assumption serves to

convert the error term into a random variable that, in turn, converts the dependent

variable y into a random variable (Neter, Kutner, Nachtsheim, & Wasserman,

1996, Theorem A.40). Hence, by imposing a parametric distributional assump-

tion, we render our y-values epistemically random (Johnstone, 1989) under our

model—regardless of whether or not empirical random sampling was actually

used at the data collection stage. Because random variation in the observed

outcome y is introduced by model assumption, not by design, data analysis under

Fisher’s framework lacks a formal requirement of empirical random sampling

(see Johnstone, 1987, 1989). Instead, Fisher’s framework requires only that

the distributional assumption(s) imposed by the model be reasonable in light

of the sample selection mechanism actually used (see also Cronbach, 1982,

pp. 164–165). For example, by invoking the iid assumption, we claim that

our distribution of y-values does not differ meaningfully from the distribution

that would have been generated by empirical simple random sampling. This

is because an independent and identical distribution of y-values is actually the

same distribution as would be obtained if empirical simple random sampling

were repeatedly performed (Kish, 1996).

Step 3. Fisher recognized that under certain circumstances, a researcher’s

sample selection mechanism would meaningfully depart from that which would

have been generated by empirical simple random sampling. Under these circum-

stances, the sample selection mechanism could not be ignored during data analy-

sis, and Fisher’s framework required a third and final step (Fisher, 1956, pp. 33–

34, 36). These circumstances have since been made explicit (see Skinner, Holt, &

Smith, 1989; Smith, 1983a).6 The first circumstance occurs when sampling units

in the finite population were stratified (divided into nonoverlapping categories

such as employed/unemployed, inpatient/outpatient, rural/urban) before being

independently selected from each stratum. The second circumstance occurs when

6Cronbach (1982, chap. 6) discusses this step in the specific context of treatment-outcome

designs, which is not our focus here.
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ALTERNATIVE INFERENTIAL FRAMEWORKS 717

sampling units in the finite population were clustered (aggregated into groups,

such as schools, classrooms, households, mouse litters) before multiple units

from the same group were selected or before whole intact groups were selected.

The third circumstance occurs when the probability of selecting sampling units

from the finite population was disproportionate—such that probabilities of selec-

tion were related to the outcome variable even after controlling for independent

variables. Next, we illustrate the consequences of ignoring each stratification,

clustering, and disproportionate selection via case examples. We describe what

Step 3 of the model-based framework would require in each case. For each

case example, the Equation (1) model is true in the infinite population with

parameters “0 D 2, “1 D 3, and ¢2 D 1.

First, consider the case in which units were selected from each of several

strata (where strata variables are typically assumed to neither interact with nor

correlate with independent variables). Ignoring this fact during data analysis

typically results in standard errors that are too large (Kish & Frankel, 1974).

For example, standard errors are inflated by 49% for “0 and 46% for “1 if

there are four strata and the stratification variable correlates with the outcome at

r D :50.7 For this reason, Step 3 of Fisher’s framework requires the researcher

to condition his or her model on any strata indicators so that, after conditioning,

the infinite population is “subjectively homogeneous and without recognizable

stratification” (Fisher, 1956, p. 33). This third step is often called Fisher’s

conditionality principle (see Johnstone, 1987; Lehmann, 1993). According to

Fisher, after conditioning, nothing should distinguish the observed set of n y-

values from any other set of n y-values that could have been generated by the

model for the hypothetical, infinite population (Fisher, 1955, p. 72; 1956, pp.

55–57). In the case of stratification, conditioning would amount to expanding

the Equation (1) model to include strata indicators as fixed effects (see Skinner

et al., 1989). In Equation (2) dummy variables are included for three of the four

strata:8

yi D “0 C “1xi C “2strat1i C “3strat2i C “4strat3i C ©i : (2)

As long as this parametric model is properly specified, the conditional (model-

based) variance of O“1 across repeated samples that could be generated by the

7The magnitude of SE inflation was estimated using Asparouhov’s (2004) procedure. The

sample selection mechanism was implemented 500 times. The Equation (1) model, which ignores

stratification, was fit to each selected sample. Then, the empirical SD was divided by the average

analytical SE.
8It is important to note that if stratification variables did interact and correlate appreciably with

independent variables, additional product terms would need to be added to the model to account for

this.
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718 STERBA

model can then be used to make inferences about the target parameter “1 in the

infinite population.

Next, consider the case in which clusters, rather than individual units, are

selected. Ignoring this fact during data analysis typically results in standard

errors that are too small (Kish & Frankel, 1974). For example, standard errors

are shrunken by 55% for “0 and 57% for “1 if the residual correlation among

units within cluster is .15 and only “0 varies across clusters.9 In the case of clus-

tering, fulfilling Fisher’s conditionality principle could amount to expanding the

Equation (1) model to include cluster indicators as random effects (Raudenbush

& Bryk, 2002). That is, we could allow “0 and “1 to vary across clusters using

the multilevel modeling specification in Equation (3):

yij D “0j C “1j xij C ©ij

“0j D ”00 C u0j where

�

u0j

u1j

�

�

��

0

0

�

;

�

£00

£10 £11

��

:

“1j D ”10 C u1j

(3)

For example, in Equation (3), “1j varies across clusters with mean ”10, group-

specific deviation from this mean u1j , and variance of these group-specific

deviations £11. As long as this parametric model is properly specified, the

conditional (model-based) variance of O”10 across sets of samples that could

be generated by the model can then be used to make inferences about our target

parameter ”10 in the infinite population.

Finally, consider the case in which units are disproportionately selected, but

no stratification or clustering occurred. Ignoring this fact during data analy-

sis would have different consequences for “0 and “1 estimates depending on

precisely how the selection variables relate to the outcome after conditioning

on independent variables (e.g., Berk, 1983; Graubard & Korn, 1996; Skinner

et al., 1989; Sugden & Smith, 1984). To see this, consult Figure 2. Line A in

Figure 2 is the true population-generating regression line from Equation (1)—

before sample selection. The other plotted lines in Figure 2 show the effects

of several different selection mechanisms. (Plotted lines are calculated by av-

eraging postselection regression coefficient estimates from 500 repetitions of

each selection mechanism).10 Line B shows that selecting on a design variable

zi —a variable used in recruitment that is not of substantive interest in the

9Estimates of SE deflation were obtained by replicating this sample selection mechanism 500

times, analyzing each sample ignoring clustering, and then dividing the average analytical SE by

the empirical SD.
10In Lines B–F, cases were included if their scores on the designated selection variable were �

the mean.
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ALTERNATIVE INFERENTIAL FRAMEWORKS 719

FIGURE 2 Simulation demonstration: Effects of disproportionate selection in a single-

level model.

investigation—when zi correlates with independent variable results in intercept

and slope bias (here, rx;z D :50). Line C shows that selecting on a design variable

zi that is uncorrelated with independent variable xi and does not interact with xi

results only in intercept bias. Line D shows that selecting on a design variable zi

that is uncorrelated with independent variable xi and does interact with xi results

only in slope bias. Line E shows that selecting units directly on the outcome

yi results in both intercept and slope bias. The bias evident in Lines B–D is

often termed omitted variable bias and the bias evident in Line E is often

termed selection bias. Line B–E scenarios are often said to threaten external

validity because statements made about x-y relations in the whole population

on the basis of Lines B–E will be incorrect. Line B–E scenarios are also said

to threaten internal validity (Berk, 1983) because statements made about x-y

relations within the selected subpopulation only (e.g., persons with y-scores �
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720 STERBA

2 in Scenario E) will also be incorrect. Line F shows that only when we select

on an independent variable xi do we end up with no intercept bias and no slope

bias. So Line F selection could be considered “conditionally proportionate.” The

Line F results suggest how the disproportionate selection scenarios depicted in

Lines B–D could be accounted for in data analysis in order to fulfill Fisher’s

conditionality principle. For scenarios B–D, we can simply expand Equation (1)

to include the measured selection variable zi , and possibly its interaction term

with independent variables .xzi /, as covariates:11

yi D “0 C “1xi C “2zi C “3xzi C ©i : (4)

On the other hand, in the selection scenario depicted in Line E, Fisher’s con-

ditionality principle would require expanding Equation (1) to account for the

fact that the dependent variable is observed only when a selection threshold t is

exceeded:

y�

i D “0 C “1xi C ©i

yi D

(

y�

i if y�

i > t

missing if y�

i � t
:

(5)

This entails a truncated regression model (see, e.g., SAS Proc QLIM for imple-

mentation; SAS Institute Inc., 2004).12

Of course, these scenarios depicted in Figure 2 are simplistic because they

depict disproportionate selection when no clustering or stratification occurred in

the study design. In practice, there often may be disproportionate selection of

clusters, not of individuals, and/or there often may be disproportionate selection

at more than one stage of recruitment. Such complexities correspond to many

additional possible patterns of parameter bias from disproportionate selection

beyond those shown in Figure 2 (Grilli & Rampichini, 2003). To illustrate,

consider the case in which disproportionate selection occurred at Level 2 (cluster-

level) or Level 1 (individual-level), or both, and a researcher knew to account

for clustering using a multilevel specification, but the researcher ignored the

disproportionate selection. Suppose further that the researcher is substantively

interested in the effect of a Level 1 predictor xij on the outcome yij (i.e., ”10

in Equation (6)) and in the effect of a Level 2 predictor wj on the outcome yij

11Another literature, stemming from Pearson (1903), suggests algebraic adjustments for selection

on z that do not involve including z as a covariate. These usually require restrictive assumptions

(e.g., homoscedasticity, linearity) and have been demonstrated for very simple models.
12In truncated regression, independent and dependent variables are unobserved when a unit is

not selected. In another variant, censored regression, only dependent variables are unobserved when

a unit is not selected.
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ALTERNATIVE INFERENTIAL FRAMEWORKS 721

(i.e., ”01 in Equation (6)). Hence, the researcher specifies the following model:

yij D “0j C “1j xij C ©ij

“0j D ”00 C ”01wj C u0j where

�

u0j

u1j

�

�

��

0

0

�

;

�

£00

£10 £11

��

:

“1j D ”10 C u1j

(6)

Table 1 shows that if such a model is estimated ignoring disproportionate

selection occurring at Level 2 (cluster-level) or Level 1 (individual-level), or

both, there will be fixed effect bias as well as random effect variance bias.

Expanding this model to include (a) cluster-level selection variables as Level

2 covariates, (b) individual-level selection variables as Level 1 covariates, and

possibly (c) interaction terms between these covariates and other independent

variables in the model would serve to account for such multilevel dispropor-

tionate selection—thus fulfilling Fisher’s conditionality principle. Or, employ-

ing multilevel truncated regression would serve to account for disproportionate

selection on y (see, e.g., aML program for implementation; Lillard & Panis,

2000).

In sum, this section has provided an answer to the first question posed earlier:

“Can statistical inferences be made from nonrandom samples; if so, under what

conditions and to what population?” Statistical inferences can be made from

nonrandom samples to infinite populations under a model-based framework—if

Fisher’s requirements described in Steps 1–3 are met.

IMPLEMENTATION OF THE MODEL-BASED

FRAMEWORK IN PSYCHOLOGY

Although the models themselves that Fisher proposed (e.g., analysis of variance

[ANOVA]) were widely adopted in psychology, the conditionality principle from

the third step of his inferential framework was not. To see this, we revisit the ob-

servational studies that used nonrandom samples in Sterba et al.’s (2008) review.

Twenty-eight percent of these nonrandom samples reported one or more complex

sampling features (stratification, clustering,13 or disproportionate selection) but

accounted for all of them in statistical models (thus fulfilling Fisher’s condition-

ality principle). Fifty-eight percent of these nonrandom samples reported one or

more complex sampling features but did not account for all of them in statistical

modeling (thus violating Fisher’s conditionality principle). The remaining 14%

13Instances of clustering solely due to repeated measures within person were not counted toward

this total.
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ALTERNATIVE INFERENTIAL FRAMEWORKS 723

of these nonrandom samples reported no complex sampling features—either

because none were used or because those used were unobserved or unknown.

Hence, although it could be argued that sometimes observational researchers

are prevented from fulfilling Fisher’s conditionality principle because selection

variables, strata indicators, or cluster indicators are unobserved/unknown, it is

often the case that known, observed complex sampling features recorded in the

data set are simply not ones on which conditioning occurs in statistical models.

Researchers were more likely to account for complex sampling features

when they were viewed as relevant to substantive hypotheses, rather than a

nuisance induced by the design. For example, when researchers have substan-

tive hypotheses about how the factor structure of a measure differs across a

particular demographic variable zi (say, race or gender) involved in sample

selection, measurement invariance testing is often performed. Such measurement

invariance testing can be seen as a special case of the conditioning procedures

from Equation (5). That is, testing for factor loading invariance across levels of

continuous or binary variable zi for a generic item yi on a one-factor model,

we have

yi D ¤ C œ1˜i C œ2zi C œ3˜i zi C ©i ; (7)

where œ’s are slopes, ¤ is an item intercept, and ˜i is a latent independent

variable. Equation (7) follows the same logic as Equation (4), except the former

measured independent variables xi are now latent independent variables ˜i .

But measurement invariance testing was not consistently employed for selection

variables in all studies, but rather only when it garnered substantive interest.

It may be the case that Fisher’s conditionality principle is inconsistently

applied in psychology because the analysis of nonrandom samples is typically

motivated on pragmatic grounds—for example, budgetary limitations—rather

than the aforementioned statistical grounds (Serlin et al., 2003, p. 529; Shadish

et al., 2002, pp. 92, 342, 348). Perhaps because motivations for analyzing non-

random samples are disconnected from Fisher’s statistical framework, published

guidelines for analyzing nonrandom samples are as well. For example, Cook

(1993, pp. 42, 61) and Lavori, Louis, Bailar, and Polansky (1986, pp. 62–63)

note that merely mentioning selection criteria and clinically relevant facts about

participants (presumably in a methods or discussion section) can “substitute

for random selection when the latter is not possible.” No mention is made of

requiring conditioning on complex sampling features. Such recommendations

are reinforced by the APA’s Task Force on Statistical Inference (1999) that asks

members to “describe the sampling procedures and emphasize any inclusion and

exclusion criteria. If the sample is stratified (e.g., by site or gender) describe

fully the method and rationale” (p. 595). Although the Task Force subsequently

notes that “interval estimates for clustered and stratified random samples differ

from those for simple random samples” and that “statistical software is now
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724 STERBA

becoming available for these purposes,” (p. 595) it does not note that (a) the

same effects of stratification and clustering occur in nonrandom samples as well

and (b) worse effects result from disproportionate selection. Most disconcerting,

the Task Force again only gives the directive to describe complex sampling

features in prose—not statistically account for them in model specification, per

Fisher’s framework.

In sum, whereas in principle observational psychologists are allied with

Fisher’s model-based inference approach for nonrandom samples, in practice

the approach has often become dislodged from Fisher’s strict requirements (e.g.,

the conditionality principle).

DESIGN-BASED INFERENTIAL FRAMEWORK

In contrast to Fisher, Neyman and Pearson (1933) deemed the construction

of hypothetical infinite populations, and construction of models, to be fallible

and subjective. Neyman (1957) remarked that “a model is a set of invented

assumptions regarding invented entities such that if one treats these invented

entities as representations of appropriate elements of the phenomena studied,

the consequences of the hypotheses constituting the model are expected to agree

with observations” (p. 8). Neyman did not want inferences from a sample to the

finite population from which it was drawn to depend on appropriate specification

of a model and appropriate conditioning on all selection and design variables

(Lenhard, 2006). That is, Neyman did not want models to have a mediating role

in the validity of inference.

Motivated by his work with Pearson, Neyman developed an alternative design-

based inferential framework. Its target parameters were not hypothetical/infinite

population parameters, as in the model-based framework, but rather were finite

population parameters. Example finite population parameters are functions of

the dependent variable y: the mean of y in the case of a census of the finite

population, the total of y in the case of a census, or a ratio of totals. In the

design-based framework, the outcome y is converted into a random variable, not

through the introduction of epistemic randomness via imposition of distributional

assumptions, as in the model-based framework, but exclusively through the

introduction of empirical randomness from the random sampling design (Kish,

1965)—as follows.

Step 1. As a first step, rather than specifying the statistical model hypothesized

to have generated the outcome y in the hypothetical/infinite population, Ney-

man’s design-based framework required specifying a random sampling frame,

design, and scheme that together actually did generate y in the finite population

(Neyman, 1934, pp. 567–570). The sampling frame is a list of primary sampling

units in the finite population; the sampling design assigns nonzero probabilities
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ALTERNATIVE INFERENTIAL FRAMEWORKS 725

of selection to each sample that could be drawn from the frame; the sampling

scheme is a draw-by-draw mechanism for implementing the sampling design

(Cochran, 1977). For example, suppose we are interested in estimating the

total number of drinking and driving episodes, t, experienced by high school

students in a particular region. Suppose that we wanted to stratify the region on a

geographic variable correlated with the outcome (rural vs. urban), creating H D

2 strata. Suppose further that we wanted to select nh D 5 clusters (high schools)

with unequal probabilities and with replacement separately in each strata. More-

over, we wanted those unequal probabilities (denoted  hi, where h corresponds to

stratum and i to cluster) to be proportional to a cluster-level covariate correlated

with the outcome (e.g., percentage of students qualifying for free lunch). Our

sampling frame would be a list of primary sampling units (schools) in the

region along with each school’s urban/rural location and percentage free lunch

qualifiers. Suppose further that, at a second stage of selection, we wanted to

sample mhi D 20 students (secondary sampling units) from Mhi students in

cluster i , with equal probabilities. Then this stratified, clustered sampling design

would assign selection probabilities  hi � mhi

Mhi
to students in cluster i of stratum

h. Various sampling schemes exist for implementing this design (Lohr, 1999,

chap. 6), which have been automated (see SAS Proc Surveyselect; SAS Institute

Inc., 2008).

Step 2. Using only the known, nonzero probabilities of selection, cluster

indicators, strata indicators, and observed y-values for sampled units—not a

statistical model—a finite population parameter and its variance can be estimated

(Cassel, Sarndal, & Wretman, 1977). To do so for our example, we would

calculate a sampling weight as the inverse of the first stage selection probability

times the second stage selection probability whi D 1
 hi

� Mhi

mhi
. The weight for a

selected student indicates the number of students in the finite population that

he or she represents. This weight contains all information needed to construct a

point estimate Ot for our finite population parameter:

Ot D

H
X

hD1

nh
X

iD1

mhi
X

j D1

whiyhij: (8)

The unconditional (design-based) variance of Ot across all possible samples that

could be generated by the design can be approximated, adjusting for stratification

and clustering. In our example, the design-based variance of Ot is approximated

(using taylor linearization) as the variance of cluster-specific weighted totals

within each strata—summed across strata (Cochran, 1977). Note that this ap-

proximation can ignore details of the sampling design below the cluster level

assuming clusters were selected independently with replacement. Note also that

if the ratio of the sample size (here, number of clusters) to finite population

size is nontrivial (> 10%), and samples are drawn without replacement, the
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726 STERBA

design-based variance would approach zero. Multiplying it by a finite-population

correction (fpc) prevents this. However, in practice, the fpc is unnecessary for

most large public-use surveys (Kish, 1965, p. 44).

This example shows that associating positive probabilities of selection with

observed y-values is all that is needed to convert the latter into realizations of a

random variable y under the design-based framework (Neyman, 1923). Unlike

in the model-based approach, no model distributional assumptions were needed

to convert y into a random variable. Hence, randomness of the sampling design

is a mandatory requirement under Neyman’s framework because it is the sole

basis for the probabilistic treatment of the results during data analysis (Fienberg

& Tanur, 1996).

However, a disadvantage of not specifying a model is that y-values of sampled

units in the finite population and y-values of unsampled units in the finite

population are not meaningfully related; they are related only to the extent

that they both had a chance of being selected. Furthermore, none of these

y-values in the finite population are meaningfully related to y-values outside

the finite population. Consequently, only descriptive inference is possible with

respect to the finite population parameters in the design-based framework (see

Figure 1; Godambe, 1966). Descriptive inferences have the property that, if

all finite population units were observed without error (a perfect census), there

would be no uncertainty in the inference (Smith, 1993). Analytic or causal

inference, about what will occur or what would have occurred under different

circumstances, requires postulating a more meaningful link between sampled

and unsampled units. Under Fisher’s framework, this link was established by

requiring sampled and unsampled units to be jointly distributed according to a

parametric model (Royall, 1988).

In sum, this section has answered the second question posed earlier: “Do

inferences made from nonrandom samples differ from those possible under ran-

dom sampling?” Different kinds of inference (descriptive rather than analytic) to

different kinds of populations (finite rather than infinite) are possible exclusively

under random sampling, and explicit models are not required to achieve these

inferences.

IMPLEMENTATION OF THE DESIGN-BASED

FRAMEWORK IN PSYCHOLOGY

Neyman’s design-based framework was soon taken up by observational survey

researchers in epidemiology, sociology, health sciences, and government census

and polling agencies—but not in observational psychological research (Smith,

1976). Target parameters for inference in epidemiology, health sciences, and

government polling were often descriptive quantities (e.g., frequency of an
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ALTERNATIVE INFERENTIAL FRAMEWORKS 727

outpatient medical procedure in a finite population). Additionally, researchers

in those fields often had to produce thousands of estimates while knowing

little about the population at hand. Hence, they could lack both the time and

knowledge to construct plausible hypothetical/infinite population models for

their research questions and understandably did not want the validity of their

prevalence estimates to be predicated on hastily constructed, fallible models

(Kalton, 2002). In contrast, observational psychologists had less interest in enu-

meration of particular finite populations and more interest in constructing theory-

driven models to explain causal mechanisms and predict future behavior. Hence,

they gravitated toward the model-based rather than design-based framework (see

Deming, 1975).

LIMITATIONS OF THE PURE MODEL-BASED AND

PURE DESIGN-BASED FRAMEWORKS

Following the introduction of the model-based inferential framework by Fisher

and the introduction of the design-based inferential framework by Neyman,

survey sampling statisticians began to identify their respective weaknesses.

With regard to the model-based framework, sampling statisticians found

that conditioning on all stratification and selection/recruitment variables, and

allowing for their potential interactions with independent variables, complicated

model specification (Pfeffermann, 1996). Such conditioning also complicated in-

terpretation of substantively interesting model parameters and swallowed needed

degrees of freedom (Pfeffermann, Krieger, & Rinott, 1998). Additionally, such

conditioning was found to be error prone; particularly if little was known about

the sample selection mechanism, relevant selection/recruitment variables could

easily be unknowingly omitted (Firth & Bennett, 1998; Graubard & Korn, 1996;

Neyman, 1934, p. 576–577).

With regard to the pure design-based framework, sampling statisticians felt

limited by restrictions on the type of parameters that could be estimated (simple

statistics such as means, totals, and ratios) and the type of inference that could

be obtained (descriptive, finite population inference; Graubard & Korn, 2002;

Smith, 1993). Additionally, statisticians increasingly realized that the design-

based framework’s arguably greatest purported advantage (according to Neyman,

1923, 1934) is not entirely true: it does not provide inference free of all mod-

eling assumptions. True, the design-based framework does not involve explicit

attempts to write out a model for the substantive process that generated y-values

in an infinite population. However, the sampling weight itself entails an implicit

(or hidden) model relating probabilities of selection and the outcome (Little,

2004, p. 550). Adjustments to the weight for nonsampling errors such as under-

coverage and nonresponse require further implicit modeling assumptions (Little,
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728 STERBA

2004; Smith, 1983b).14 Another drawback is that types of nonsampling errors

requiring explicit models (e.g., measurement error) cannot be accommodated by

the design-based framework at all.

AN INTEGRATION OF THE MODEL-BASED AND

DESIGN-BASED FRAMEWORKS

To summarize, sampling statisticians viewed the pure model-based framework

as susceptible to bias incurred from incomplete conditioning on the sampling

design. Additionally, sampling statisticians viewed the design-based framework

as incongruent with analytic statistics (e.g., regression coefficients), causal in-

ferences, and certain nonsampling (e.g., measurement) errors. This raises the

question “How can these limitations be overcome?” Since the 1970s, work

has been under way on a hybrid, integrated framework that overcomes key

weaknesses of its predecessors. In the last 5 years, software implementations

of this framework have greatly expanded (for review, see online Appendix:

http://www.unc.edu/�ssterba/).

The hybrid framework that emerged has several main features: (a) It can

produce analytic statistics (e.g., regression coefficients) from complex random

samples, adjusting for disproportionate selection, stratification, and clustering—

without needing to condition on all of these complex sampling features during

model specification. (b) It permits causal or descriptive inference about these

analytic statistics to infinite or finite populations. (c) It is flexible enough to take

into account measurement error. (d) It can accommodate situations in which

researchers desire to condition on some complex sampling features but not

others. Although there are variations in the rationale and theoretical details of

the hybrid framework (e.g., Chambers & Skinner, 2003; Firth & Bennett, 1998;

Kalton, 2002; Sarndal, Swensson, & Wretman, 1992), we trace the emergence

of some of its key, crosscutting developments.

(1) Account for the sampling design during model estimation not in model

specification. To fix ideas, suppose we hypothesized that the Equation (1) model

generated our data in the infinite population, and suppose we desire to make

analytic/causal inferences about “1. But suppose our sampling design involved

disproportionate selection, stratification, and clustering. A first major break-

through for the hybrid framework was Kish and Frankel’s (1974) demonstration

14For example, multiplying sampling weights by nonresponse weights (inverse of the probability

that a unit would respond, if selected) requires (a) dividing the sample into classes according to

covariates known for respondents and nonrespondents and related to the outcome and (b) invoking

the implicit assumption that all units within a class have the same response propensity (Biemer &

Christ, 2008).
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ALTERNATIVE INFERENTIAL FRAMEWORKS 729

that, despite the disproportionate selection, we could specify the exact model in

Equation (1) and make infinite-population inferences about “0 and “1—without

conditioning on selection variables. We would simply adjust for disproportionate

selection during estimation of the coefficient vector O“ rather than conditioning

on selection variables in model specification. Conventionally, we would think to

estimate regression coefficients in Equation (1) using ordinary least squares, that

is, O“ D .X0X/�1X0y, where X is a design matrix for independent variables and y

is a vector of dependent variables. However, to adjust for unmodeled dispropor-

tionate selection, we instead use weighted least squares, O“W D .X0WX/�1X0Wy.

Although in conventional weighted least squares estimation the weight matrix W

is diagonal with variance weights (i.e., inverses of individuals’ error variances)

as diagonal elements, here the diagonal elements are sampling weights (inverses

of individuals’ probabilities of selection).

A second major breakthrough for the hybrid framework was Fuller’s (1975)

and Binder’s (1983) demonstrations that, despite this complex design, we could

specify the exact model in Equation (1) and make infinite-population inferences

about “0 and “1—without conditioning on strata or cluster variables. We would

simply adjust for stratification and clustering during Var. O“/ estimation rather

than conditioning on them in model specification. The typical (model-based)

weighted least squares variance estimator, that is, Var. O“W / D O¢2.X0WX/�1, did

not serve this purpose; one problem was that this estimator assumed that weights

were proportional to residual variances (unlikely) and another problem was that

it assumed no clustering or stratification. Intermediate solutions corrected one

problem but not the other (see Kish & Frankel, 1974; Nathan, 1988, for dis-

cussion). To remedy both problems, Fuller proposed a design-adjusted variance

estimator using taylor linearization Var. O“W / D .X0WX/�1 OG.X0WX/�1. The
OG matrix is a covariance matrix of totals of independent variables multiplied

by weighted residuals (i.e., OG D E.X0W O©O©
0
WX/, where O© is a vector of

estimated person-specific residuals from Equation (1) and E denotes the expec-

tation operator. Crucially, this OG matrix automatically adjusts for any arbitrary,

unmodeled stratification, clustering, or disproportionate selection scheme for any

arbitrary, unmodeled number of stages of selection below the cluster level (see

Sarndal et al., 1992, Sec. 5.10) for the following reason. As long as clusters

had been selected independently and with replacement within stratum from a

large finite population, totals in OG are simply aggregated to the level of the

cluster. Then, the covariance of aggregated totals is calculated across clusters

for each stratum and summed across strata (Wolter, 2007, Sec. 6.11). Binder

(1983) extended this approach from linear regression to a variety of other

outcome distributions; his strategy is now widely implemented in software.

Beyond taylor linearization, other variance estimation methods from the design-

based literature were also applied (e.g., sample-weighted bootstrapping; Sarndal

et al., 1992).
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(2) Make infinite and/or finite population inference. Another major break-

through for the model/design-based framework was the articulation of its greater

inferential possibilities. Fuller (1975) and Godambe and Thompson (1986)

showed that model estimates produced under the hybrid framework serve as

estimates of finite population parameters (i.e., a regression coefficient in the

case of a census) when the sample and finite population size are large—whether

or not the model is correctly specified. Additionally, these model estimates

serve as estimates of infinite population parameters when the model is correctly

specified (see Figure 1). Hence, descriptive, finite-population inferences are

mainly independent of a correctly specified model (as in the design-based

framework) and analytic infinite-population inferences are mainly dependent on

a correctly-specified model (as in the model-based framework; Kalton, 2002;

Knott, 1991). We said “mainly dependent” because, in contrast to the pure

model-based framework, the sample weighting aspect of the hybrid framework

does provide some robustness to misspecifications in the fixed effects portion of

the model (Binder & Roberts, 2003; Pfeffermann, 1993, 1996). Also, the design-

adjusted variance estimation aspect of the hybrid framework avoids altogether

needing to properly specify random effects. Furthermore, even if the fixed effects

portion of a model is misspecified, the standard errors of parameter estimates

will be close to traditional design-based standard errors for large finite population

and sample size (Binder & Roberts, 2003).

(3) Account for measurement error. More recent breakthroughs in the hybrid

framework have involved the extension of its design-based features (sample

weighting and design-adjusted variance estimation) from least squares estimation

of regression models to maximum likelihood estimation of structural equation

models (e.g., Asparouhov, 2005; du Toit, du Toit, Mels, & Cheng, 2005; Muthén

& Satorra, 1995; Stapleton, 2006, 2008). Structural equation models use mul-

tiple observed measures of latent variables to account for measurement error—

something the design-based framework could not do.

(4) Account for the sampling design partially in model estimation, partially in

model specification. The most recent work on the model/design-based framework

involves extending it to situations in which the researcher wishes to account

for particular complex sampling features during model specification but simply

adjust for others during model estimation. For example, suppose the researcher

wishes to account for clustering via a multilevel model (the model-based way)

and account for disproportionate selection via sample weights (the design-based

way) and account for stratification via standard error corrections (the design-

based way). To do so, sampling weights are incorporated into the estimation

of a multilevel model (e.g., Asparouhov, 2006; Asparouhov & Muthén, 2006;

Korn & Graubard, 2003; Kovacevic & Rai, 2003; Pfeffermann, Skinner, Holmes,

Goldstein, & Rasbash, 1998; Rabe-Hesketh & Skrondal, 2006; Stapleton, 2002).

The twist is that a weight could now be needed at each level. That is, for a two-
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level model, a Level 2 weight (inverse of the probability that the cluster is

selected) and a Level 1 weight (inverse of the probability that the individual is

selected given the cluster is selected) could be needed.

IMPLEMENTATION OF THE HYBRID

MODEL/DESIGN-BASED FRAMEWORK
IN PSYCHOLOGY

We have seen that model/design-based framework is hybrid in the sense that

it allows both kinds of inference (finite and infinite) and in the sense that it

allows models but does not require their full or completely correct specification.

However, the model/design-based framework is not hybrid in the sense that it

allows both types of samples (random and nonrandom). As can be inferred by the

use of sampling weights, the hybrid framework is applicable to random samples

only. That is, given a nonrandom sample, a researcher’s only choice remains

the pure model-based framework. Yet, psychologists are increasingly analyzing

complex random samples through electronically available public-use data sets,

for example, National Longitudinal Study of Adolescent Health (Add-Health),

Early Childhood Longitudinal Study (ECLS), National Education Longitudinal

Study (NELS), National Longitudinal Survey of Youth (NLSY), High School

and Beyond (HSB), and National Survey of Child and Adolescent Well-Being

(NSCAW), to which this framework does apply. Moreover, psychometric soft-

ware programs have recently added the capability for fitting models under the

hybrid model/design-based framework. Yet this capability is little discussed in

psychology research methods texts. To foster implementation of this framework

in psychology, in this article we provide (a) an explanation of the relative merits

and interpretation of this framework (see previous section), (b) a review of

software for implementing this framework (see online Appendix), and (c) an

illustrative example (see next section).

Illustrative Analysis Using the Hybrid Model/Design-Based

Framework

Our example uses a theoretical model from Raudenbush and Bryk (2002,

chap. 4) and Singer (1998). This model stipulates that math achievement

(MATHACH) varies across schools according to school average socioeconomic

status (MEANSES), controlling for school SECTOR type (Catholic or public).

This model also stipulates that the effect of school mean centered child socioe-

conomic status (CSES) on MATHACH varies across schools, but the strength of
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FIGURE 3 Distributions of students’ and schools’ probabilities of selection in the High

School and Beyond data set.

this relationship differs according to MEANSES:

MATHACHij D “0j C “1j CSESij C ©ij

“0j D ”00 C ”01MEANSESj C ”02SECTORj C u0j

“1j D ”10 C ”11MEANSESj C ”12SECTORj C u1j

where

�

u0j

u1j

�

�

��

0

0

�

;

�

£00

£10 £11

��

(9)

Our example uses the High School and Beyond (HSB) data set, whose sam-

pling design includes clustering, stratification, and disproportionate selection.

Specifically, HSB’s frame of 26,096 clusters (a list of U.S. high schools) was

stratified into nine strata, largely according to school type (public, Catholic,

private) and school racial composition.15 Within some strata, schools were se-

lected with probabilities proportional to estimated enrollment, but within other

strata, schools were oversampled. In total, 1,122 schools were selected at the

primary stage of selection. At the secondary stage of selection, 36 seniors and 36

sophomores were selected with equal probabilities within each selected school.

Figure 3 shows resultant variation in the probabilities of selecting clusters and

probabilities of selecting individuals within cluster. Diagnostics showed that

15A few strata were further divided (e.g., by urbanization, geographic region), but because

accounting for this in model specification did not alter results, it is not discussed further. Within

sector, stratification according to school racial composition involved classifying schools according

to whether they were high Cuban (� 30%), high other-Hispanic (� 30%), high Black (� 30%), or

Regular. For purposes of including stratification variables as model covariates, high Cuban and high

other-Hispanic were collapsed into a high Hispanic variable for lack of a school-level percentage

Cuban flag in the HSB data set.
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both sets of probabilities were significantly related to our outcome MATHACH

after controlling for independent variables (” ij D :767, SE D :056, p <

:001; ” ijj
D �1:207, SE D :090, p < :001). This means that ignoring

disproportionateness of selection risks bias.

The Equation (9) model has previously been fit to HSB data exclusively using

the model-based framework (Raudenbush & Bryk, 2002; Singer, 1998). But, the

Equation (9) model specification does not account for HSB’s disproportionate

selection, partially accounts for HSB’s stratification (by conditioning on school

type but not school racial composition or their product), and fully accounts

only for HSB’s clustering (by specifying a multilevel model for students nested

within schools). Table 2, Column 1, depicts the results of this model-based

analysis. We show that this original, model-based analysis likely incurred bias

due to incompletely conditioning on the sampling design. We show that a hybrid

analysis allows us to fully, and more flexibly, account for the sampling design

to avoid this problem.

A hybrid analysis affords us the flexibility of choosing whether to account

for each of HSB’s complex sampling features the design-based way or the

model-based way, depending on our substantive goals. In this particular hybrid

analysis, we chose to adjust for disproportionate selection in a design-based

way (including sampling weights at both levels during estimation; see online

Appendix) rather than the model-based way (including selection variables as

model covariates). We made this choice because selection variables were a

nuisance here, not of substantive interest. We chose to account for stratification

in the model-based way (including strata variables as model covariates) rather

than the design-based way (standard error adjustments using the HSB-provided

strata indicator SCHSAMP). That is, we included fixed effects for SECTOR, high

percentage Black enrollment (BLACK), high percentage Hispanic enrollment

(HISPANIC), and their product terms (SECTOR � BLACK and SECTOR �

HISPANIC). We made this choice because one variable involved in stratification

(SECTOR) was of substantive interest in the original model and was thought

to interact with independent variables. In contrast, design-based adjustments

for stratification typically assume no interaction between strata and indepen-

dent variables. Finally, we chose to account for clustering the model-based

way (inclusion of random effects for cluster) rather than the design-based way

(standard error adjustments using the HSB-provided cluster indicator SCHLID).

We made this choice because distinguishing between- from within-effects was

of substantive interest. Mplus 5.2 (Muthén & Muthén, 1998–2007) code for all

fitted models is provided in the online Appendix.

Including sampling weights during estimation of the Equation (9) model

yielded the results in Table 2, Column 2. Comparison of Columns 2 and 1

indicates that some bias was likely incurred in prior (model-based, unweighted)

analyses due to ignoring disproportionate selection. Although the conditional
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TABLE 2

Illustrative Hybrid Design/Model-Based Analysis Using the High School

and Beyond (HSB) Data Set

1. Original,

Model-Based Analysisa

2. Hybrid Analysis,

Intermediate Step

3. Hybrid Analysis,

Final Step

Fixed Effects

Accounts for

Clustering; Partially

Accounts for

Stratification

Model 1 Plus

Weights to

Account for

Disproportionate

Selection

Model 2 Plus

Covariates to

Fully Account for

Stratification

INTERCEPT 7.27 (.06)** 7.59 (.11)** 7.76 (.12)**

CSES 2.09 (.07)** 2.16 (.11)** 2.16 (.11)**

MEANSES 4.43 (.14)** 4.37 (.25)** 3.60 (.28)**

SECTOR �0.06 (.24) �0.01 (.36) 0.15 (.36)

CSES � MEANSES 0.62 (.17)** 0.39 (.28) 0.39 (.28)

CSES � SECTOR �1.50 (.19)** �1.63 (.27)** �1.63 (.28)**

HISPANIC �0.96 (.32)**

BLACK �1.83 (.29)**

HISPANIC � SECTOR 0.25 (.59)

BLACK � SECTOR �1.42 (.74)

Variance Components

£00 1.86 (.15)** 2.05 (.27)** 1.73 (.24)**

£01 0.31 (.13)* 0.27 (.16) 0.18 (.16)

£11 0.29 (.10)** 0.53 (.26)* 0.55 (.26)*

¢2 21.89 (.25)** 21.09 (.24)** 21.08 (.34)**

aThe model-based analysis results in Column 1 differ somewhat from those of Raudenbush

and Bryk (2002, chap. 4) and Singer (1998) for two reasons. First, our variables were taken

directly from HSB’s 1982 public-use datafile for the sophomore cohort (see online Appendix and

www.icpsr.umich.edu). Raudenbush and Bryk (2002) constructed and used factor score composites

of 1980 and 1982 datafile variables for sophomore and senior cohorts (Lee & Bryk, 1989). Second,

we used all public and Catholic schools and they used a random subset. MATHACH D math

achievement; MEANSES D school average socioeconomic status; SECTOR D Catholic or public

school; CSES D school mean centered child socioeconomic status; BLACK D high % Black

enrollment; HISPANIC D high % Hispanic enrollment.

*p < :05. **p < :01.

slope of CSES on MATHACH is still significant in Column 2, and still varies

across schools, the slopes for CSES no longer significantly differ according to

school MEANSES. That is, the cross-level interaction of CSES by MEANSES

is now nonsignificant. Further, there is now nonsignificant covariation between

intercepts and slopes in Column 2, meaning that the effects of CSES on MATH-

ACH no longer covary with the average MATHACH of the school. Also including

omitted strata variables as model covariates completes the hybrid analysis; these
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results are shown in Table 2, Column 3. Comparing Columns 3 and 2 indicates

that, in this case, more fully accounting for stratification does not markedly

change conclusions. However, note that not only do standard errors change from

Column 2 to Column 3 but in this case several parameter estimates do as well.

Recall that we earlier mentioned that stratification should affect only standard

errors, not parameter estimates when stratification variables neither interact with

nor correlate with independent variables. This is clearly not the case here. We

do not explore here whether school racial composition interacts with student or

school socioeconomic status.

It is important that this hybrid analysis also provides us with choices in

drawing inferences. For example, we can make descriptive inferences about ”10,

the conditional effect of a unit increment in CSES on MATHACH in the finite

population of U.S. high schools, without assuming an entirely correct model. Or

we can make analytic inferences about ”10 in the infinite population—assuming

a correct model.

CONCLUSIONS

This article began by posing two often-asked but incompletely answered ques-

tions about inferences from nonrandom versus random samples in observational

psychology research. To address these questions, we began by reviewing two

alternative inferential frameworks from samples to populations and discussing

the extent of each framework’s implementation in psychology. In reviewing the

model-based inferential framework, we showed that it does in fact provide a for-

mal logic for making statistical inferences from nonrandom (or random) samples

to infinite populations. Second, in reviewing the implementation of the model-

based framework in psychology, we showed that its requirements are often not

completely fulfilled in psychological research, even when measured indicators

of stratification, clustering, and/or disproportionate selection are available in a

data set to make this possible. We suggested that psychologists’ long tradition

of simply reporting, but not fully conditioning on, complex sampling features

contributes to the inconsistent fulfillment of these requirements. In reviewing the

design-based inferential framework, we showed that different kinds of statistical

inferences (descriptive rather than analytic) to different populations (finite rather

than infinite) were possible exclusively under random sampling—and their ac-

curacy was not dependent on the proper specification of a hypothetical model.

In reviewing the implementation of the design-based framework in psychology,

we provided reasons for its scant use in psychology. Finally, having addressed

the two original questions often asked by psychologists, we pushed the dialogue

a step further, asking, what are the limitations of the model-based and design-

based frameworks, and how can these be overcome? We showed that the model-
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based framework’s central limitation lies in the need to tediously condition

on all complex sampling features in model specification, and the design-based

framework’s central limitation lies in the inability to address analytic/causal

hypotheses and account for nonsampling errors. We therefore described a newer

hybrid model/design-based framework that overcomes these limitations and can

be used for analyzing large, complex random samples from public-use data

sets—a practice that is becoming more common in psychology. To facilitate

greater implementation of the hybrid inferential framework in psychology, we

provided an empirical illustration and reviewed applicable software in an online

Appendix. We hope that this article spurs readers to attend to the requirements

of their chosen inferential framework and provides motivation to take advantage

of newer, more flexible inferential frameworks where possible.
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