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Abstract
Objective: Individually-randomized psychotherapy trials are often partially nested. For instance, individuals assigned to a
treatment arm may be clustered into therapy groups for purposes of treatment administration, whereas individuals
assigned to a wait-list control are unclustered. The past several years have seen rapid expansion and investigation of
methods for analyzing partially nested data. Yet partial nesting often remains ignored in psychotherapy trials. Methods:
This review integrates and disseminates developments in the analysis of partially nested data that are particularly relevant
for psychotherapy researchers. Results: First, we differentiate among alternative partially nested designs. Then, we
present adaptations of multilevel model specifications that accommodate each design. Next, we address how moderation
by treatment as well as mediation of the treatment effect can be investigated in partially nested designs. Model fitting
results, annotated software syntax, and illustrative data sets are provided and key methodological issues are discussed.
Conclusions: We emphasize that cluster-level variability in the treatment arm need not be considered a nuisance; it can
be modeled to yield insights about the treatment process.

Keywords: partial nesting; individually-randomized psychotherapy trials; partial clustering; group therapy; multilevel
modeling

Many psychotherapy treatment outcome studies
compare group therapy treatment with a wait-list or
information-only control. In such studies, after indi-
viduals are randomly assigned to study arm, only
individuals assigned to the treatment arm are clus-
tered into therapy groups for the purpose of treat-
ment administration. This type of design has been
termed a partially nested individually-randomized trial
because outcomes are clustered in a particular
manner in at least one study arm but not in other
study arm(s) (Bauer, Sterba, & Hallfors, 2008). In
the treatment arm, outcomes (e.g., depression
scores) for patients within the same therapy group
can be dependent because of shared group experi-
ences or mutual influence (e.g., Dishion, Poulin, &
Burraston, 2001). In contrast, in the control arm,
patients’ scores on the depression outcome may be
independent. Partially nested designs pose unique
methodological challenges because different model-

implied variances and/or effects are theoretically
anticipated in the nested versus non-nested arms.
Over the past several years there has been rapid

growth in methodological attention to strategies and
issues involving analyzing partially nested data (e.g.,
Baldwin, Bauer, Stice, & Rohde, 2011; Baldwin & Fell-
ingham, 2013;Bauer et al., 2008;Candel& vanBreuke-
len, 2009, 2010;Chu,2013;Hedges&Citkowicz, 2015;
Korendijk,Maas, Hox, &Moerbeek, 2012; Lachowicz,
Sterba, & Preacher, 2015; Lai & Kwok, 2014; Lee &
Thompson, 2005a, 2005b; Lohr, Schochet, &
Sanders, 2014; Luo, Cappaert, & Ning, 2015; Mehta,
2015; Moerbeek & Wong, 2008; Pals et al., 2008;
Roberts & Roberts, 2005; Roberts & Walwyn, 2013;
Sanders, 2011; Sterba et al., 2014; Talley, 2013;
Tessler, 2014; Walwyn & Roberts, 2010). However,
recent developments have not been synthesized and fur-
thermore have appeared in the methodological, edu-
cation, or medical literatures, rather than the
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psychotherapy literature. Although a monograph on
partial nesting in education research was recently com-
missioned by the US Department of Education (Lohr
et al., 2014), it did not focus on issues1 of particular rel-
evance to psychotherapy researchers—such as assessing
moderation and mediation of treatment effects in par-
tially nested individually-randomized trials.
In the psychotherapy literature, it is still routine for

partial nesting to be ignored in empirical data analysis
(e.g., Christensen, Frostholm, Ornbol, & Schroder,
2015; Conrad et al., 2015; Hedman et al., 2014;
Jewell, Malone, Rose, Sturgeon, & Owens, 2015;
Liu et al., 2015; Marshall et al., 2015; Sundquist
et al., 2015; Teismann et al., 2014; Wesner et al.,
2014; Wolff et al., 2015; Zhang, Yan, Du, & Liu,
2014). Simulations have shown that treating partially
nested data as non-nested in data analyses leads to a
biased standard error for the treatment effect (e.g.,
Baldwin et al., 2011;Hedges &Citkowicz, 2015; Kor-
endijk et al., 2012; Lohr et al., 2014; Roberts &
Roberts, 2005). It is also routine for partial nesting
to be ignored in the methodological literature on
testing mediation and moderation of treatment
effects; for instance, Emsley, Dunn, and White’s
(2010) pedagogical paper on the topic states “like
those [analyses] of previous authors, we make no
attempt to allow for the clustering of the data”
(p. 241). The purpose of this review is to motivate,
integrate, and disseminate developments in the analy-
sis of partially nested data that are particularly relevant
for a psychotherapy treatment outcome audience.
The remainder of this paper proceeds as follows.

First, we differentiate partially nested designs from
related designs arising in individually-randomized
psychotherapy trials. Second, we describe a basic
model for analyzing partially nested data, and how
it can be extended when partial nesting at one level
occurs in conjunction with full nesting at another
level. Third, we describe developments involving
assessing moderation and mediation in the context
of partially nested designs. Fourth, we address key
methodological issues relevant to the context of par-
tially nested designs. We limit attention to two-arm
designs for simplicity, although additional nested or
non-nested arms could be included (e.g., Bauer
et al., 2008; Sterba et al., 2014; Walwyn & Roberts,
2010). In the Online Appendix we provide annotated
Mplus 7.31 input syntax (Muthén & Muthén, 1998–
2015) for each of the four models presented here.
At the website http://www.vanderbilt.edu/peabody/
sterba/ an Online Supplement will be made available
containing four illustrative simulated data sets that
can be used to fit these four models, using the afore-
mentioned syntax, to produce the estimates in manu-
script Tables I–IV and the test results described in
sections below.

Individually-Randomized Fully Nested
Designs

Sources in the psychotherapy literature have histori-
cally recognized that individually-randomized trials
can involve fully nested designs (e.g., Martindale,
1978). In fully nested designs the same nesting struc-
ture exists in all study arms. Data from such designs
can be analyzed with conventional multilevel models.
In one fully nested design, depicted in Figure 1
Panel A, two kinds of individual therapies are com-
pared. In each arm, patient outcomes may be

Table I. Example 1 results from fitting the Equation (1) multiple-
arm partial nesting (MA-PN) model to data generated from the
group therapy arm versus wait-list control arm design, in Figure
2 Panel A.

Parameter Estimate SE

g(t)00 1.107 .203
s2(t) 1.254 .229
t(t) 0.367 .230
g(c)00 2.666 .204
s2(c) 1.865 .393

Table II. Example 2 results from fitting the Equation (2) multiple-
arm partial nesting (MA-PN) model to data generated from the
group therapy arm versus individual therapy arm design, in
Figure 2 Panel D.

Parameter Estimate SE

g(t)000 0.899 0.184
s2(t) 1.362 0.144
t(t) 0.252 0.127
f(t) 0.201 0.146
g(c)000 2.991 0.203
s2(c) 1.520 0.358
f(c) 0.066 0.189

Table III. Example 3 results from fitting the Equation (3)
conditional multiple-arm partial nesting (MA-PN) model allowing
for moderation by treatment, in the Figure 2 Panel D design.

Parameter Estimate SE

g(t)000 1.135 0.177
g(t)001 1.259 0.231
g(t)010 0.447 0.202
g(t)100 0.849 0.095
s2(t) 1.187 0.125
t(t) 0.306 0.131
f(t) 0.172 0.135
g(c)000 3.198 0.236
g(c)001 0.394 0.182
g(c)100 1.099 0.245
s2(c) 1.279 0.303
f(c) 0.209 0.235
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nested2 (i.e., correlated) within therapist because
therapists have varying amounts of experience or
therapists are not using a manual, for instance
(Crits-Christoph & Mintz, 1991; Wampold &
Brown, 2005). Viewing therapists as representative
of a wider population of therapists (e.g., Kim,
Wampold, & Bolt, 2006; Roberts, 1999; Serlin,
Wampold, & Levin, 2003), therapist could be speci-
fied as a random effect in a conventional two-level
model for data from this design (i.e., a random inter-
cept varying across therapists and a fixed slope of
treatment). Despite a history of attention to fully
nested designs in individually-randomized psy-
chotherapy trials, Walwyn and Roberts (2010) state
that conventional multilevel models are still underap-
plied in this context, because “while psychotherapy
researchers readily recognize that average patient

Table IV. Example 4 results from fitting the Equation (4)
multivariate multiple-arm partial nesting (MA-PN)model allowing
for mediation of the treatment effect, in the Figure 2 Panel A
design.

Parameter Estimate SE

g(yt)00 1.753 .313
g(y)01 0.469 .136
g(yt)10 −0.546 .187
g(mt)
00 1.545 .271

s2(yt) 1.620 .296
s2(mt) 0.770 .141
t(yt) 0.477 .298
t(mt) 0.947 .403
g(yc)00 2.748 .230
g(y)01 0.469 .136
g(mc)
00 0.789 .175

s2(yc) 1.856 .391
s2(mc) 1.374 .290

Figure 1. Alternative fully nested designs for individually-randomized trials.
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outcomes may vary between therapists, they infre-
quently appreciate that this is equivalent to patient
outcomes being clustered within individual therapists
leading to intra-therapist correlation” (p. 292).
In another fully nested design, individuals are clus-

tered into therapy groups in each study arm in order
to compare group therapies (Figure 1 Panel B,
e.g., Lee & Thompson, 2005a; Pals et al., 2008).
Viewing therapy groups as representative of a wider
population of therapy groups (e.g., Baldwin,
Murray, & Shadish, 2005; Rohde, 2008), therapy
group could be considered a random effect in a con-
ventional two-level model for data from this design (i.
e., a random intercept varying across therapy groups
and a fixed slope of treatment). If certain therapy
groups share the same therapist (as in Figure 1
Panel C), a conventional three-level model may be
considered (e.g., a random intercept varying across
therapists and therapy groups; a fixed slope of
treatment).

Individually-Randomized Partially Nested
Designs

Here we adapt the conventional multilevel model to
accommodate partially nested design variants of the
fully nested designs presented in Figure 1. First we
consider the most basic partially nested design
where there is dependence among outcomes within
cluster in one arm, but independence among out-
comes in the other arm. The same model can be
used whether we are comparing an unclustered
(e.g., wait-list only) control arm to the treatment
arm in Figure 2 Panel A or to the treatment arm in
Figure 2 Panel B. The treatment arm in Figure 2
Panel A involves group therapy, with patients (level
1 units) clustered within therapy groups (level 2
units). The treatment arm in Figure 2 Panel B
involves individual therapy, with patients (level 1
units) clustered within therapists (level 2 units).
The adapted multilevel model initially used to

accommodate these designs employed a fixed inter-
cept but random slope of treatment (where treatment
was coded 1 for treated and 0 for control) along with
heteroscedastic level 1 residual variances across study
arm (e.g., Bauer et al., 2008; Lee & Thompson,
2005b; Moerbeek & Wong, 2008; Roberts &
Roberts, 2005). This specification implies that a
random effect is toggled into the reduced form
model for the treatment arm (where treatment = 1)
but toggled out of the reduced form model for the
control arm (where treatment = 0). As such, the
random effect accommodates dependency among
scores within cluster only in the treatment arm.

Instead, here we specify an equivalentmodel using a
different approach: a multiple-arm3 multilevel model for
partial nesting (MA-PN) (Lachowicz et al., 2015;
Lohr et al., 2014; Sterba et al., 2014). We will later
see that this approach poses benefits for ease of exten-
sion to more advanced specifications (including
investigating moderation of predictor effects by treat-
ment in partially nested designs or investigating
mediators of treatment effects in partially nested
designs). This approach also readily accommodates
heteroscedastic variances across study arm, which is
a typical consequence of partially nested designs.

Multiple-Arm Partial Nesting (MA-PN)
Models

MA-PN Model for a Two/One Level
Combination Design

The MA-PN model for a two-level treatment arm
and single-level control arm design is represented in
Equation (1). Superscript t indicates treatment arm,
superscript c indicates control arm, subscript i indi-
cates individual, and subscript j indicates cluster.
Note that, although it is not necessary to have a j sub-
script for the outcome yij in the control arm, the j sub-
script can be retained if one conceptually considers
each person to be their own cluster.

Group therapy arm: Control (wait− list) arm:
Level 1: yij = b(t)

0j + r(t)ij yij = g(c)00 + r(c)ij

Level 2: b(t)
0j = g(t)00 + u(t)0j

Where: r(t)ij � N(0, s2(t)) r(c)ij � N(0, s2(c))

u(t)0j � N(0, t(t))

(1)

In Equation (1), g(t)00 is the treatment-arm mean
and g(c)00 is the control-arm mean. In the treatment
arm, the mean for cluster j, b(t)

0j , deviates from the
treatment arm mean, g(t)00, by the cluster-specific
residual, u(t)0j . In the treatment arm, the outcome var-
iance is decomposed into a sum of between-cluster
variance, t(t) (allowing for variation in residuals u(t)0j
across clusters) and within-cluster variance, s2(t)

(allowing for variation in residuals r(t)ij within-
cluster). In the control arm, the variance is simply
s2(c) (allowing for variation in residuals r(c)ij across
individuals). Hence, the model-implied variances
are heteroscedastic across study arm. Table I pro-
vides estimates of these parameters for our first simu-
lated example; the associated dataset is available in
the Online Supplement [equation1.dat] and the
associated syntax is available on p. 1 of the Online
Appendix. This first example involves a clustered
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depression treatment arm (with 15 therapy groups of
size 5) and an unclustered wait-list control arm (with
45 singletons). The intra-class correlation (ICC) in
the treatment arm is computed as t(t)/(t(t) + s2(t)).
For our first example, in Table I, the ICC in the treat-
ment arm is .367/(.367 + 1.254) = .226. The treat-
ment effect is g(t)00 − g(c)00. This effect can be tested
using a likelihood ratio test (LRT). The LRT statistic
is −2(LLrestricted−LLunrestricted) where LLunrestricted is
the log-likelihood for the Equation (1) model and
LLrestricted is the log-likelihood for a model imposing
the restriction g(t)00 = g(c)00. This test statistic is com-
pared to a reference x2(df = 1) distribution. In our
first example, this LRT statistic =−2(−210.068 −
−199.555) = 21.026(df = 1), p < .001, indicating a
significant treatment effect.

MA-PN Model for a Three/Two Level
Combination Design

Now we consider modeling data from more complex
partially nested designs. Suppose a group therapy
treatment is being compared to an individual
therapy condition. Further suppose that, in the
group therapy treatment arm, multiple therapy
groups are led by the same therapist. Also suppose
that, in the individual therapy arm, each therapist
has a case load of multiple individual patients. As
depicted in Figure 2 Panel D this design has three
levels of nesting in the group therapy arm and two
levels of nesting in the individual therapy condition
(as in Compas et al., 2015; Walwyn & Roberts,
2010).4 The MA-PN model to accommodate this
design (e.g., Lohr et al., 2014) is given in Equation
(2), where the t superscript designates the group
therapy arm and the c superscript now designates
the individual therapy arm. The k subscript desig-
nates therapist.

Group therapy arm: Individual therapy arm:
Level 1: yijk = b(t)

0jk + r(t)ijk yijk = b(c)
00k + r(c)ijk

Level 2: b(t)
0jk = b(t)

00k + u(t)0jk
Level 3: b(t)

00k = g(t)000 + u(t)00k b(c)
00k = g(c)000 + u(c)00k

Where: r(t)ijk � N(0, s2(t)) r(c)ijk � N(0, s2(c))

u(t)0jk � N(0, t(t))

u(t)00k � N(0, f(t)) u(c)00k � N(0, f(c))

(2)

Note that individual-specific residuals are still het-
eroscedastic across arms (s2(t) vs. s2(c)). Now varia-
bility across therapists is estimated and is also
allowed to be heteroscedastic across study arm (f(t)

vs. f(c)). Table II provides estimates of the Equation

(2) parameters for our second simulated example; the
associated dataset is available in the Online Sup-
plement [equation2.dat] and the associated syntax
is on p. 2 of the Online Appendix. In this second
example, nine therapists in the treatment arm each
lead five therapy groups (with five patients each)
and nine therapists in the individual treatment arm
each have five individual patients. Though it
happens to be the case in this simulated example,
the MA-PN model does not require an equal
number of patients per therapist, patients per
therapy group, or therapy groups per therapist. It is
possible to test whether the amount of therapist-
level variability is equal across group therapy vs. indi-
vidual therapy arms using a LRT comparing the
Equation (2) model with a restricted model that con-
strains f(t) = f(c). In our second example, this test
indicates that the amount of therapist-level variability
does not differ across arms: LRT statistic =−2
(−447.886 −−447.744) = .284 (df = 1), p > .05.
Note that if different therapists administer treat-

ment across arms then the covariance between thera-
pist-level residuals u(t)00k and u(c)00k can be constrained to
0. But if therapists are “crossed” with treatments (see
Kazdin, 1986) covariance among these level-3
residuals would need to be estimated (this covariance
is here denoted f(t,c)) (Walwyn & Roberts, 2010). In
Equation (2), the therapy-group level variance
(level-2 variance), t(t)00, is still estimated only in the
group therapy treatment arm. The ICC for therapy
groups (proportion of outcome variability attribu-
table to therapy groups) is now calculated as
t(t)/(t(t) + f(t) + s2(t)), which is .252/(.201 + .252 +
1.362) = .139 for our second example, from
Table II. The ICC for therapists (proportion of
outcome variability attributable to therapists) in the
group therapy arm is f(t)/(t(t) + f(t) + s2(t)) and in
the individual therapy arm is f(c)/(f(c) + s2(c));
these ICCs are .201/(.201 + .252 + 1.362) = .111
and .066/(.066 + 1.520) = .042, respectively in our
second example, from Table II. Though we did not
consider cluster randomized trials in this review (see
Footnote 1), the Equation (2) MA-PN could be
employed if, for instance, intact schools (level 3 units)
had been randomly assigned, study/learning groups
(level 2 units) were constructed in only one arm of
the design, and groups were led by the same leader.

MA-PN for a Three/One Level Combination
Design

To accommodate a design where this group-therapy
treatment is instead compared to a wait-list only
control condition (i.e., unclustered control arm) as
in Figure 2 Panel C, we need to make only one
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modification to the Equation (2) model. Specifically,
we fix f(c) = 0. With this modification, the MA-PN
model would then have three levels in the treatment
arm and one level in the control arm (as in Tessler,
2014). Simulation results indicate that ignoring

therapist-level variation in a partially nested design
(i.e., fitting the Equation (1) model when the
design is consistent with the Equation (2) model)
biases the standard error of the treatment effect, arti-
ficially inflates power, as well as inflates estimates of

Figure 2. Alternative partially nested designs for individually-randomized trials.
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group-therapy-level variability in the treatment arm
and individual-level variability in the control arm
(Tessler, 2014).

Effect Sizes

There are two main options for constructing a stan-
dardized effect size for the treatment effect in partially
nested designs (Hedges & Citkowicz, 2015).5 If a
researcher wants the treatment effect size to be
measured in terms of within-cluster standard devi-
ations as computed under no manipulation, this

leads to g(t)00 − g(c)00

∣∣∣ ∣∣∣/ ���
s2
c

√
. This option yields a treat-

ment effect size of 1.559/
�������
1.865

√ = 1.142 in the
context of our first example, from Table I. This
option is sensible when the control arm is considered
the “natural” comparison situation, and clustering is
induced by treatment administration (e.g., Fuchs,
Sterba, Fuchs, & Malone, under review; Hedges &
Citkowicz, 2015). Another option is to instead
divide by the standard deviation in the group
therapy treatment arm. For instance, using the
Equation (2) model in conjunction with the design
in Figure 2 Panel D, the effect size is

g(t)000 − g(c)000

∣∣∣ ∣∣∣/ �����������������
t(t) + f(t) + s2

t

√
. According to Hedges

and Citkowicz (2015) this option is sensible when
the group therapy treatment administration is the
typical or established approach, and it is being com-
pared to an alternative individual administration of
treatment.

Assessing Moderation by Treatment in
Partially Nested Designs

Psychotherapy researchers may be interested in includ-
ing predictors of within-cluster or between-cluster vari-
ation in outcomes in the treatment arm, and predictors
of outcome variation in the control arm (e.g., Compas
et al., 2009). In this section, we expand the Equation
(2) MA-PN model to include such predictors. We
also explain how, using the MA-PN model, it is
straightforward to examine interactions of therapist-
level predictors with treatment and interactions of indi-
vidual-level predictors with treatment; doing so does
not require constructing and including product terms
(see Sterba et al., 2014). We do not discuss interactions
of therapy-group-level predictors with treatment
because therapy-group-level predictors will often be
missing by design in the individual therapy arm (see
later discussion).
In Equation (3) we expand the Equation (2) MA-

PN to include fixed slopes of therapist-level,
therapy-group level, and individual-level predictors.6

Below, we discuss each in turn. Table III provides
estimates of the Equation (3) parameters for our
third simulated example (the associated dataset is
available in the Online Supplement [equation3.dat]
and the associated syntax is available on p. 3 of the
Online Appendix). This Table III example uses the
same sample sizes and design as in the Table II
example.

Group therapy arm: Individual therapy arm:
Level1: yijk=b(t)

0jk+g(t)100(xijk−�x.jk)+r(t)ijk yijk=b(c)
00k+g(c)100xijk+r(c)ijk

Level2: b(t)
0jk=b(t)

00k+g(t)010�x.jk+u(t)0jk
Level3: b(t)

00k=g(t)000+g(t)001wk+u(t)00k b(c)
00k=g(c)000+g(c)001wk+u(c)00k

Where: r(t)ijk �N(0,s2(t)) r(c)ijk �N(0,s2(c))

u(t)0jk�N(0,t(t))

u(t)00k�N(0,f(t)) u(c)00k�N(0,f(c))

(3)

Equation (3) includes a therapist-level predictor,
therapist experience, denoted wk. Researchers may
want to include therapist-level predictors to control
for pre-existing differences between therapists; this
can improve power for detecting a non-zero treatment
effect by reducing between-therapist variation (see
simulation results in Raudenbush, 1997). Equation
(3) also allows for an interaction of therapist experi-
ence × treatment. The g(t)001 and g(c)001 are simple slopes
of therapist experience in each study arm—obtained
automatically from the model specification without
needing to do post-hoc probing. In our third
example, fromTable III, both simple slopes are signifi-
cantly different from 0: ĝ (t)

001 = 1.259 (.231), p < .001
and ĝ (c)

001 = 0.394 (.182), p = .031. In order to instead
include a main effect of therapist experience, we
would constrain g(t)001 = g(c)001 in Equation (3). In order
to testwhether treatment moderates the effect of thera-
pist experience (i.e., whether these two simple slopes
are different from each other), we could use aLRTcom-
paring models with and without the constraint
g(t)001 = g(c)001. In our third example, this LRT indicates
that there is an interaction between therapist
experience and treatment (LRT=−2(−436.92−
−433.472) = 6.896 (df = 1), p< .05). Therapist experi-
ence has a stronger effect on depression outcomes in
the group therapy arm than the individual therapy arm.
Equation (3) also includes a therapy-group level

predictor in the treatment arm (therapy-group-
average level of cognitive functioning, �x.jk), whose
effect is g(t)010. Researchers may want to include
therapy-group level predictors (e.g., therapy group
size, proportion of the group that is female,
proportion of the group with a conduct disorder
diagnosis, therapy-group-average age, or therapy-
group-average level of cognitive functioning) to help
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explain therapy group variation in the treatment arm
only. For instance, lower therapy-group-average cog-
nitive functioning may be associated with worse
therapy-group-average depression scores if it
implies limited sophistication in processing and
insights. Therapy group size may also have a negative
effect on average depression outcomes in the therapy
group, if it implies less intimacy and disclosure.
Bauer et al. (2008) and Sterba et al. (2014) discuss
a data management step to prevent listwise deletion
of individuals in the unclustered arm when therapy-
group-level predictors are missing by design for
these individuals.
Equation (3) also includes an individual-level

(level 1) predictor, individual cognitive functioning,
in each arm. In the individual therapy arm of the
Equation (3) MA-PNmodel, g(c)100 is the effect of indi-
vidual cognitive functioning (xijk). In the group
therapy arm, g(t)100 is the effect of therapy-group-
mean centered individual cognitive functioning
(xijk − �x.jk). Specifically, g

(t)
100 is the effect of the devi-

ation of person i’s cognitive functioning from their
therapy-group-average cognitive functioning on the
deviation of person i’s depression score from their
therapy-group-average depression score. In order to
test whether the effect of cognitive functioning ismod-
erated by treatment, we can use a LRT to compare a
model imposing the constraint g(t)100 = g(t)010 with a
model imposing the constraint g(t)100 = g(t)010 = g(c)100.
We do not need to construct or include product
terms. In our third example, from Table III, we do
not find evidence of an interaction between cognitive
functioning and treatment (LRT=−2(−435.820 −
−435.065) = 1.510 (df = 1), p > .05).

Assessing Mediators of Treatment Effects in
Partially Nested Designs

In treatment outcome studies interest often focuses
on what variables, such as coping skills, mediate the
effect of treatment on outcomes, such as depression
(e.g., Christensen et al., 2015; Liu et al., 2015).
This can be investigated in partially nested designs
as well (e.g., Chu, 2013; Lachowicz et al., 2015).
To illustrate, we expand the MA-PN model in
Equation (1) to include a coping skills mediator,
denoted mij , in Equation (4). Superscripts y and m
in Equation (4) pertain to coefficients in the yij or
mij equations. In the group therapy arm, the effect
of the mediator can be split into the effect g(y)01 of
therapy-group average coping skills, �m.j , and the
effect g(yt)10 of an individual’s deviation from the
therapy group average coping skills (mij − �m.j) (e.g.,
Zhang, Zyphur, & Preacher, 2009), as shown in
Equation (4). Receiving treatment may improve

depression scores via improving average coping
skills. Note that because treatment does not vary
within cluster it can affectmij and �m.j but not (mij − �m.j).

Group therapy arm:
Level 1: yij = b(yt)

0j + g(yt)10 (mij − �m.j)+ r(yt)ij

mij = b(mt)
0j + r(mt)ij

Level 2: b(yt)
0j = g(yt)00 + g(y)01 �m.j + u(yt)0j

b(mt)
0j = g(mt)00 + u(mt)0j

Where:
r(yt)ij

r(mt)ij

[ ]
� N

0
0

[ ]
, s2(yt)

0 s2(mt)

[ ]( )

u(yt)0j

u(mt)0j

[ ]
� N

0
0

[ ]
, t (yt)

0 t (mt)

[ ]( )

(4)

Control (wait− list) arm:
yij = g(yc)00 + g(y)01mij + r(yc)ij

mij = g(mc)00 + r(mc)ij

r(yc)ij

r(mc)ij

[ ]
� N

0
0

[ ]
, s 2(yc)

0 s 2(mc)

[ ]( )

Table IV provides estimates of the Equation (4)
parameters for our fourth simulated example (the
associated dataset is available in the Online Sup-
plement [equation4.dat] and the associated syntax
is on p. 4 of the Online Appendix). This Table IV
example uses the same sample sizes and design as
in the Table I example.
The indirect effect (mediation effect) is computed as

(g(mt)
00 − g(mc)

00 )× g(y)01 . Following Sterba et al. (2014)
and Lachowicz et al. (2015) a confidence interval
for this indirect effect can be obtained using the
Monte Carlo procedure described in Preacher and
Selig (2012) and implemented in an online utility
(Selig & Preacher, 2008). In our fourth example,
from Table IV, this indirect effect is (1.675
− .849) × .696 = .575, and a Monte Carlo CI95 =
(.045, .775) indicates a significant indirect effect of
treatment on depression outcomes, through coping
skills. Note that we could also consider variables
other than coping skills as a mediator (see Lachowicz
et al., 2015) and/or we could allow the effect of
coping skills on depression to vary randomly across
therapy groups, in the treatment arm (see Chu,
2013).
Finally, to investigate one kind of moderated

mediation, we could compare the Equation (4)
model to a model in which the across-arms equality
constraint on g(y)01 is relaxed, using a LRT. For our
fourth example, from Table IV, this LRT statistic is
−2(−391.450 −−391.449) = .002 (df = 1), p > .05.
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Hence, we lack evidence that the indirect effect
differs across treatment vs. control arms.

Methodological Issues to Consider When
Analyzing Data from Partially Nested Trials

When to Consider Using the MA-PN Model

Previous authors have debated whether the MA-PN
model should be a default analysis approach for par-
tially nested designs. One possibility that has been
raised is to consider a statistically significant ICC to
be a prerequisite for fitting MA-PN models.
However, this possibility has statistical drawbacks.
This use of the test of ICC = 0 reverses the reject-
support logic of hypothesis testing and can be under-
powered for small ICCs that are still capable of mean-
ingfully inflating Type I error rates (Baldwin et al.,
2011; Kenny, Mannetti, Pierro, Livi, & Kashy,
2002; Lee & Thompson, 2005b; Roberts &
Roberts, 2005; Walwyn & Roberts, 2010; relatedly
see Crits-Christoph & Mintz, 1991). Even when
ICC= 0, simulations have found little decrement in
power associated with using MA-PN models so
long as the number of clusters was not small (such
as <5 clusters in the treatment arm; Baldwin et al.,
2011). Also, when ICC= 0, simulations have found
little bias associated with using MA-PN models so
long as boundary constraints were not placed on var-
iances by the estimationmethod (e.g., Tessler, 2014).
When the number of clusters in the treatment arm is
small, treating therapists as fixed effects (see Baldwin
et al., 2011 for review) remains an option, but limits
generalizations to clusters in the study (see Serlin
et al., 2003). To ensure sufficient clusters in the treat-
ment arm to investigate and explain between-cluster
variation, a priori power analyses are essential. For
secondary data analyses of existing partially nested
trials, on balance the strategy of fitting a MA-PN
model as a default where estimable—without requir-
ing a statistically significant ICC—seems to balance
risks and benefits. This strategy is consistent with rec-
ommendations frommethodologists concerning fully
nested randomized controlled trials (e.g., Kenny
et al., 2002; Murray, Hannan, & Baker, 1996;
Roberts & Roberts, 2005; Rohde, 2008).

Power Analysis for MA-PN Models

Many individually-randomized psychotherapy
trials use one or two therapy groups and one or two
therapists—severely limiting researchers’ ability to
decompose variability into between-cluster and
within-cluster components (for reviews, see Crits-
Christoph & Mintz, 1991; Rohde, 2008). Several

studies have investigated power for partially nested
designs, either deriving formulas for optimal allo-
cation of subjects for particular designs or providing
simulation results showing how power changes as
design factors are manipulated (Baldwin et al.,
2011; Candel & van Breukelen, 2009, 2010; Lohr
et al., 2014; Moerbeek & Wong, 2008; Roberts &
Roberts, 2005; Sanders, 2011; Tessler, 2014;
Walwyn & Roberts, 2010). Overall findings indicate
that, for a fixed total sample size, power is more a
function of the number of clusters in the treatment
arm than either the cluster size in the treatment arm
(necessarily small for therapy groups) or number of
singletons in the control arm. Moreover, power
decreases with increasing ICC and decreases slightly
with unbalanced cluster sizes. Monte Carlo power
analysis procedures (e.g., Muthén & Muthén, 2002)
allow researchers to flexibly assess power under any
generating MA-PN model; see also Roberts (2008).

Estimation Methods and Software for Fitting
MA-PN Models

MA-PN models are most commonly fit with
maximum likelihood (or restricted maximum likeli-
hood) estimation under missing at random assump-
tions for outcomes. Researchers are encouraged to
include, as covariates, any predictors that may be
associated with differential patterns of missing
data across individuals, therapists, or therapy-
groups (e.g., therapy group cohesion as a level 2 pre-
dictor potentially related to attrition in the treatment
arm). Basic MA-PN models can be fit using conven-
tional multilevel software packages (e.g., SAS Proc
Mixed, R, HLM, MLwiN; see syntax in Baldwin
et al., 2011; Bauer et al., 2008; Lohr et al., 2014;
Sanders, 2011). However, more general software
(e.g., Mplus) allows certain extensions of the MA-
PN model that would be cumbersome (e.g., the par-
tially nested multivariate multilevel model in
Equation (4)) or impossible (e.g., partially nested
multilevel structural equation models) to specify in
conventional multilevel software (see syntax in
Lachowicz et al., 2015; Sterba et al., 2014).
Note that these software packages differ in the

reference distribution used for testing fixed effects.
Test statistics for fixed effects (e.g., the treatment
effect) often are computed using the z reference dis-
tribution (e.g., Stata, Mplus). Particularly when the
number of clusters in the clustered arm is < 8, there
are advantages to testing fixed effects using t-tests
with approximated degrees of freedom (e.g., see the
Kenward-Roger method available only in SAS)
when fitting applicable MA-PN models (Baldwin
et al., 2011).
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Bayesian methods have also been employed to fit
MA-PN models (e.g., Baldwin & Fellingham, 2013;
Chu, 2013; Lee & Thompson, 2005b). In simu-
lations comparing likelihood and Bayesian methods
in this context, Baldwin and Fellingham (2013)
found that Bayesian methods can yield more bias
but greater efficiency for estimating variance com-
ponents, under carefully chosen priors. Under
diffuse priors, Baldwin and Fellingham (2013)
found Bayesian methods to be less efficient for esti-
mating these parameters. These differences across
methods were more pronounced at smaller sample
sizes.

Conclusions

This review integrated cutting-edge developments in
modeling partially nested data and highlighted those
of particular relevance to psychotherapy researchers.
We began by differentiating variants of individually-
randomized fully nested designs vs. partially nested
designs. We then presented several model specifica-
tions that allow psychotherapy researchers to
explain variability at the individual level, therapy-
group level (where present), and therapist-level;
assess treatment effects; investigate moderation by
treatment; and investigate mediators of the treatment
effect. For illustration, the Online Appendix contains
annotated software syntax for fitting the models in
Equations (1)–(4), and the Online Supplement con-
tains four simulated datasets that were generated
with the respective nesting structures analyzed in
Equations (1)–(4) in order to produce the empirical
model fitting results in Tables I–IV. Finally, we
reviewed recent work on effect size, power, and esti-
mation methods in the context of partially nested
data.
This review gives psychotherapy researchers scaf-

folding for evaluating and employing new and differ-
ent kinds of models in the context of partial nesting.
Recent examples not discussed here specifically
include partially nested cross-classification models
(Lai & Kwok, 2014; Luo et al., 2015) and partially
nested multiple membership models (Roberts &
Walwyn, 2013). In future research, partial nesting
could also be accommodated in models for rolling
group therapy trials (Andridge, Shoben, Muller, &
Murray, 2014; Bauer, Gottfredson, Dean, &
Zucker, 2012; Tasca, Balfour, Ritchie, & Bissada,
2007), by allowing for time-varying group effects
only in the treatment arm. Psychotherapy researchers
are encouraged to consider the sources of full and
partial nesting that arise in individually-randomized
trials. Therapist-level and therapy-group-level
variability need not be viewed as a methodological

nuisance; they can be investigated and predicted
in order to yield substantive insights about
the treatment process in individually-randomized
trials.

Supplemental data

Supplemental data for this article can be accessed at
doi:10.1080/10503307.2015.1114688.
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Notes
1 For instance, Lohr et al. (2014) considered partially nested cluster
randomized trials. Partially nested designs can arise in cluster ran-
domized trials (e.g., Cornfield, 1978), such as when pre-existing
clusters (e.g., schools) are randomly assigned to treatment or
control arms and then tutoring/study groups are formed within
schools in the treatment arm. Since partially nested cluster ran-
domized trials are more common in education and public
health settings, rather than clinical settings, they are not dis-
cussed here.

2 For the present discussion it is not relevant whether full nesting
of patients within therapist arises from an arrangement where
therapists are “nested” within study arm or “crossed” with
study arm (e.g. Kazdin, 1986). Either arrangement could exist
in a “fully nested” design and each can be accommodated by
slightly different specifications of a conventional two-level multi-
level model (see later discussion).

3 Note that the term multiple-group multilevel model is more
common for related models (e.g., Asparouhov & Muthén,
2012) but we use the term “multiple-arm” because in this
paper “group” refers to therapy group.

4 If very few therapists delivered treatment, estimating outcome
variability at the therapist level in Equation (2) could be unreli-
able and estimation problems could be encountered (Tessler,
2014). See later section on power analysis.

5 Note that in Hedges and Citkowicz (2015) residual variances
were assumed homoscedastic across study arm, which is not
assumed here in this section.

6 Slopes of individual-level predictors could in theory be allowed
to randomly vary across level 2 or level 3 units (therapy-groups
or therapists) in the group therapy arm, and could vary across
level 3 units (therapists) in the individual therapy arm. Slopes
of therapy-group level predictors could in theory be allowed to
randomly vary across level 3 units (therapists) in the group
therapy arm. For simplicity we have expanded the Equation (2)
MA-PN model to include only fixed slopes of predictors
(denoted with g’s) in Equation (3). The decision regarding
whether to model slopes as fixed or random may be based on
theoretical grounds (i.e., does substantive theory predict that
this slope should differ across therapy groups?) and/or empirical
grounds (i.e., does a LRT comparing a model with a fixed slope
versus random slope in the treatment arm support the necessity
of including the random slope?).
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