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Abstract A mesh size objective multiscale modeling

is developed for fatigue failure prediction of long fiber-

reinforced composites based on the multiscale discrete

damage theory (MDDT). MDDT tracks the failure pro-

cesses along discrete failure surfaces at the microscale

and concurrently bridges it to continuum-based descrip-

tion of damage at the macroscale. The proposed ap-

proach achieves mesh-size objectivity by introducing a

length scale operator which effectively adjusts the mi-

crostructure size as a function of macroscale element

size; and when a non-additive fatigue damage evolution

law is used to describe progressive cracking at the mi-

croscale. Temporal multiscaling is used to track long-

term fatigue damage evolution with high computational

efficiency. The performance of the proposed model is

demonstrated by the analysis of unnotched and open-

hole laminate configurations. The results indicate mesh-

size objectivity even in the presence of multiple failure

mechanisms including splitting, delamination and trans-

verse matrix cracks. The interaction between splitting

and transverse cracks is investigated by a parametric

study, which reveals the effects of mode I and mode II

dominated degradation on the failure behavior under fa-

tigue loading.
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1 Introduction

Continuous fiber reinforced polymer composite mate-

rials typically exhibit favorable fatigue properties. Nev-

ertheless, long-term fatigue degradation of composite struc-

tures remains to be a structural design consideration in

aerospace, automobile and many other industries. The

current design practices mostly rely on conservative knock-

down factors to account for fatigue degradation. In con-

trast, ongoing research in modeling and prediction at-

tempts to gain better understanding of fatigue failure

mechanisms and facilitate damage tolerance principles to

composite design. Early studies proposed accurate em-

pirical or phenomenological fatigue theories for predic-

tion of residual stiffness, residual strength and fatigue

life of laminated composites (e.g. [1, 2]). However, inter-

actions between multiple failure modes associated with

intralaminar/interlaminar damage in complex compos-

ite configurations are difficult to capture with analytical

methods.

In the past decade or so, progressive damage analy-

sis (PDA) has gained significant attention as a physics

based framework for fatigue failure prediction of com-

posites. Progressive damage analysis of composites sub-

jected to fatigue have been performed based on either
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computational fracture mechanics or continuum damage

mechanics approaches. Studies that couple Paris Law (or

a variant) with J-integral, virtual crack extension and

closure techniques (e.g. [3–5]) have been employed to

study crack growth in composite laminates. These ap-

proaches are either combined with a crack nucleation

model or restricted to configurations that include one or

multiple precracks. They consider brittle crack growth

with the assumption of negligible fracture process zone,

which forms in quasi-brittle materials. Cohesive zone

modeling (CZM) has also been used for fatigue crack pre-

diction in composites. Most CZM-based studies focused

on interlaminar failure (e.g. [6, 7]) since most commonly

used (intrinsic) CZM formulations require that the crack

paths are pre-defined. Some studies also used CZM to

describe intralaminar crack propagation [8–10] by plac-

ing cohesive zone elements at all element faces. Element

enrichment technologies such as the extended finite ele-

ments [11, 12], the phantom node method [13] and the

floating node method [5] have been recently employed

as well. These methodologies allow cracks to grow along

orientations independent of the finite element mesh.

Continuum damage mechanics (CDM) is also a com-

mon method for failure prediction of composites because

of its simplicity and directness for computational imple-

mentation. A number of studies (e.g. [14–18]) focused

on establishing cycle-sensitive damage evolution models

to predict fatigue failure in composite materials. Cycle

sensitive CDM models were then used to explore fatigue

response of various composite configurations [19–21] un-

der different fatigue loading conditions [22]. More re-

cently, CDM-based multiscale models have been devel-

oped for fatigue damage and life prediction in compos-

ites. Arnold et al. [18] employed the Generalized Method

of Cells accelerated with cycle jump approach. Oskay et

al. proposed a multiscale spatial-temporal life prediction

approach that relies on model order reduction in space

[23–25] and time [26–29] to accelerate fatigue prediction.

This approach has been applied to laminated open-hole

as well as bolted joint composite configurations [30]. Re-

gardless of whether the failure behavior is represented

using single scale or multiscale models, CDM approaches

exhibit spurious mesh sensitivity and lack of mesh con-

vergence [31, 32] due to damage localization. While this

issue has been comprehensively studied for static loading

over the past several decades, mesh sensitivity and allevi-

ation strategies under fatigue loading conditions received

relatively little attention. Only the nonlocal approach us-

ing gradient damage type [32] and integral type [33] lo-

calization limiters have been employed to achieve mesh-

size objectivity in the fatigue case.

In this manuscript, we propose a mesh-size objec-

tive multiscale model for fatigue damage evolution and

failure in composites. The proposed model builds on

and generalizes the multiscale discrete damage theory

(MDDT) that was recently proposed for composite fail-

ure under static loading conditions [25]. MDDT is a

discrete-continuum multiscale approach, where the fail-

ure is tracked in discrete surfaces as fracture paths within

the microstructure. Growth of the discrete microstruc-

tural fracture events culminates to diffuse damage pat-

terns at the macroscopic scale, and hence exhibits mesh

size sensitivity when unregularized. The proposed model

achieves mesh-size objectivity at the coarse scale by ad-

justing the microstructure size in an effective manner

with respect to the macroscopic element length using

an analytically determined length scale parameter. In

order to accelerate fatigue life predictions, the MDDT

approach is integrated with a multiple time scaling ap-

proach [26, 27]. We demonstrate that mesh size sensi-

tivity of fatigue predictions can only be achieved when

constitutive (i.e., traction-separation behavior) models

with a specific form are used. The efficacy of the model

is demonstrated in the context of un-notched and open-

hole laminate configurations (0◦ ply and [90◦/0◦]S cross-

ply) subjected to high-cycle fatigue loading. A paramet-

ric study is performed to explain the differences in fa-

tigue crack patterns observed in composite laminates

made of some thermoplastic and thermoset resins.

The rest of the manuscript is organized as follows:

Section 2 provides a brief introduction of the multiscale

discrete damage theory (MDDT) and temporal multi-

scale modeling, and also provides detailed information

of mesh-size objectivity treatment and related fatigue

cohesive model. Section 3 includes the verification of

the proposed approach in the context of un-notched and

open-hole laminated composite configurations, and pro-

vides a parametric study on the effect of mode-I and

mode-II dominated fatigue failure behavior of compos-

ite laminates. Section 4 provides conclusions. The ap-
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pendix includes additional details on multiple time scale

modeling.

2 Multiscale Discrete Damage Theory for

Fatigue

2.1 Spatial multiscale modeling

Progressive failure behavior in the composite mate-

rial is modeled using the Multiscale Discrete Damage

Theory (MDDT) recently proposed in Ref. [25]. A brief

overview of MDDT and the governing equations are pro-

vided below. The underlying theory and detailed deriva-

tion of the governing equations are omitted herein for

brevity.

The overall multiscaling strategy in MDDT is illus-

trated in Fig. 1. The proposed modeling approach relies

on concurrent coupling between the scale of the compos-

ite microstructure (i.e., representative volume or unit

cell) and the macroscopic domain using the computa-

tional homogenization theory [34, 35]. The progressive

failure process within the microstructure associated with

an arbitrary position in the macroscale domain is mod-

eled by tracking the cohesive (i.e., traction-separation)

behavior over a pre-selected finite set of discrete “po-

tential” failure paths (See Fig. 1b). Progressive frac-

ture over each failure path is tracked throughout the

loading process. The microscale response is bridged to

the continuum representation of damage at the macro-

scopic scale based on averaging operations consistent

with the mathematical homogenization theory [25]. In

order to accelerate the analysis, the failure processes

within the microstructure are computed using a reduced-

order representation, with certain microstructural infor-

mation precomputed (i.e., influence functions and co-

efficient tensors) prior to the macroscopic analysis. Al-

though the macroscopic failure in MDDT is represented

as continuum damage (i.e. smeared crack), MDDT dif-

fers from classical smeared crack models as it tracks

discrete cracks within the microstructure. In addition,

MDDT has the capability to incorporate multiple fail-

ure mechanisms at macroscale corresponding to failure

paths embedded in the microstructure.

Consider a microstructure domain, Θ at an arbi-

trary macroscopic position x ∈ Ω, within which pos-

sible fracture is explicitly tracked along m failure paths

(See Fig. 1). Let δ(α) denote the spatially averaged sep-

aration (i.e., displacement jump) on the failure path, α

(α = 1, 2 . . . ,m). The macroscopic stress σ̄ (x, t) at time

t during the loading process is expressed as:

σ̄ (x, t) = L̄ : ε̄ (x, t) +

m∑
α=1

Z(α) · δ(α) (x, t) (1)

where ε̄ stands for macroscopic strain tensor; L̄ is the

tensor of homogenized elastic moduli; Z(α) is a third or-

der coefficient tensor that determines the stress contri-

bution due to the separations on the failure path, α; (·)
and (:) respectively denote inner and double inner prod-

uct operators. L̄ and Z(α) are computed as integrals of

characteristic influence functions (i.e., numerical Greens

functions) over the microstructure, and incorporate ma-

terial heterogeneity and failure path morphology infor-

mation. The coefficient tensors are evaluated by linear

elastic analyses over the domain of the microstructure

prior to the multiscale simulation. A brief introduction

to the microstructure analysis is shown in the appendix.

The governing equilibrium equation within the mi-

crostructure is recast on each failure path as:

t(α) (x, t)−C(α) : ε̄ (x, t)+

m∑
β=1

D(αβ) ·δ(β) (x, t) = 0 (2)

where t(α) is the average traction vector on the failure

path, α, and C(α) and D(αβ) are coefficient tensors. The

governing reduced order system of “mesoscale” equa-

tions is closed by introducing a traction-separation rela-

tionship to describe the cohesive behavior on the failure

paths (expressed in a generic form):

t(α) = t̂(α)
(
δ(α),q(α)

)
(3)

where q denotes a vector of internal state variables that

define the evolution of the cohesive law. In order to de-

scribe failure under the fatigue process, the cohesive law

is taken to be cycle-sensitive and history-dependent. The

MDDT framework admits various forms of constitutive

laws for the cohesive behavior such as the classical bi-

linear [36] and others (e.g. [26, 27]). The specific evolu-

tion equations for the cohesive model employed in this

study are discussed below.
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Fig. 1: Spatial multiscale modeling strategy for composite laminates. (a) Macroscopic domain (b) Microstructure domain, Si
(i=1,2,3) denote failure paths (surfaces in 3-D).

2.2 Mesh-size objectivity

When unregularized and subjected to static or fa-

tigue loading conditions, the MDDT model exhibits spu-

rious mesh-size sensitivity and diminishing dissipated

energy due to fracture as a function of increasing mesh

density. The homogenization process results in a contin-

uum description of damage at macroscale which is well

known to result in spurious mesh-size sensitivity [31,

32] in the presence of failure localization, despite the

fact that failure is represented along discrete surfaces at

the microscale. The issue of spurious mesh sensitivity

is alleviated by enforcing overall fracture energy consis-

tency [37]. Under static loading, leveraging the multi-

scale nature of the MDDT approach, the regularization

effectively adjusts the size of the microstructure as a

function of the characteristic macroscopic element size,

so as to keep the macroscopic fracture energy indepen-

dent of element size. The microstructure size adjustment

is performed in an effective fashion by analytically ex-

pressing the corresponding reduced order model (i.e. co-

efficient tensors) as a function of macroscopic element

size, rather than directly building and discretizing sepa-

rate microstructures of different sizes for different macro-

scopic element sizes. The “reference” microstructure is

the only one which is discretized for computing the co-

efficient tensors (i.e. reference coefficient tensors). The

analytical relationship between the reduced order model

and macroscopic element size has been established for

cohesive laws that exhibit linear or near-linear soften-

ing behavior (e.g., bilinear law [36]) using the reference

coefficient tensors. Let ξ(α) = l/h(α) denote the length

scale ratio, where l stands for the reference microstruc-

ture size (e.g., smallest RVE or unit cell) and h(α) the

characteristic length of the macroscale element along the

direction dictated by the orientation of the failure path,

α. The reduced order model associated with the length

scale ratio, ξ(α) is then obtained by scaling the reference

coefficient tensors:

D̂(αβ)
(
ξ(α)

)
= η(α)

(
ξ(α)

)
·D(αβ) (4)

When expressed in terms of the local coordinate sys-

tems aligned with the unit normals and two tangential

directions of the failure paths, the matrix form of the

scaling tensor is diagonal:

[
η(α)

(
ξ(α)

)]
=

 η
(α)
N (ξ(α)) 0 0

0 η
(α)
S1

(ξ(α)) 0

0 0 η
(α)
S2

(ξ(α))

 (5)

Scaled Z̃(α)
(
ξ(α)

)
is defined in the matrix form as:

[
Ẑ(α)

(
ξ(α)

)]
=

 η
(α)
N Z

(α)
11 η

(α)
S1

Z
(α)
12 η

(α)
S2

Z
(α)
13

η
(α)
S1

Z
(α)
12 Z

(α)
22 Z

(α)
23

η
(α)
S2

Z
(α)
13 Z

(α)
23 Z

(α)
33

 (6)

D(αβ) and Z(α) are the reference coefficient tensors,

taken as D(αβ)
(
ξ(α)

)
= D̂(αβ)

(
ξ(α) = 1

)
and Z(α) =

Ẑ(α) (ξ(α) = 1), when the size of the reference microstruc-

ture equals the macroscopic element size. η
(α)
N , η

(α)
S1

and

η
(α)
S2

are respectively the scaling factors that are com-

puted using coefficient tensor components in the normal



Title Suppressed Due to Excessive Length 5

and two orthogonal shear directions of the failure path:

η
(α)
N =

ξ(α)A
(α)
N

A
(α)
N +

(
1− ξ(α)

)
(D

(α)
N L̄

(α)
N + Z

(α)
N C

(α)
N )(L̄

(α)
N )−1

(7)

η
(α)
S1

=
ξ(α)A

(α)
S1

A
(α)
S1

+
(
1− ξ(α)

)
(D

(α)
S1
L̄
(α)
S1

+ Z
(α)
S1
C

(α)
S1

)(L̄
(α)
S1

)−1

(8)

η
(α)
S2

=
ξ(α)A

(α)
S2

A
(α)
S2

+
(
1− ξ(α)

)
(D

(α)
S2
L̄
(α)
S2

+ Z
(α)
S2
C

(α)
S2

)(L̄
(α)
S2

)−1

(9)

where A
(α)
N , A

(α)
S1

and A
(α)
S2

stand for the softening slopes

of the traction-separation relationship, defined as A
(α)
N =

∂t
(α)
N /∂δ

(α)
N , A

(α)
S1

= ∂t
(α)
S1
/∂δ

(α)
S1

, A
(α)
S2

= ∂t
(α)
S2
/∂δ

(α)
S2

. tN ,

tS1
, tS2

and δN , δS1
, δS2

are respectively normal and two

tangential components of the traction and separation

vectors. D
(α)
N , D

(α)
S1

, D
(α)
S2

, C
(α)
N , C

(α)
S1

, C
(α)
S2

, L̄
(α)
N , L̄

(α)
S1

,

L̄
(α)
S2

are respectively linear compositions of the coeffi-

cient tensor components in terms of the aforementioned

local coordinates of the failure path.

The regularization methodology is schematically il-

lustrated in Fig. 2. Unlike the crack band approach [37],

which also employs the strategy of energy consistency,

the constitutive (i.e., traction-separation) behavior re-

mains unchanged in the present approach. The microstruc-

ture size (i.e., the corresponding MDDT model) is ad-

justed instead to regularize dissipated energy within the

microstructure. The softening slope of the resulting macro-

scopic stress-strain relationship varies as a function of

the length scale parameter.

One consideration is the relationship between the size

of the microstructure, physical observable within the lo-

calization band and the macroscopic mesh size. Let w

and ρ, respectively denote the width of the localization

band and the microcrack density within the band. l0 de-

notes the size of the smallest microstructure that can

represent the morphology (e.g., a single fiber unit cell in

Fig. 2) with a single failure path, and h = aw the size of

the macroscopic element along the direction normal to

the failure path. a is a constant that sets the macroscopic

element size relative to localization band width w. Using

the energy equivalence principle, the microcrack density

within the localizing element must be set as: ρh = ρ/a.

Noting that the microcrack density within the element is

inversely proportional to the microstructure size, l, and

defining ρ0 = 1/l0 as the crack density associated with

the unit cell, we obtain:

l

l0
=
ρ0h

ρw
(10)

It follows from above that the size of the microstruc-

ture used in MDDT corresponds to the single fiber unit

cell (i.e., l = l0) if h = ρwl0.

The aforementioned regularization strategy has been

demonstrated to be effective under static loading con-

ditions [25], where fracture energy dissipation is dic-

tated by the strain softening regime of the macroscopic

element response. Generalization of this regularization

strategy to fatigue requires additional considerations.

Many constitutive laws (i.e., traction-separation) that

idealize progressive degradation under cyclic loading dis-

sipate substantial fraction of the fracture energy during

the hardening stage of the loading process [7, 17, 26–

29, 32]. Some of the fatigue damage models do not em-

ploy a softening regime and idealize the entire degrada-

tion process during hardening [17, 26–29]. Even in the

absence of a softening stage, fatigue damage models ex-

hibit mesh size sensitivity, albeit for a different reason.

As a fracture process zone cannot form at the crack tip,

crack tip stress becomes singular and damage growth ac-

celerates with increasing mesh density [32]. The exten-

sion of the proposed regularization strategy to this class

of cycle-sensitive models is not straightforward. Instead,

we adopt an alternative class of cycle-sensitive constitu-

tive models, where the energy dissipation occurs during

the softening stage [38].

2.3 Non-additive traction-separation law

This section provides the specific cohesive law used

to idealize the progressive failure along a failure path

subjected to cyclic loading. The proposed law is a vari-

ant of the constitutive model devised by Khoramishad

et al. [38], who introduce two damage variables to de-

scribe the cycle-sensitive failure behavior. In what fol-

lows, superscript α that indicates the failure path index

is omitted for simplicity of presentation. The traction-

separation relationship is expressed as:

t = (1− ω)K · δ (11)
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Fig. 2: Regularization strategy for mesh-size objectivity. (a) Macroscopic stress-strain relationship and cohesive behavior
(i.e. traction-separation curve) when characteristic element size is h, (b) when characteristic element size is set to 2h using a

larger microstructure.

where K represents the cohesive stiffness tensor, [K] =

KI, and I is the second order identity tensor; ω ∈ [0, 1] is

a scalar damage variable. ω = 0 denotes the initial state

with full cohesive stiffness, ω = 1 represents cohesionless

crack along the failure path. Employing the classical bi-

linear form, the cohesive damage variable is expressed

as:

ω(κ) =


0 κ ≤ νc
νu (κ− νc)
κ (νu − νc)

νc < κ ≤ νu

1 κ > νu

(12)

where κ(t) = max
τ∈[0,t]

{ν(τ)} is the history variable of equiv-

alent separation ν, ν = ‖δ‖ =
√
δ2N + δ2S1

+ δ2S2
, where

δN satisfies δN ≥ 0 to eliminate the possibility of in-

terpenetration. νc and νu respectively correspond to the

values of the equivalent separation at the onset of the

softening region and at ultimate failure. They are evalu-

ated under mixed-mode conditions based on a quadratic

damage initiation criterion [36] and using the B-K crite-

rion [39]:

νc = δfcIδ
f
cII

√√√√√ 1 + βm
2

(δfcII)
2 +

(
βmδ

f
cI

)2 (13)

νu =
2

Kνc

[
GfIc + (GfIIc −G

f
Ic)

(
βm

2

1 + βm
2

)η
BK

]
(14)

where βm is the mixed-mode ratio defined as the ra-

tio between tangential and normal separations, βm =√
δ2S1

+ δ2S2
/δN . Degradation behavior under repetitive

cyclic loading is modeled by introducing the fatigue dam-

age variable ωf ∈ [0, 1]. Unlike ω, which degrades the in-

stantaneous secant stiffness, the fatigue damage variable

acts on the critical separation at the onset of damage and

the critical energy release rate:

δfcI = δcI (1− ωf ) , δfcII = δcII (1− ωf ) (15)

GfIc = GIc(1− ωf )2, GfIIc = GIIc(1− ωf )2 (16)

where, δcI , δcII are equivalent separations at the onset

of the softening region, GIc and GIIc are critical frac-
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ture energies under mode-I and mode-II conditions. Un-

der pure mode I loading (βm = 0), the critical and

ultimate equivalent separations become νc = δfcI and

νu = δfuI
, respectively. Similarly, pure mode II loading

(βm = ∞) results in critical and ultimate equivalent

separations of νc = δfcII and νu = δfuII
, respectively. δfcI ,

δfcII , G
f
Ic and GfIIc are effectively the fracture parame-

ters of a cohesive interface that has been cyclically dam-

aged by ωf . Considering the bilinear form of the cohesive

law: tu = Kδc, Gc = tuδu/2, the fatigue degradation

can also be regarded as reducing the peak traction tu

and ultimate equivalent separation δu: tfu = tu (1− ωf ),

δfu = δu (1− ωf ). The stiffness and softening slope of

the traction-separation relationship is not influenced by

fatigue damage.

In order to account for the presence of fatigue damage

variable, the history variable κ is expressed as:

κ(t) = max
τ∈[0,t]

{
ν(τ)

1− ωf (τ)

}
(1− ωf (t)) (17)

In the absence of cyclic degradation (i.e., ωf = 0), Eq. 17

degrades to its original definition.

With respect to the evolution law for fatigue damage,

this work adopts separation-based form [32]:

ω̇f = C exp (λωf )

(
ν

νu

)βf 〈ν̇〉+
νu

(18)

where λ is a material parameter, and 〈·〉+ = [|·|+ (·)]/ 2

denotes the Macaulay brackets. In order to model fa-

tigue damage evolution under mixed-mode conditions,

the amplitude coefficient C and the power index βf are

respectively defined as functions of the mixed mode ratio

(following the form of the B-K model [40]):

lnC = lnCII + [lnCI − lnCII](
1

1 + β2
m

)mc (19)

βf = βfI + (βfII − βfI)(
β2
m

1 + β2
m

)mβf (20)

where C = CI, βf = βfI indicate the material properties

that control the fatigue damage evolution under pure

mode I loading (i.e. βm = 0), and C = CII, βf = βfII

under pure mode II (i.e., βm → ∞). Power indices mc

and mβf are additional parameters controlling damage

evolution under mixed mode loading.

Figure 3 schematically illustrates a typical behavior

of the cohesive law subjected to cyclic loading. For gener-

Equivalent separation

Tr
ac

tio
n

Fig. 3: Traction-separation curve obtained by non-additive
scheme under cyclic loading. Dash line represents the

bilinear profile obtained under monotonic loading.

ality of demonstration, a separation-controlled variable

amplitude loading is employed to generate the traction-

separation curve. The figure illustrates that if the peak

traction magnitude does not reach the instantaneous ul-

timate traction (i.e., tfu), the behavior is non-dissipative

and tfu reduces under cyclic loading. The softening slope

remains constant regardless of the value of tfu. The en-

ergy dissipation occurs only during the softening regime.

This is crucial to regularization of MDDT model as it

adjusts dissipated energy by regularizing the softening

moduli of the homogenized stress-strain relationship.

2.4 Temporal multiscale scheme

Straightforward time integration of the governing equa-

tions of the MDDT model to characterize long-term dam-

age evolution and failure is computationally prohibitive

for high cycle fatigue. In such a cycle-by-cycle approach,

each loading cycle is discretized into several increments

and the governing equations of the MDDT model is eval-

uated using a nonlinear solver (e.g., Newton-Raphson

or others) for each increment of each cycle. Instead,

we accelerate the simulations by adopting the multi-

ple time scale life prediction methodology proposed in

Ref. [26]. In this regard, we define two problems sepa-

rated by the time scales they operate. The microchrono-

logical problem evaluates the response subjected to a sin-

gle load cycle (summarized in Box A in the appendix).

The macrochronological problem provides the long-term

evolution of damage and equilibrium state. The govern-
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t = 0 t = t1 t = t2

Macrochronological Step Macrochronological Step

......

Microchronological
problem

Microchronological
problem

Microchronological
problem

0 τ 0 τ 0 τ

(a)

0 t1 t2

Applied traction

time

(b)

Fig. 4: (a) Fatigue loading history, (b) Time domain decomposition in the temporal multiscale scheme.

ing system of equations are summarized in the appendix

for brevity of this discussion.

The implementation of the multiple time scale ap-

proach is similar to the block-cycle modeling [18] and

illustrated in Fig. 4. The micro- and macrochronological

problems are evaluated in a tightly coupled fashion. At

each macro-chronological increment, ti, a microchrono-

logical problem is evaluated to compute the rate of fa-

tigue damage evolution. The macrochronological time

increments are adaptively set [27] based on maximum

allowable damage accumulation (∆ωp) within a single

increment.

Following Ref. [27], the microchronological problem

is evaluated in a quasi-linear fashion, where the damage

accumulation is assumed to not affect the equilibrium

state within a single load cycle. By this approach, fa-

tigue damage accumulation within the microchoronolog-

cal problem is expressed in cyclic form as:

dωf
dN

=
C(1− ωf )1+βf

1 + βf
exp (λωf )[(

νmax
νu

)βf+1

−
(
νmin
νu

)βf+1
] (21)

where νmax and νmin are respectively maximum and

minimum equivalent separation within the unit loading

cycle. Load characteristic such as the R-ratio natually af-

fects fatigue damage accumulation in the microchrono-

logical problem. This is evident in Eq. 21 due to the

presence of νmax and νmin terms.

The implementation of the MDDT modeling frame-

work consists of the construction of the reduced order

model that corresponds to the reference microstructure,

and evaluation of the macroscopic, multichronological

problem. The reference reduced order model is computed

using an in-house code. The macroscopic problem is eval-

uated using the commercial finite element analysis pack-

age, ABAQUS. The reduced-order MDDT model as well

as regularization scheme are incorporated using the user

supplied subroutine capability, UMAT. The coupling be-

tween the micro- and macrochronological problems is im-

plemented using Python scripts that involves the appro-

priate problem in turn as shown in Fig. 4.

3 Numerical Verification

In this section, fatigue simulations using un-notched

and open-hole laminate configurations are performed to

verify the MDDT models in terms of (1) mesh-size objec-

tivity and (2) capabilities in capturing complex failure

mechanisms.

Figure 5 displays the configuration and discretization

of the reference microstructure employed for all numeri-

cal examples in this study. The microstructure is a unit

cell composed of square-packed unidirectional fiber rein-

forcement embedded in a continuous matrix. The elastic

properties of isotropic matrix and transversely isotropic

fiber constituents are listed in Table 1. The unit cell

is 65% fiber by volume. Three potential failure paths

that correspond to the primary failure modes of trans-

verse matrix cracking, delamination and fiber fracture
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are considered, and reside within the domain of the re-

spective constituents. As the intralaminar and interlam-

inar damage of matrix constituents are separately mod-

eled in different domains of the numerical specimens,

they are represented using two separate microstructures.

The transverse matrix cracking and delamination failure

paths have the same morphology and fracture properties,

but they are oriented differently with respect to the ply

lay up. In case of loading along the fiber direction, ulti-

mate failure would constitute fracture in both fiber and

matrix. In this study, fatigue fracture of the matrix lig-

ament is ignored due to the significant moduli disparity

between the fiber and the matrix, and the fiber fracture

path is considered within the fiber domain only.

Transverse 
Matrix cracking

Fiber fracture

Fiber

Matrix

Delamination

Fiber fracture

(a) (b)x
y

z

(c)

Fiber Cracking

Delamination

Transverse 
Matrix cracking

Fiber fracture

Fig. 5: Reference microstructure embedded with the failure
paths of (a) transverse matrix cracking and fiber fracture,
and (b) delamination and fiber fracture. (c) Discretizations

of the reference microstructure and failure paths.

3.1 Unnotched specimen

The unnotched numerical specimens subjected to cyclic

loading are employed for verification of the MDDT model.

Figures 6 displays the geometry, loading and a sam-

ple discretization of the specimens. The 90◦ unnotched

numerical specimens are loaded under strain-controlled

uni-axial tension and simple shear loading that respec-

tively activate mode-I and mode-II dominant fracture in

the matrix. The numerical specimens are chosen as mi-

croscopic in order to observe a non-brittle failure under

cyclic tensile loading, which allows us to clearly demon-

strate mesh-size objectivity. The MDDT model shown

in Fig. 5a is therefore employed. The loading conditions

considered do not activate fatigue fracture in the fiber.

The fracture parameters for the transverse matrix crack-

ing failure path is listed in Table 2. Compared to generic

unidirectional carbon fiber reinforced thermoset compos-

ites, this example employs low mode-I and mode-II co-

hesive fracture energy release rates for the purposes of

demonstration. More realistic material parameters are

used in laminate analyses discussed in the next section.

The loading amplitudes for uniaxial and simple shear

loadings are respectively 1.02% and 2.5% total applied

strain with R-ratio equals to 0 in both cases. In the uni-

axial tension case, symmetry boundary conditions are

applied at the three sides normal to x, y and z directions,

respectively. In the shear case, the lateral side that is par-

allel to the failure path is fixed to ensure that the onset of

mode-I failure is suppressed. The macroscopic domain is

discretized with different mesh densities, where the cor-

responding length scale ratio is set to be ξ = 1, 2, 4, 8, 16

for verification of mesh-size objectivity. In the simple

shear case, the coarsest discretization (ξ = 1) does not

adequately resolve shear deformation and is not used.

Damage localization is generated by disturbing the prop-

erties of one layer of elements lying parallel to the matrix

failure path. 8-noded tri-linear hexahedral elements with

reduced integration and hourglass control are employed

in the macroscale discretizations. Simulations using the

temporal multiscale integration scheme as well as the

reference direct cycle-by-cycle time integration are per-

formed. In the reference simulations, the vast majority

of the increments resolve the non-linear response in the

loading or reloading regime. The fatigue damage toler-

ance parameter that adaptively controls macrochrono-

logical time step size is set to be 1% or 2% in the simu-

lations that use the temporal multiscale scheme.

Figures 7a and b show the predicted fatigue life for

different mesh sizes under tensile and shear loading con-

ditions, respectively. In this example, fatigue life refers to

the number of load cycles, where the load carrying capac-
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Table 1: Elastic properties of matrix(m) and fiber(f)

E(m) [GPa] ν(m) E
(f)
1 [GPa]

E
(f)
2

[GPa]
G

(f)
12 [GPa] ν

(f)
12 ν

(f)
23

3.55 0.35 263 13 27.5 0.32 0.20

Table 2: Fracture parameters of matrix cracking for unnotched configuration

Cohesive Failure

G
(m)
Ic G

(m)
IIc t

(m)
uI t

(m)
uII K(m) η(m)

[MPa mm] [MPa mm] [MPa] [MPa] [MPa mm−1]

0.03 0.045 60 90 6 × 107 1

Fatigue damage evolution

C
(m)
I C(m)

II
β
(m)
fI

β
(m)
fII

m
(m)
c , m

(m)
βf

λ(m)

2 × 10−3 1 × 10−3 0.1 0.1 1 0.1

(a) (b)
x

y
z

Fig. 6: Macroscopic domain of microscopic 90◦ unnotched
specimen under (a) tensile loading, (b) shear loading.

ity of the structure vanishes (i.e., damage in the matrix

crack failure path, ω(m) = 1). The solid curves indicate

predicted fatigue life when the regularization approach

is employed, whereas the dash curves are the results of

the unregularized simulations. In all cases, the tempo-

ral multiscale scheme exhibits good agreement with the

direct cycle-by-cycle scheme. The corresponding average

errors with step adaptivity tolerances of 1% and 2% are

respectively less than 1.5% and 6% for all mesh size dis-

cretizations in both uniaxial and shear loaded cases. In

contrast, the computational cost of the multiscale time

integration scheme is significantly less than the refer-

ence scheme. The temporal multiscale scheme requires

a total of 90 (normal) and 75 (shear) resolved cycles

on average for tolerance of 1%, and 46 (normal) and

39 (shear) resolved cycles on average for tolerance of

2%, compared to 10,753 (normal) and 11,512 (shear)

cycles resolved in the direct cycle-by-cycle scheme. A

tradeoff exists between prediction accuracy and compu-

tational efficiency when choosing the tolerance: smaller

value leads to higher accuracy but requires more macro-

chronological time steps that reduces the efficiency of

the approach. Because 2% tolerance has higher compu-

tational efficiency and also keeps reasonable accuracy,

the open-hole simulations performed in this manuscript

employ the temporal multiscale time integration algo-

rithm with 2% tolerance.

Figure 8 displays stiffness evolution of the specimen

as a function of load cycles when the tolerance is taken

to be 1%. In terms of both fatigue life (Fig. 7) and

stiffness loss, the MDDT model yields mesh-size consis-

tent fatigue behavior with regularization (represented by

solid lines). On the contrary, the non-regularized MDDT

model (represented by dash lines) accelerates stiffness

loss and leads to shortened fatigue life when element

size is reduced. In the case of shear loaded unnotched

specimen, mesh size sensitivity is so severe that fine res-

olution simulations show immediate failure within the

first cycle.
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Fig. 7: Fatigue life vs. length scale ratio (i.e. ξ = l/h) obtained by direct cycle-by-cycle scheme and temporal multiscale
scheme with 1% and 2% tolerance for adaptive macrochronological time stepping strategy under (a) uniaxial and (b) shear

loading. Solid lines show results with regularization, while dash lines indicate unregularized model.
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Fig. 8: Residual stiffness vs. cycles obtained by the temporal multiscale scheme with 1% tolerance under (a) uniaxial and (b)
shear loading. Solid lines show the results with regularization, while dash lines indicate the unregularized model.

3.2 Analysis of open-hole unidirectional specimens

In this section, the capabilities of the MDDT model

are demonstrated in predicting stable crack growth un-

der fatigue loading conditions in a mesh size objective

manner. The analysis is performed in the context of

an open-hole 0◦ unidirectional tape. Figure 9 illustrates

the geometry, loading and boundary conditions, and dis-

cretizations used in this study. The overall width, length

and thickness of the specimen are 20mm, 28mm and

0.125mm, respectively. The hole radius is 3.175mm. 1/8

of the specimen is discretized with symmetry bound-

ary conditions applied at the three directions, leveraging

symmetries of the specimen. As shown in Fig. 9b, the

parts of the specimen, where the potential crack propa-

gation is expected, is discretized with elements aligned

with fiber direction to eliminate mesh bias effect. Differ-

ent mesh sizes of 0.1mm, 0.05mm, 0.025mm, 0.0125mm

within the potential crack propagation region of the spec-

imen were used in order to verify mesh-size consistency.

In the thickness direction, the ply is discretized using

one element.

Table 3 lists the fracture properties for both failure

paths of transverse matrix cracking and fiber fracture,

which are consistent with generic unidirectionally car-

bon fiber reinforced thermoset composites. The param-

eters for fatigue damage evolution are selected within

a reasonable range that the corresponding crack prop-

agation rate is of the same order as experiments de-
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scribed in Ref. [9]. The analysis presented herein is fo-

cused on verification of mesh size objectivity. A for-

mal calibration/validation study of a particular com-

posite (See [26, 28]) is outside the scope of the current

manuscript, and will be the emphasis of future studies.

Force-controlled uniaxial cyclic loading with an am-

plitude of 482 MPa (80% of static strength) is applied

to the specimen along z-direction with R-ratio equal

to 0. The temporal multiscale scheme with 2% fatigue-

damage tolerance for adaptive macro-chronological time

stepping strategy is employed for the open-hole configu-

rations.

Figure 10 shows the contours of shear stress σxz cap-

tured at the first cycle, 30,000 cycles and 300,000 cy-

cles which are predicted using the regularized MDDT

model. The macroscopic crack is displayed by light col-

ored elements (shown as red in the electronic version

of the manuscript) which have reached completed dam-

age state (ω(m) = 1). A single dominant splitting crack

initiates at the hole brim at the first cycle and grows

aligned with the fiber (vertical) direction under sub-

sequent cyclic loading. No fiber damage is observed in

this case. The fracture process zone (0 < ω(m) < 1)

is represented by the white straight line ahead of the

splitting crack and results in low shear stress around 90

MPa as splitting crack is mode-II dominant. The length

of the fracture process zone becomes shorter with in-

creasing crack length, because the stress concentration

at the crack tip reduces as the split grows. The pat-

terns of crack propagation and fracture process zone are

both mesh-size consistent. Figure 11 displays the cyclic

evolution of crack propagation and stiffness as a func-

tion of load cycles. Without regularization, the splitting

crack propagation and stiffness loss drastically acceler-

ates with decreasing macroscopic element size. For the

regularized MDDT model, the initial crack growth oc-

curs faster compared to the non-regularized cases. This

is because, the regularized MDDT model is referenced

to the case with the element size (i.e. damage localiza-

tion width) of h = l = 0.01mm, which is significantly

finer than the finest mesh employed in this study. In ad-

dition, the results of the regularized MDDT model ex-

hibits mesh-size consistent crack propagation rates and

stiffness evolution. The crack growth and stiffness evo-

lution curves also demonstrate converging trends with

higher mesh densities. This indicates that the discrep-

ancy between the regularized curves can be largely at-

tributed to mesh resolution effects rather than spurious

mesh size sensitivity.

3.3 Analysis of cross-ply open-hole specimens

The capabilities of the proposed multiscale model

are further assessed in a composite specimen configura-

tion that exhibits diffuse damage, cracking and multiple

failure mechanisms. We consider an open-hole [90◦/0◦]S

cross-ply laminate configuration subjected to tensile fa-

tigue loading. Figure 12 illustrates the geometry, load-

ing and boundary conditions, and discretizations used

in this case. Similar to the previous example, 1/8 of

the specimen is modeled leveraging the symmetries in

the laminate and geometry. Model parameters shown in

Tables 1 and 3 are employed. Force-controlled uniax-

ial cyclic loading of 313 MPa (90% of static strength)

is applied to the specimen along the z-direction with

R-ratio equal to 0. Previous experimental observations

reveal the presence of delamination that affects fatigue

damage progression in carbon-fiber reinforced thermoset

resins [9, 41, 42]. In order to better capture the kinemat-

ics of delamination propagation, delamination is mod-

eled by inserting an additional thin layer of macroscopic

elements in between the 90◦ and 0◦ plies, in which the as-

sociated microstructure is embedded with delamination

failure path, shown in Fig. 5b. The microstructure em-

ployed for delamination layer elements is identical to the

ply layers, except for the difference of failure path ori-

entations between delamination and transeverse matrix

crack (See Fig. 5a,b). The thickness of the delamination

layer is set to be 10 microns (8% ply thickness). MDDT

regularization procedure ensures that the fracture en-

ergy consistency is satisfied regardless of the thickness of

the delamination layer. The potential crack propagation

region is discretized using the element sizes of 0.15mm,

0.1mm, 0.05mm in order to verify mesh-size objectiv-

ity (see Fig. 12b). As demonstrated in the simulations

below, transverse matrix cracks within the 90◦ ply are

bridged by fibers within 0◦ ply, and the damage does not

fully localize. In the absence of damage localization, frac-

ture energy associated with transverse matrix cracking

in the 90◦ ply is mesh-size independent without the need

for regularization. Applying regularization would result
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h=0.1mm h=0.05mm h=0.025mm h=0.0125mm
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Fig. 9: (a) Geometry, boundary and loading conditions, and the MDDT model configuration for open-hole 0◦ ply single
lamina analysis. (b) Different mesh discretizations using the size of h=0.1mm, 0.05mm, 0.025mm, 0.0125mm.

Table 3: Fracture parameters for open-hole configuration

Cohesive failure for matrix cracking

G
(m)
Ic G

(m)
IIc t

(m)
uI t

(m)
uII K(m) η(m)

[MPa mm] [MPa mm] [MPa] [MPa] [MPa mm−1]

0.2 1 60 90 6 × 107 1

Fatigue damage evolution for matrix cracking and delamination

C
(m)
I C

(m)
II β

(m)
fI

β
(m)
fII

m
(m)
c ,m

(m)
βf

λ(m)

1 × 10−2 1 × 10−4 0.1 0.1 1 0.1

Cohesive failure & fatigue damage evolution for fiber fracture

G
(f)
Ic ,G

(f)
IIc

[MPa mm]
t
(f)
uI , t

(f)
uII

[MPa]
K(f) [MPa

mm−1]
η(f) C

(f)
I ,C

(f)
II β

(f)
fI

,β
(f)
fII

m
(f)
c ,m

(f)
βf

λ(f)

12 4000 4 × 109 1 10−7 0.1 1 0.1

in an unphysical increase of fracture energy with mesh

refinement, which suppresses this failure mode when fine

meshes are used. In what follows, we therefore do not em-

ploy the regularization scheme for 90◦ transverse matrix

cracks.

Figure 13 shows the damage contours for transverse

matrix cracking in the 90◦ ply shown as dark region

(black color in the electronic version), for splitting crack

in the 0◦ ply shown as the light grey region (light blue

color in the electronic version), and for delamination

shown as medium grey (red color in the electronic ver-

sion). Delamination contours are shown in both 90◦ and

0◦ plies. The figure shows the results using different mesh

densities captured after the first load cycle, 160,000 cy-

cles and 320,000 cycles. The first cycle of loading results

in a substantial amount of damage near the hole that

consist of a diffuse region of transverse matrix cracking

in the 90◦ ply, a dominant split in the 0◦ ply with length

in the order of the hole radius, and some delamination.

The level of damage observed is expected as the load-

ing amplitude is large (90% of the static strength of the

specimen). While significant damage is observed at the

end of the first load near the hole, none of the failure

paths reach full fracture state within the specimen (i.e.,

corresponding damage variable reaching unity). Subse-

quent cycling results in stable growth of all three dam-

age mechanisms. Distinct, yet diffuse transverse matrix

cracks begin to grow in the 90◦ ply but arrested by the

splitting crack. Delamination growth occurs around the

growing split and the transverse cracks. A small amount

of fiber damage also occurs near the hole (not shown

in figure) and grows slowly compared with the matrix

damage. The general feature of damage contours con-

form well with the X-ray tomography of the damage in
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Fig. 10: Shear stress contour σxz captured at the first cycle, 3 × 104 cycles and 3 × 105 cycles for 0◦ ply single lamina with
mesh densities of h=0.1mm, 0.05mm, 0.025mm, 0.0125mm.

0 0.7 1.4 2.1 2.8 3.5
Cycles 105

0

4

8

12

16

C
ra

ck
 L

en
gt

h/
m

m

h=0.15mm
h=0.1mm
h=0.05mm
h=0.025mm

x*

x*

*x

*
*

x *
x

x
x* x x* *

x
x x x x

*
*

*

*
*

0 0.7 1.4 2.1 2.8 3.5
Cycles 105

0.9

0.92

0.94

0.96

0.98

1

St
iff

ne
ss

 lo
ss

 ra
tio

h=0.15mm
h=0.1mm
h=0.05mm
h=0.025mm

x*x

*

x

*

x
* x

* x
* x

*

x

* x

x
x

x
x*

*

*
*

(a) (b)

Fig. 11: (a) Splitting crack extension and (b) residual stiffness loss ratio as a function of cycle number for 0◦ lamina. Solid
and dash lines respectively denote the results obtained by regularized and non-regularized models.



Title Suppressed Due to Excessive Length 15

(a)

(b)

90o  ply

0o  ply

Delamination

h=0.15mm h=0.1mm h=0.05mm

z
x

y

Fig. 12: (a) Geometry, boundary and loading conditions for the open-hole [90◦/0◦]S cross-ply laminates, as well as
microstructure configuration for each ply and delamination modeling. (b) Different mesh densities with h=0.15mm, 0.05mm,

0.025mm for discretization.

the high cycle fatigue cases of Refs. [9, 41, 42], which

employ similar laminate configurations. No significant

difference in crack extension patterns appear when dif-

ferent meshes are used in the simulations.

Figure 14 shows the growth of the dominant splitting

crack as a function of load cycles, as well as the evolution

of specimen stiffness. Crack growth is considered to ini-

tiate when full damage in the “transverse matrix crack”

failure path is reached in the first element along the split.

The crack growth process follows a short incubation pe-

riod. During the incubation period, damage growth does

not fully localize (as shown in top rows of Fig. 13), and

the regularization is not effective. This manifests itself

in the differences in crack growth initiation cycles shown

in Fig. 14a. The number of cycles during incubation are

respectively 4,577 cycles, 9,911 cycles and 17,864 cycles

for the simulations with coarse (h=0.15mm), medium

(0.1mm) and fine (0.05mm) meshes. The cycles to ini-

tiation constitutes a small portion of the structural life

and the errors do not affect the overall life prediction

significantly. A reasonable overall mesh-size consistency

is observed in both splitting crack growth and stiffness

evolution curves.

We further conduct a parametric study on the rela-

tive fatigue sensitivity of mode-I and mode-II damage

growth rates, and its consequences on specimen level

damage evolution in the context of open-hole cross-ply

laminate configurations. In this manuscript, the mode

sensitivity is demonstrated by varying the fatigue am-

plitude parameters (i.e. C
(m)
I and C

(m)
II ), which affect

the fatigue behavior, but not the static response. Other

parameters such as the cohesive strength are expected to

show similar influences. In this case, the amplitude pa-

rameter C
(m)
I that controls fatigue evolution (of “trans-

verse matrix cracking” and “delamination” fatigue paths)

under mode-I condition is reduced from 10−2 to 10−6,

while C
(m)
II and the rest of the parameters remain the

same. This choice of the parameter effectively reduces
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Fig. 13: Transverse matrix crackings (black) in 90◦, splitting crack (light blue) in 0◦ ply, as well as delamination (red)
captured at the first cycle, 160,000 cycles and 320,000 cycles for different mesh sizes of h=0.15mm, 0.1mm, 0.05mm.
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Fig. 14: (a) Splitting crack propagation, and (b) residual stiffness as a function of cycle numbers for [90◦/0◦]S laminates.
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Fig. 15: Transverse matrix crackings (black) in 90◦, splitting crack (light blue) in 0◦ ply and delamination (red) captured at

320,000 cycles compared between C
(m)
I = 0.01, C

(m)
II = 10−4 and C

(m)
I = 10−6, C

(m)
II = 10−4.
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Fig. 16: (a) Splitting crack propagation, and (b) residual stiffness as a function of cycle numbers for [90◦/0◦]S laminates

compared between C
(m)
I = 0.01, C

(m)
II = 10−4 and C

(m)
I = 10−6, C

(m)
II = 10−4.

the sensitivity of cyclic propagation of mode-I crack. The

structural mesh is discretized with the element size of

h=0.1mm. Figure 15 makes the comparison of predicted

damage contours between C
(m)
I = 10−2 and C

(m)
I =

10−6 at 320,000 cycles. The splitting crack in the 0◦

ply, the interlaminar damage in the delamination layer,

as well as the diffuse damage in 90◦ ply for C
(m)
I = 10−6

remain unchanged, but no discrete transverse cracks are

observed. As shown in Fig. 16, the absence of transverse

cracks does not have a significant influence on splitting

crack extension, but reduces the stiffness loss steadily as

the cyclic loading continues.

The differences in behavior is further illustrated by

studying mode-I and mode-II fatigue damage evolution.

Figure 17a compares the pure-mode fatigue damage evo-

lution rate dωf/dt as a function of dimensionless equiv-

alent separation ν/νu between C
(m)
I = 10−6 and C

(m)
I =

10−2. The figure plots Eqs. 18, 19, 20 with the respec-

tive material parameters. In the case of C
(m)
I = 10−6, the

pure mode-I fatigue degradation is orders of magnitude

smaller than mode-II failure, whereas the opposite con-

clusion is reached for the case of C
(m)
I = 10−2. Noting

that the transverse and the splitting cracks are respec-

tively mode-I and mode-II dominated, setting C
(m)
I =

10−6 results in a much smaller transverse crack growth

rate compared to the splitting crack. Conversely, setting

C
(m)
I = 10−2 enhances transverse crack propagation and

more interaction with the growing splitting crack

The two distinctly different behaviors have also been

observed in experiments that use similar laminate config-

urations but different types of materials for matrix con-

stituents. According to the experiments conducted by

Spearing et al. [41], T300/914C laminates subjected to

high-fatigue cyclic loading shows long extension of trans-

verse cracks, which are almost negligible in AS4/PEEK

laminates observed by Wang et al. [43]. Figure 17b shows
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Fig. 17: Pure mode fatigue damage evolution rate dωf/dt vs. dimensionless equivalent separation ν/νu for C
(m)
I = 0.01,

C
(m)
II = 10−4 (left) and C

(m)
I = 10−6, C

(m)
II = 10−4 (right) (b) Crack propagation rate da/dN vs. strain-energy release rate G

for fiber-epoxy T300/914C (left) and AS4/PEEK (right) composites.

the typical fatigue crack growth rate curves for T300/914C

and AS4/PEEK composite systems. The curves are gen-

erated by assuming that the fatigue crack propagation

follows the Paris law with parameters calibrated using

double cantilever beam and end notch flexure tests [44,

45]. The switch between mode I and mode II fatigue

sensitivity observed for the thermoset and thermoplastic

systems and the experimentally observed damage prop-

agation behavior are qualitatively in agreement with the

trends shown in the parametric study.

4 Conclusion

This study proposed a new computational framework

based on multiscale discrete damage theory (MDDT) for

fatigue failure prediction of laminated composite struc-

tures. The MDDT model offers reduced-order homoge-

nized representation of microscale fracture events along

the discrete failure paths within which progressive fa-

tigue loading induced failure occurs. Mesh-size objectiv-

ity is attained by adjusting microstructure size in an ef-

fective manner with respect to macroscopic element size.

The MDDT model is integrated with temporal multi-

scale modeling and an adaptive time step selection strat-

egy to achieve high computational efficiency. Our inves-

tigations indicate that energy regularization based on

element size could be ineffective for fatigue damage ac-

cumulation unless specific forms of fatigue damage evo-

lution laws are considered. In particular, fatigue damage

laws (a) must include softening behavior (to eliminate

stress state singularities at the crack tip) and (b) must

dissipate fatigue fracture energy in the softening regime

(for effective energy regularization). Numerical verifica-

tion studies performed on open-hole laminate configura-

tions subjected to high-fatigue tensile loading indicate

the proposed multiscale model is mesh-size insensitive
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in terms of damage growth, crack propagation as well as

specimen stiffness evolution. For cross-ply laminates, si-

multaneous growth of splitting, delamination and trans-

verse matrix cracks, their distribution and growing pat-

terns predicted by the proposed model agree well with

experimental results. Furthermore, differences between

the fatigue damage growth patterns observed in some

thermoset and thermoplastic resins can be explained based

on the relative fatigue resistances against mode I and

mode II fatigue crack growth.
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Appendix

1 Microstructure analysis

Consider the microstructure domain shown in Fig. 1,

the displacement field u is expressed in terms of a two-

scale asymptotic decomposition:

u (x,y, t) = u0 (x, t) + ζu1 (x,y, t) (A1)

where u0 is continuous and constant displacement field

over the microstructure, ζ stands for scaling parame-

ter between the two scales y(x) = x/ζ. The micro-

scopic crack results in a displacement jump within the

microstructural displacement field u1 : δ (x,y, t) := Ju1K.
Both u1 and δ are periodic along with the microstruc-

ture. Based on mathematical homgenization theory, the

microstructural displacement field is expressed as:

u1 (x,y, t) = H (y) : ε0 (x, t) +

m∑
a=1

(hα ∗ δα) (x,y, t)

(A2)

where, ε0 = ∇sxu0, ∇sx is the symmetric gradient oper-

ator with respect to the macroscopic coordinates. H is

the influence function that provides the variation of the

elastic response over the microstructure volume with-

out fracture. Another influence function hα is computed

as responses to the separation of dirac function form d

applied along the discontinuity path of failure path α

(ŷ ∈ Sα): Jhα(y, ŷ)K = d(y − ŷ).

Reduced-order approximation is employed for sepa-

ration as a function of nonlocal weight functions ν(α)

defined at failure path α to alleviate computational ef-

forts of direct homogenization method:

δ(α) (x, t) =

∫
Sα

ν(α) (ŷ) δ (x, ŷ, t) dŷ (A3)

Premultiplying the microscale equilibrium equation

∇y · σ (x,y, t) = 0 by influence function hα, integrat-

ing over the microstructure and applying reduced-order

approximation result in reduced-order microstructural
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equilibrium equation Eq. 2, where the corresponding co-

efficient tensors consist of integration of influence func-

tions, nonlocal weight functions and elastic moduli:

C(α) :=

∫
Sα

ν(α) (ŷ) C (ŷ) dŷ (A4)

C (ŷ) :=

∫
Θ

gα (y, ŷ) : L (y) : A (y) dy (A5)

D(αβ) := −
∫
Sα

ν(α) (ŷ) D(β) (ŷ) dŷ (A6)

D(α) (ŷ) :=

∫
Θ

gα (y, ŷ) : L (y) : R(α) (y) dy (A7)

R(α) (y) :=

∫
Sα

N (α) (ŷ) gα (y, ŷ) dŷ (A8)

where L is the elastic moduli tensor varying with dif-

ferent material constituents. A = I + G, I is the fourth

order identity tensor, G = ∇syH is the elastic polariza-

tion tensor, and gα = ∇syhα stands for the separation

polarization tensor.

Macroscopic stress-strain relationship Eq. 1 is ob-

tained by averaging the stress field over microstructure

domain. Coefficient tensor Z(α) is expressed as:

Z(α) :=
〈
L (y) : R(α) (y)

〉
Θ

(A9)

L̄ := 〈L (y) : A (y)〉Θ (A10)

2 Systems of equations for temporal multiscale

scheme

Figure 18 provides the summary of the system of

equations for microchronological and macrochronologi-

cal problems. The equations of the two scale problems

have the same form, but the response fields are expressed

in terms of different time scale coordinates. t represents

macrochronological time resolving the whole structure

life, where t ∈ [0, tf ]. τ stands for microchorological time

coordinates defined within the unit cyclic loading, where

τ ∈ [0, τ0]. The response field in macrochronological

problem is homogenized using fixed-point operator: φ̃ (t) =

φ (t, τ0) [26]. In this work, the fixed point is chosen at

the end of microchronological step.

Temporal local periodicity is not feasible in the mi-

crochronological problem due to the presence of irre-

versible damage condition. Therefore, almost periodicity

is introduced for fatigue damage by allowing small value

change within the microchronological time domain [26].

The derivative of temporal homogenized fatigue damage

in the macrochronological problem is then expressed as

follows according to the chain rule:

ω̃
(α)
f,t (t) = f(δ(α), δ̇(α)) + ω̇

(α)
f−ap(t) (A11)

where f(δ(α), δ̇(α)) stands for partial derivative of dam-

age with respect to the coarse time scale t, ω̇
(α)
f−ap(t) is

the almost periodicity variable expressed as:

ω̇
(α)
f−ap(t) =

1

τ0
(ω

(α)
f (t, τ0)− ω(α)

f (t, 0)) (A12)

In adaptive macrochronological time stepping strat-

egy, the time increment∆ti = ti+1−ti at the ith macrochrono-

logical step is determined by:

∆ti =
∆ωp

‖ω′f (ti)‖∞
(A13)

where ω′f (ti) is the vector consisting of ω̇
(α)
f−ap(t), which

is evaluated in the current micro-chronological load cy-

cle associated with all the failure path at all integration

points within the macroscopic discretized domain. ∆ωp

stands for the tolerance parameter for allowable damage

accumulation across the macro-chronological time step.
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Equilibrium equation:

Microstructural equlibrium equation:

Cohesive law:

Constitutive relationship:

Equilibrium equation:

Microstructural equlibrium equation:

Cohesive behavior:

Constitutive relationship:

Microchronological problem (                  ) 

Given: macroscopic strain             , coicide with        
            microchronological time t; cohesive law 
            and associated parameters;
Compute: microchronogical separation               ,  
                microchronogical stress

Given: macroscopic strain         ; cohesive law and
             associated parameters;
Compute: temporal homogenized separation           ,  
                temporal homogenized stress

Macrochronological problem (                  ) 

Fig. 18: Summary of microchronological and macrochronological problems based on temporal multiscale scheme.


