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Abstract

In this manuscript, a spectral multiscale model is developed for transient elastic wave prop-

agation in periodic composites. The basis of the multiscale approach is the variational mul-

tiscale enrichment method that permits analysis of wave propagation in the scale-inseparable

condition, i.e., short wave propagation. A spectral coarse-scale representation is proposed to

capture the salient transient wave phenomena, such as wave dispersion and band gaps that

occur in the short wavelength regime. A material-phase-based model basis reduction strategy

is devised at the fine scale to achieve computational efficiency. An important feature of the

proposed method is that it does not rely on the classical assumption of separation of scales,

which permits its application to a broad range of architectured composites including phononic

crystals and acoustic metamaterials. Transient elastic wave propagation in two-dimensional

periodic structures is investigated. The proposed multiscale approach is verified against di-

rect numerical simulations. The accuracy and computational efficiency of the approach are

demonstrated for both phononic crystals and acoustic metamaterials.

Keywords: Multiscale method; Wave propagation; Phononic crystals; Acoustic metamaterials;

Spectral finite element; Reduced order model

1 Introduction

Phononic crystals and acoustic metamaterials are architectured composites that exhibit

unique capabilities in controlling mechanical waves. Of particular interest is the control of
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band gaps that are generated by Bragg scattering in phononic crystals and local resonance in

acoustic metamaterials. Tailoring material microstructures to achieve band gaps in desired fre-

quency ranges presents tremendous potential in novel applications such as elastic cloaking [64],

seismic wave mitigation [5, 9], acoustic superlens [40, 35], topological insulators [50, 68] and

waveguides [36] among others.

In design and analysis of phononic crystals and acoustic metamaterials, numerical simula-

tions are employed either to characterize the unit cell band structure, or in structural scale

wave propagation analyses. The former approach typically characterizes the band gaps of a

periodic unit cell based on the Floquet-Bloch theorem. Significant advances have been recently

made in efficient computation of dispersion band structures (see Refs. [31, 37]). The struc-

tural scale simulation of wave propagation typically relies on the transient dynamic analysis

of the structural domain, where the microstructural features are fully resolved [36, 64, 50].

Clearly, the computational cost for such direct numerical simulations is prohibitive particu-

larly when the structural domain size is large compared to that of the microstructure or when

the microstructure is complex. This motivates the development of multiscale methods towards

modeling the dynamic response of architectured composites in a more computationally efficient

manner.

Based on the assumption of scale separation, i.e., the size of microstructures is much

smaller than the wavelength, various homogenization approaches have been proposed to model

wave propagation in heterogeneous materials. Computational homogenization [57, 62, 41,

42, 60, 61] evaluates nested initial-boundary value problems at the macro- and microscales,

which are coupled through the Hill-Mandel energy consistency condition. In the macroscale

problem, the constitutive behavior at a quadrature point is obtained through the numerical

evaluation of an attached microstructure problem. This approach has been demonstrated

to successfully capture the band gaps due to local resonance within acoustic metamaterials,

which occur when the macroscopic deformation wavelength is considerably large compared to

the size of the microstructure. In contrast, band gaps in phononic crystals occur when the

macroscopic wavelength is of the same order as the microstructure size. In order to extend the

applicability of homogenization to the short wavelength regime, asymptotic homogenization

models with higher-order asymptotic expansions have been proposed [4, 15, 29, 30, 23, 24, 25].

Hu and Oskay [23, 24, 25] recently proposed a nonlocal asymptotic homogenization approach

to accurately predict wave propagation in phononic crystals up to the second pass band.

Despite significant progress in homogenization-based methods in capturing high frequency

dynamics, the applicability of this approach is inherently constrained by the assumption of

scale separation. When the deformation wavelength is approaching or smaller than the size of

microstructure, the assumption of scale separation is no longer valid. Multiscale methods, such

as the elastodynamic homogenization models based on Willis’ theory [67, 49, 53, 52, 63, 48],
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multiscale finite element method [22, 6, 7] and the method of computational continua [16,

12, 13], that do not rely on the scale separation assumption, offer an alternative pathway to

modeling wave propagation in this regime.

Another widely used multiscale method that does not make assumptions on the length

scales of continuum models is the variational multiscale method [28]. This framework is based

on an additive split of the solution into coarse (resolved) scale and fine (unresolved) scale.

The decomposition of solution results in two separate variational equations for the coarse and

fine scale, respectively. A crucial step in achieving both accuracy and numerical efficiency

using this method is the appropriate evaluation of the fine-scale Green’s function. While it

can be evaluated analytically for certain problems [54], the analytical form of the Green’s

function is generally not available when complex physics are involved for 2D and 3D problems.

Several variants of the variational multiscale method have been developed employing numerical

evaluation of the fine-scale problem to capture the highly complex behavior of heterogeneous

materials, including the numerical subgrid upscaling method [1], the stochastic variational

multiscale method [2, 17], and the variational multiscale enrichment method [55, 70, 71, 72].

This manuscript proposes a spectral variational multiscale model for transient wave prop-

agation in phononic crystals and acoustic metamaterials. The proposed model is developed

based on the variational multiscale enrichment principles [55]. Using the additive split of the

displacement field, a system of multiscale governing equations is consistently derived in the vari-

ational form. In order to accurately represent wave propagation in short wavelength regimes,

we employ spectral representation of the displacement field at the coarse scale. Serendipity

elements of up to the septic order are used as the coarse-scale basis. In order to achieve

the computational efficiency, a reduced order model is proposed for the fine-scale problem.

The model order reduction is achieved using a material-phase-based mode synthesis approach

that relies on the Craig-Bampton component mode synthesis [10] and characteristic constraint

mode reduction [8]. The proposed model reduction approach efficiently captures the fine-scale

transient dynamics with a set of reduced modal basis. To the best of the authors’ knowledge,

the present work is the first to model transient wave propagation in composite materials using

the variational multiscale ideas. A significant advantage of the proposed spectral variational

multiscale model compared to the homogenization models is that it is not restricted by the

material property contrast of the constituents or scale separation assumption. We demonstrate

that the proposed model is effective in transient wave propagation in both phononic crystals

and acoustic metamaterials for a broad frequency range.

The remainder of this manuscript is organized as follows: Section 2 derives the two-scale

momentum balance equations in variational form. Section 3 presents the discrete multiscale

system of equations. Section 4 elaborates the reduced order model for the fine-scale problems.

Section 5 provides details in numerical implementation of the proposed model. Section 6
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verifies the proposed model in three examples, i.e., unidirectional wave propagation in phononic

crystals and acoustic metamaterials, and wave propagation in a 2D phononic crystal waveguide.

The accuracy and computational efficiency are examined against direct numerical simulations.

The conclusions and future research directions are presented in Section 7.

2 Variational multiscale model for wave propagation

We consider the transient response within a heterogeneous body, Ω ∈ R2, an open and

bounded domain constructed by periodic unit cells composed of two or more constituents.

Dirichlet and Neumann boundary conditions are respectively applied at Γu ⊂ ∂Ω and Γt ⊂ ∂Ω,

Γt∩Γu = ∅ and Γt∪Γu = ∂Ω. The momentum balance equation that governs wave propagation

within this body is expressed as:

∇.σ(x, t) = ρ(x)ü(x, t); x ∈ Ω, t ∈ [0, T ] (1)

where, σ denotes the stress tensor; ρ the density; and u the displacement vector. x and t

are the Cartesian spatial coordinate and time coordinate, respectively. ∇. is the divergence

operator and superimposed dot denotes derivative with respect to time. The constitutive

response of the heterogeneous body is described by the generalized Hooke’s law:

σ = C(x) : ε(x, t) (2)

C is the elastic moduli tensor that varies as a function of the position vector to account for

the material heterogeneity. ε is the strain tensor under the assumption of small deformation:

ε = ∇su =
1

2

[
∇u + (∇u)T

]
(3)

where ∇ and ∇s are the gradient and symmetric gradient operators, respectively. The bound-

ary and initial conditions are:

B.C. u(x, t) = ũ(x, t); x ∈ Γu, σ(x, t).n = t̃(x, t); x ∈ Γt (4a)

I.C. u(x, 0) = u0; x ∈ Ω, u̇(x, 0) = v0; x ∈ Ω (4b)

where ũ and t̃ are respectively the prescribed displacement and traction along the boundary,

and u0 and v0 are respectively the initial displacement and velocity.

Using the standard arguments, the problem is stated in the variational form:∫
Ω

w(x). (ρü) dΩ +

∫
Ω
∇sw(x) : C : ∇su dΩ =

∫
Γt

w(x).̃t dΓ (5)
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Figure 1: The two-scale problem setting for wave propagation in periodic composites. (a)
Composite domain discretized using coarse mesh. (b) One coarse-scale element. (c) The

associated fine-scale mesh.

in which, the function spaces for the displacement trial solution and the weighting function

are respectively:

V =
{

u
∣∣∣ u ∈ H1(Ω), u = ũ on Γu

}
(6a)

W =
{

w
∣∣∣ w ∈ H1(Ω), w = 0 on Γu

}
(6b)

where, H1(Ω) is the Sobolev space that contains functions with sufficient smoothness.

We proceed with partitioning the problem domain Ω into nnc non-overlapping open and

simply connected subdomains. Each subdomain is one coarse-scale element and align with one

unit cell. The interior of the coarse-scale element is denoted as Ωα and Ω̄ =
⋃nec
α=1 Ω̄α, where

the overbar indicates the closure of a domain. The choice of using one coarse-scale element to

represent one unit cell is made in view of the periodic arrangement of microstructures. Each

coarse-scale element can be different when each unit cell contains different microstructures.

The displacement field over the domain Ω is expressed in terms of coarse-scale and fine-scale

components through an additive two-scale decomposition:

u(x, t) = uc(x, t) +

nec∑
α=1

ufα(x, t) (7)

Superscripts c and f denote the coarse and fine scales, respectively. In the classical variational

multiscale method, the coarse-scale component approximates the solution resolved by a coarse

mesh, whereas the fine-scale component is the associated error. The fine-scale component

remains unresolved, and is typically approximated by an analytical function (e.g., residual

free bubble function [28]). In the variational multiscale enrichment approach, the fine-scale

problem is numerically evaluated, similar to the numerical subgrid upscaling method [1]. For
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wave propagation in composites, the material heterogeneity is not resolved at the coarse scale,

and uc refers to the “homogenized” wave field solution. Numerical solution of ufα captures the

rapid wave field oscillations within a coarse-scale element Ωα, where material heterogeneity is

resolved by the fine-scale mesh.

The weighting function is approximated in a similar fashion using a two-scale decomposi-

tion:

w(x) = wc(x) +

nec∑
α=1

wf
α(x) (8)

The displacements and weighting functions at the two scales are respectively sought in

the function spaces Vc, Wc and Vfα, Wf
α. The solution space of the displacement field, u, and

weighting function, w, are therefore respectively restricted to the direct sum of the coarse- and

fine-scale solution spaces [28]. The fine-scale spaces are defined such that the trial solution

and the weighting function are localized within the corresponding coarse-scale element Ωα and

vanish elsewhere:

Vfα =Wf
α =

{
vα

f
∣∣∣ vfα = 0 on Ω̄ \ Ωα

}
(9)

The function spaces for the finite dimensional approximation to the coarse-scale fields are

chosen as C0 continuous:

Vc =
{

uc
∣∣∣ uc ∈ C0(Ω) ∩ V, uc(Ωα) ∈ Pp(Ωα)

}
(10a)

Wc =
{

wc
∣∣∣ wc ∈ C0(Ω) ∩W, wc(Ωα) ∈ Pp(Ωα)

}
(10b)

where Pp(Ωα) denotes the set of complete polynomials of order p over Ωα. This choice for

the coarse-scale displacement field indicates that high-order spectral functions are admissible

within each element, whereas the displacement is C0 continuous across the element interfaces.

Remark 1. The approximation space defined in Eq. 9 implies the fine-scale homogeneous

Dirichlet boundary conditions along the boundaries of Ωα. This boundary condition is widely

used [46, 47, 55, 71] due to its simplicity and is adopted in this study. We note that other fine-

scale boundary conditions can also be applied, such as, mixed boundary conditions [56, 70],

edge bubbles for interface problems [66], and mixed use of bubbles and other Dirichlet boundary

conditions for strain localization problems [19]. While these boundary conditions may improve

the numerical accuracy, the possible interactions of the fine-scale problems between neighboring

coarse-scale elements may result in significant complexity in numerical implementation and

increased computational cost.

Substituting the two-scale decompositions (Eqs. 7, 8) into Eq. 5, the variational form is
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decomposed into a coarse-scale problem defined over Ω and a series of fine-scale problems

defined within each coarse-scale element Ωα. At the coarse scale:∫
Ω

wc. (ρüc) dΩ +

∫
Ω
∇swc : C : ∇suc dΩ =

−
nec∑
α=1

∫
Ωα

wc.
(
ρüfα

)
dΩα −

nec∑
α=1

∫
Ωα

∇swc : C : ∇sufα dΩα +

∫
Γt

wc .̃t dΓ (11)

The terms on the left hand side are the virtual kinetic energy and strain energy, whereas the

first two terms on the right hand side describe the total coarse-scale virtual work due to fine-

scale dynamics within all coarse-scale elements. At the fine scale, the variational form for Ωα,

is:∫
Ωα

wf .
(
ρüf

)
dΩα +

∫
Ωα

∇swf : C : ∇suf dΩα =

−
∫

Ωα

wf . (ρüc) dΩα −
∫

Ωα

∇swf : C : ∇suc dΩα (12)

The traction term is not present in Eq. 12 because the fine-scale weighting function vanishes

at all coarse-scale element domain boundaries via Eq. 9. The fine-scale problem states that the

virtual kinetic energy and strain energy of each coarse-scale element domain at the fine scale

is balanced with the local virtual work due to the dynamics of the coarse-scale. Equations 11

and 12 constitute a coupled problem for evaluating the dynamic response of the composite

domain.

In what follows, we provide an approach to directly evaluate this system of equations.

It is important to highlight that the direct evaluation of this system does not reduce the

computational cost compared with the direct numerical simulation of the governing equation,

Eq. 5. Alternatively, direct evaluation of the two-scale system forms the foundation for the

reduced basis approximation we later introduce for the fine-scale problem.

3 Spectral variational multiscale model

In this section, we propose a spectral approach to capture the transient dynamic response

of periodic composites by numerically evaluating the coarse- and fine-scale variational forms

provided in Eqs. 11 and 12.

The selection of the size of coarse-scale element and the order of the corresponding shape

functions depends on the characteristic wavelength of the associated problem. For static

problems [70, 71], the wavelength is infinitely long and it typically suffices to use linear elements

at the coarse scale. For wave propagation problems, sufficiently fine resolution is necessary
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Figure 2: Quadrilateral serendipity elements of (a) cubic (3rd), (b) quintic (5th) and
(c) septic (7th) orders.

to accurately capture the wave field and avoid numerical dispersion [11]. Fine resolution can

be achieved through h-refinement or p-refinement, and their application in dynamic problems

has been extensively discussed in the literature in the context of single scale analysis (see e.g.,

Refs. [65, 3, 32, 33, 34]). In the proposed multiscale model, the size of the coarse-scale elements

is fixed to the size of the underlying microstructure. We employ high order shape functions

to accurately capture high frequency wave propagation through a p-refinement strategy at the

coarse scale.

Lagrange polynomials are used as shape functions for the coarse-scale elements. In two

dimensions, the classical quadrilateral Lagrange elements contain (p + 1)2 nodes. Due to the

presence of large numbers of bubble nodes, Lagrange elements pose significant computational

cost for higher spectral orders. Instead, serendipity quadrilateral elements achieve the same

order of approximation with fewer nodes. The higher-order serendipity elements developed in

Refs. [58, 59] are adopted herein. In this family of serendipity elements, the number of nodes

is minimized while maintaining the required polynomial completeness. Figure 2 shows the

elements of cubic, quintic and septic orders, which respectively have 12, 24 and 40 nodes per

element. The formulas for the shape functions and locations of the nodal points are provided

in Ref. [58].

The fine-scale trial solution and weighting function are approximated using standard bilin-

ear finite elements. This selection of fine-scale elements has also been used in Refs. [18, 56].

Along with the homogeneous Dirichlet type fine-scale boundary conditions, this choice ensures

linear independence of the solution spaces at the coarse and fine scales and the direct sum

relationship between the multiscale fields is valid.

Employing the classical Bubnov-Galerkin approach, the coarse-scale displacement, weight-
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ing function and their gradients within a coarse-scale element are written as:

ucα = Nc
αdcα = Nc

αLcαdc; wc
α = Nc

αccα = Nc
αLcαcc (13a)

[∇sucα] = Bc
αdcα = Bc

αLcαdc; [∇swc
α] = Bc

αccα = Bc
αLcαcc (13b)

where, ucα(x, t) := uc(x ∈ Ωα, t) with the corresponding weighting function analogously de-

fined. Nc
α and Bc

α are respectively the coarse-scale element shape function matrix and strain-

displacement matrix (detailed definition of these matrices is provided in Ref. [14]) within the

coarse-scale element, Ωα. Einstein summation does not apply to the subscripts. The square

bracket indicates the vectorized form of the corresponding tensors. dcα and ccα are the element

nodal displacement and weighting function vectors, and they are related to the global vec-

tors, dc and cc, through the mapping matrix Lcα, which assembles the global vectors from the

element vectors [14].

Each coarse-scale element is associated with a heterogeneous microstructure (also denoted

as Ωα in Fig. 1). Equation 12 is evaluated to compute the fine-scale fields for all microstructures

within the problem domain. Consider the discretization of the microstructure, Ωα into nef

fine-scale elements. The fine-scale displacement, weighting function and their gradients for the

fine-scale element e within the microstructure Ωα are expressed as:

ufe,α = Nf
e,αdfe,α = Nf

e,αLfe,αdfα; wf
e,α = Nf

e,αcfe,α = Nf
e,αLfe,αcfα (14a)[

∇sufe,α

]
= Bf

e,αdfe,α = Bf
e,αLfe,αdfα;

[
∇swf

e,α

]
= Bf

e,αcfe,α = Bf
e,αLfe,αcfα (14b)

where, Nf
e,α and Bf

e,α are respectively the fine-scale element shape function matrix and strain-

displacement matrix within the fine-scale element, Ωe
α. dfe,α and cfe,α are the fine-scale element

nodal displacement and weighting vectors, related to the vector of the fine-scale nodal displace-

ment and weighting functions within the microstructure through Lfe,α. Employing Eqs. 13 and

14, the discretized forms of Eqs. 11 and 12 are obtained as:

Kccdc + Mccd̈c +

nec∑
α=1

Kcfαdfα +

nec∑
α=1

Mcfαd̈fα = Fc (15a)

Kfαcdc + Mfαcd̈c + Kfαfαdfα + Mfαfαd̈fα = 0, α = 1, ..., nec (15b)

where, Kfαfα , Mfαfα and Kcc, Mcc are respectively the stiffness and mass matrices of the

fine-scale problem in Ωα and the coarse-scale problem. Kcfα and Mcfα are the stiffness and

mass matrices due to interactions between the two scales. Fc is the coarse-scale force vector.
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They are obtained by assembling the element matrices and the force vectors as:

Kfαfα =

nef∑
e=1

(
Lfe,α

)T
Kfαfα
e Lfe,α; Mfαfα =

nef∑
e=1

(
Lfe,α

)T
Mfαfα

e Lfe,α (16a)

Kcc =

nec∑
α=1

(Lcα)T Kcc
α Lcα; Mcc =

nec∑
α=1

(Lcα)T Mcc
α Lcα (16b)

Kcfα =
(
Kfαc

)T
= (Lcα)T

nef∑
e=1

Kcfα
e Lfe,α; Mcfα =

(
Mfαc

)T
= (Lcα)T

nef∑
e=1

Mcfα
e Lfe,α (16c)

Fc =

nec∑
α=1

(Lcα)T fα (16d)

nef is the number of fine-scale elements used to discretize Ωα. The element matrices and the

force vector are:

Kcc
α =

∫
Ωα

(Bc
α)TC(x)Bc

α dΩα; Mcc
α =

∫
Ωα

(Nc
α)Tρ(x)Nc

α dΩα (17a)

Kfαfα
e =

∫
Ωeα

(Bf
e,α)TCeB

f
e,α dΩe

α; Mfαfα
e =

∫
Ωeα

(Nf
e,α)TρeN

f
e,α dΩe

α (17b)

Kcfα
e =

∫
Ωeα

(Bc
e,α)TCeB

f
e,α dΩe

α; Mcfα
e =

∫
Ωeα

(Nc
e,α)TρeN

f
e,α dΩe

α (17c)

fα =

∫
Γtα

(Nc
α)T t̃ dΓtα (17d)

where Ce and ρe are respectively the elastic moduli and density of the eth fine-scale element.

The evaluation of the pure fine-scale matrices in Eq. 17b and the coarse-scale force vector

in Eq. 17d is straightforward and performed using the standard element level integration

procedure. Evaluating Eqs. 17a and c is not standard and the detailed evaluation procedure

for coarse-scale and scale interaction matrices is provided in Section 5.2.

The construction of global matrices constitutes the assembly of the coarse-scale stiffness

and mass matrices and the corresponding fine-scale matrices of all subdomains. The global

displacement vector that contains coarse-scale and fine-scale degrees of freedom (DOFs) are

arranged as follows:

dSVM =

[
(dc)T ,

(
df1
)T

,
(
df2
)T

, ...,
(
dfnec

)T]T
(18)

Accordingly, the global stiffness matrix is constructed by block assembly of the coarse-scale,
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fine-scale and the interaction matrices (Eqs. 17a-c) of all microstructures:

KSVM =



Kcc Kcf1 Kcf2 . . . Kcfnec

Kf1c Kf1f1 0 . . . 0

Kf2c 0 Kf2f2 . . . 0
...

...
...

. . .
...

Kfnecc 0 0 . . . Kfnecfnec


(19)

The global mass matrix is assembled similarly. The global force vector has the form: FSVM =[
(Fc)T , 0T , 0T , ..., 0T

]T
. The DOFs associated with Dirichlet boundary conditions of both

coarse and fine scales are eliminated using static condensation. The resulting global system of

equations is:

KSVMdSVM + MSVM d̈SVM = FSVM (20)

Equation 20 constitutes the full system of equations of the spectral variational multiscale

(SVM) model for wave propagation in periodic composites, where the dynamics at both scales

are fully resolved.

4 Phase mode synthesis for basis reduction at fine

scale

Evaluating Eq. 20 directly does not provide significant numerical efficiency compared to

single scale finite element simulation when the same level of mesh density is used to discretize

the microstructure. The multiscale system of equations have slightly fewer DOFs since the

boundary DOFs at the fine scale are condensed out. Nevertheless, the system size remains

relatively large. In this section, we propose a basis reduction strategy at the fine scale to

improve the computational efficiency.

The basis reduction at the fine scale is performed as a two-step component mode synthesis

procedure that combines the Craig-Bampton method [10] and the characteristic constraint

mode reduction [8], which were originally developed for reduced representation of structural

components in analyzing the vibration response of large-scale structural systems. The key

idea in this approach is that the dynamic behavior of a structural system is decomposed into

its structural components. In classical analysis of structural system using Craig-Bampton

method, the dynamic response of each system component is expressed as the superposition

of its internal dynamics with the component-structure interface fixed, and the static response

of the component due to the deformation of the component-structure interface. The internal

dynamics of the component is approximated using a truncated modal basis. The constraint
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mode reduction refers to a reduced modal basis representation of the deformation along the

component-structure interface.

We adopt this idea in the analysis of the fine-scale problem and employ a phase-based

basis reduction approach. In this context, the subdomains of the microstructure that are

occupied by separate constituent materials (i.e., phases) are considered as the “components”.

The material interfaces become the “component-structure interfaces”. Craig-Bampton mode

synthesis is employed to express the response of each material phase using a truncated set of

modal basis functions. The interface degrees of freedom are then reduced through constraint

mode reduction.

Consider a microstructure Ωα that consists of nph material phases and nint interfaces. The

interfaces are assumed to be non-intersecting, and separate only two phases. The fine-scale

stiffness matrix of each microstructure Kff (subscript α is omitted for clarity) is partitioned

and rearranged as follows:

Kff =



KP1P1 0 . . . 0 KP1I1 KP1I2 . . . KP1Inint

0 KP2P2 . . . 0 KP2I1 KP2I2 . . . KP2Inint

...
...

. . .
...

...
...

. . .
...

0 0 . . . KP
nph

P
nph KP

nph
I1 KP

nph
I2 . . . KP

nph
I
nint

KI1P1 KI1P2 . . . KI1Pnph KI1I1 0 . . . 0

KI2P1 KI2P2 . . . KI2Pnph 0 KI2I2 . . . 0
...

...
. . .

...
...

...
. . .

...

KI
nint

P1 KI
nint

P2 . . . KI
nint

P
nph 0 0 . . . KI

nint
I
nint



(21)

where KPiPi and KIjIj are the matrix blocks associated with phase Pi and interface Ij , re-

spectively. KPiIj =
(
KIjPi

)T
denotes the interaction matrix between phase Pi and interface

Ij . The mass matrix Mff is partitioned and rearranged similarly. Equation 21 is a reordered

version of the classical finite element stiffness matrix. With homogeneous Dirichlet boundary

conditions used, the matrix has full rank and is invertible.

Equation 21 shows the general structure of the fine-scale stiffness matrix of a multi-phase

microstructure, where the fine-scale mesh conforms to the material interfaces and the interfaces

do not intersect. The type of microstructures under these restrictions cover a broad class

of phononic crystal and acoustic metamaterial designs [44, 45]. For these microstructures,

sufficiently fine mesh ensures that the DOFs of two different interfaces do not have direct

interactions, therefore, KIiIj = 0, i 6= j. In addition, KPiIj = 0 when phase Pi is not

connected with interface Ij .

The overall strategy for the material-phase-based mode synthesis is illustrated in Fig. 3.

Using the Craig-Bampton (CB) method [10], the dynamic response of the microstructure is
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Figure 3: Material-phase-based mode synthesis strategy.

expressed in terms of a truncated set of fixed-interface normal modes of each material phase

and the interface nodal constraint modes. The characteristic constraint (CC) mode synthesis

is then employed to represent the interface deformation using a truncated set of characteristic

interface constraint modes. The normal modes of a material phase Pi, i = 1, ..., nph, are

obtained by solving the eigenvalue problem:(
KPiPi − λPiMPiPi

)
φPi = 0 (22)

All boundaries of the phase are fixed. Solving Eq. 22 results in mPi normal modes and they are

sorted according to their corresponding eigenvalues in the ascending order: {φPi1 ,φ
Pi
2 , ...,φ

Pi
mPi
}.

Model order reduction is achieved by selecting a truncated set of normal modes as basis for

the solution of the dynamics within phase Pi. The lowest lPi modes are selected to form the

normal mode matrix: ΦPi =
[
φPi1 ,φ

Pi
2 , ...,φ

Pi
lPi

]
.

The effect of deformation along an interface on the adjacent material phases is taken

into account by considering the static interface constraint modes. The interface modes are

computed by evaluating the static deformation of phase Pi subjected to perturbations along

the interface Ij . Let ΨPiIj denote the interface constraint mode matrix. Each column in

the constraint mode matrix contains the nodal displacements in phase Pi subjected to a unit

displacement applied at an interface node along one spatial direction while all other interface

nodal DOFs are set to vanish. It is straightforward to show that the interface constraint mode

13



matrix is expressed as:

ΨPiIj = −
(
KPiPi

)−1
KPiIj (23)

The fine-scale DOFs within each material phase is represented using the generalized basis

that is composed of the fixed-interface normal modes and the interface constraint modes. The

original DOFs are related to the reduced DOFs by the modal transformation matrix TP :

TP =



ΦP1 0 . . . 0 ΨP1I1 ΨP1I2 . . . ΨP1Inint

0 ΦP2 . . . 0 ΨP2I1 ΨP2I2 . . . ΨP2Inint

...
...

. . .
...

...
...

. . .
...

0 0 . . . ΦP
nph ΦP

nph
I1 ΦP

nph
I2 . . . ΦP

nph
I
nint

0 0 . . . 0 II1 0 . . . 0

0 0 . . . 0 0 II2 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . IInint



(24)

where IIj is the identity matrix of the same size as KIjIj . Applying this transformation to the

fine-scale stiffness and mass matrix:

Kff
R1 =

(
TP
)T

KffTP (25a)

Mff
R1 =

(
TP
)T

MffTP (25b)

Kff
R1 and Mff

R1 are the reduced stiffness and mass matrices due to the truncated selection of

normal modes of each material phase.

While the above procedure reduces the degrees of freedom within each material phase, the

number of interface degrees of freedom can be significant, especially for complex microstruc-

tures where a fine mesh is required at the interface region. We perform a secondary model

order reduction using the characteristic constraint mode reduction approach [8]. The interface

degrees of freedom is reduced by using truncated normal modes to represent the interface

dynamics. The normal modes of interface Ij are computed by the eigenvalue analysis of the

interface partition of Kff
R1 and Mff

R1:(
K
IjIj
R1 − λ

IjM
IjIj
R1

)
φIj = 0 (26)

The reduced basis is obtained by sorting the interface normal modes and selecting those with

the lowest lIj eigenvalues to construct the interface normal mode matrix: ΦIj =
[
φ
Ij
1 ,φ

Ij
2 , ...,φ

Ij

lIj

]
.
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The interface modal transformation matrix is defined as:

TI =



IP1
R1

0 . . . 0 0 0 . . . 0

0 IP2
R1

. . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . I
P
nph

R1
0 0 . . . 0

0 0 . . . 0 ΦI1 0 . . . 0

0 0 . . . 0 0 ΦI2 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . ΦI
nint



(27)

where IPiR1
is the identity matrix of the same size as the partition of the reduced stiffness matrix

corresponding to the ith material phase, KPiPi
R1

. The secondary reduction to the stiffness and

mass matrix is obtained by:

Kff
R2 =

(
TI
)T

Kff
R1T

I =
(
TPTI

)T
KffTPTI (28a)

Mff
R2 =

(
TI
)T

Mff
R1T

I =
(
TPTI

)T
MffTPTI (28b)

The coarse-fine interaction matrices in Eq. 15 are reduced similarly by post-multiplying the

phase and interface modal transformation matrices:

Kcfα
R2 =

(
Kfαc
R2

)T
= KcfαTPTI (29a)

Mcfα
R2 =

(
Mfαc

R2

)T
= McfαTPTI (29b)

The reduced order multiscale system of equations is written as:

Kccdc + Mccd̈c +

nec∑
α=1

Kcfα
R2 gfα +

nec∑
α=1

Mcfα
R2 g̈fα = Fc (30a)

Kfαc
R2 dc + Mfαc

R2 d̈c + Kfαfα
R2 gfα + Mfαfα

R2 g̈fα = 0, α = 1, ..., nec (30b)

where gfα =

[(
gfαP1

)T
,
(
gfαP2

)T
, ...,

(
gfαP

nph

)T
,
(
gfαI1

)T
,
(
gfαI2

)T
, ...,

(
gfαI

nint

)T]T
, is the

vector of the generalized degrees of freedom associated with the normal modes of the material

phases and interfaces of the microstructure. The fine-scale nodal DOFs are recovered from the

generalized DOFs using the transformation matrices:

dfα = TPTIgfα (31)
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Due to the periodic arrangement of unit cells, the model order reduction is performed only

once for one unit cell and the same reduced stiffness and mass matrices are used for all unit

cells. The global matrices and the force vector are assembled similarly as the full multiscale

model in Section 3. The two-step model order reduction presented above significantly reduces

the number of DOFs of the full spectral variational multiscale model and it is referred as

reduced spectral variational multiscale (RSVM) model hereafter.

Another model order reduction strategy that can be used for reducing the fine-scale degrees

of freedom is the unit cell based Craig-Bampton component mode synthesis (UCRSVM), which

employs the unit cell normal modes as the reduced basis for the fine-scale problem, without

distinguishing the material phases and interfaces and performing model order reduction to

each of them. The fine-scale unit cell normal modes are obtained by solving the eigenvalue

problem: (
Kfαfα − λfαMfαfα

)
φfα = 0 (32)

Similar to RSVM, the normal mode matrix is constructed by truncating the higher frequency

modes and the size of the stiffness and mass matrix is reduced by matrix transformation of

the original matrices using the normal mode matrix (e.g., Eq. 25). It is observed that these

modes do not well capture the wave propagation at the fine-scale. A comparison of UCRSVM

to RSVM is provided in Section 6.2.

5 Implementation details

In this section, we provide implementation details of the proposed spectral variational

multiscale model, including coarse-scale and fine-scale discretization, evaluation of element

matrices, selection of the normal modes for reduced basis approximation, and time integration.

5.1 Multiscale discretization

The proposed multiscale approach has been verified on coarse-scale domains, where the

domain of the coarse-scale element in the discretization conforms to that of a unit cell. The

domain is first discretized using linear quadrilateral elements (the edges of the elements remain

straight). Higher-order serendipity elements are then achieved by adding edge nodes and

bubble nodes to the linear base element. The coordinates of the added nodes are linearly

interpolated using the corner nodes of the linear base element. The node numbering and

positioning in the cubic, quintic and septic elements are shown in Fig. 2. Each coarse-scale

element is associated with the same unit cell morphology, which is meshed using the bilinear

quadrilateral elements at the fine scale. In order to avoid numerical dispersion, sufficient
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spectral order has to be employed for the coarse-scale element, and at least 10 elements have

been used to resolve one wavelength at the fine scale. In a composite medium undergoing wave

propagation at a given frequency, the softer material phases require more refinement, since the

wave speed is slower and the wavelength is shorter in the softer material phases.

5.2 Element matrices

Construction of the appropriate element matrices requires numerical integration of the

element matrices that involves fine-scale basis functions only (Eq. 17b), coarse-scale basis

functions only (Eq. 17a) and the coupling terms with both coarse- and fine-scale basis functions

(Eq. 17c). The integration of Eq. 17b for an arbitrary fine-scale element, Ωe
α, is standard and

performed using the Gaussian quadrature. The integration procedure for Eqs. 17a and c is

non-standard and described below for the stiffness matrix in Eq. 17a. The mass matrix in

Eqs. 17a and c are integrated in a similar fashion and skipped for brevity.

The integration of a function f(x) over the fine-scale element domain is approximated as:

∫
Ωeα

f(x) dΩe
α =

∫
�f
f
(
x(ξf )

)
Jf (ξ)d�f ≈

nfint∑
l=1

f(ξfl )Jf (ξfl )Wl (33)

where, Jf = det(∂x/∂ξf ), is the fine-scale element Jacobian determinant and �f is the fine-

scale parent domain. nfint is the number of integration points to accurately evaluate the in-

tegrand. ξfl and Wl are respectively the coordinates and weight of the integration point, l.

In order to resolve the material heterogeneity within coarse-scale elements, each coarse-scale

element is partitioned using the fine-scale mesh. The element stiffness matrix in Eq. 17a is

expressed as:

Kcc
α =

∫
Ωα

(Bc
α)TC(x)Bc

α dΩα =

nef∑
e=1

∫
Ωeα

(Bc
α)TCeB

c
α dΩe

α (34)

The evaluation of Eq. 34 using Eq. 33 requires the interpolated values of the spectral

coarse-scale basis functions and their derivatives at the integration points within the fine-scale

parent domain. The interpolated values are not readily available for the coarse-scale shape

functions since they are defined in the coarse-scale parent domain, �c. In order to obtain the

coarse-scale shape functions and their derivatives at the integration points within the fine-scale

parent domain, a two-scale mapping procedure is employed.

Figure 4 schematically illustrates this mapping process for a cubic coarse-scale element. Let

Mf and Mc respectively denote the fine-scale and coarse-scale isoparametric mappings that

map functions defined in the fine-scale and coarse-scale parent domains to the physical domain.

For any quadrature point within the fine-scale parent domain, its corresponding location in the
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Figure 4: The two-scale element mapping relationship.

coarse-scale parent domain is obtained by first employing the fine-scale element isoparametric

mapping to find its location in the physical domain, then applying the coarse-scale element

inverse isoparametric mapping:

ξc =M−1
c (Mf (ξf )) (35)

where M−1
c denotes the inverse mapping. The procedure of inverse mapping was originally

proposed in Refs. [38, 39] and is elaborated in Appendix A. The inverse mapping for spectral

elements is developed based on the theory of differential geometry and has been previously used

in the context of distortion measures for 2D 8-node serendipity element and 3D hexahedron

elements [69].

Gauss-Legendre quadrature rule is employed for numerical integration. Since linear quadri-

lateral element is used for the fine-scale discretization, integration of Eq. 17b is exact with 2×2

integration points. The number of integration points required to exactly evaluate Eqs. 17a and

c depends on the spectral order of the coarse-scale shape functions. For a pth order coarse-

scale spectral element, the minimum number of integration points for Eqs. 17a and c are

(p+ 1)× (p+ 1) and (p2 + 1)× (p2 + 1), respectively. For each integration point within the fine-

scale parent domain, its corresponding location in the coarse-scale parent domain is obtained

by Eq. 35. The coarse-scale shape functions and their derivatives are evaluated at this mapped

point. Equation 17d that provides the force term at the coarse scale is integrated using the

standard procedure over the coarse-scale element assuming that the boundary tractions remain

unresolved at the fine scale.
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5.3 Normal mode selection

The retained normal modes in the Craig-Bampton component mode synthesis and charac-

teristic constraint mode reduction is typically selected by truncating the modes with higher

natural frequencies [10, 8, 37]. The number of the normal modes is determined using a heuristic

approach, based on ensuring that the desired accuracy is achieved with the resulting reduced

order model. The appropriate number of material phase and interface normal modes used in

RSVM are determined by gradually truncating the higher frequency modes, while evaluating

the accuracy of the resulting transient response field compared to SVM. Parametric studies

are provided in the next section for phononic crystals and acoustic metamaterials.

The general trend for the relation between wave frequency and the number of normal modes

required for accuracy is that the required number of normal modes increases as the wave

frequency increases. At low frequency, a few normal modes suffice to accurately predict wave

propagation in the composite. As frequency increases, more modes need to be incorporated

to retain accuracy, and the number of normal modes required for each material phase and

interface varies depending on the constituent material properties.

Truncation of higher frequency modes is performed starting from the phase modes. Among

all material phases, the normal modes of the stiff material phases are truncated first, since

they have higher natural frequencies and typically only a few normal modes are important

at the wave frequency of interest. The soft material phases require more normal modes to

capture the deformation states during wave propagation, since their natural frequencies are

lower than the stiff phases and more normal modes are excited. The interface normal modes of

higher natural frequencies are truncated after the phase modes are selected. Since the reduced

interface normal modes directly control the static deformation of adjacent material phases, the

number of interface normal modes is chosen to be relatively large to accurately capture the

static deformation of adjacent material phases. This relation is also observed in Refs. [8, 21]

in the context of model order reduction of homogeneous structures. In the current study, the

number of interface normal modes is selected such that it is larger than the smallest number

of selected normal modes of adjacent material phases.

This heuristic way of mode selection can be improved by using a quantified metric that

relates the number of modes for material phases and interfaces with the microstructure mor-

phology, material properties and wave frequency. It requires a systematic study of the mode

selection strategy for different phononic crystal and acoustic metamaterial designs and is be-

yond the scope of this manuscript.
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5.4 Time integration

The monolithic time integration with Newmark’s family of methods is employed in solving

the discretized system of equations. In particular, we use the implicit unconditionally sta-

ble “Average acceleration” method [27]. Explicit time integration with lumped mass matrix

is typically more efficient for wave propagation in homogeneous materials. In contrast, ex-

plicit integration for wave propagation in complex composites does not guarantee numerical

efficiency over implicit methods, due to the large stiffness contrast between the constituents

and variations in mesh size [20]. The time step size in the implicit time integration approach

adopted herein is controlled by accuracy considerations only. Sufficiently fine time step size

is used in the numerical examples below to resolve the temporal oscillations at each material

point.

In the implicit time integration, inversion of global coefficient matrix MSVM +β∆t2KSVM

or MRSVM + β∆t2KRSVM (β is the algorithmic parameter in the Newmark’s method and ∆t

is the time step size) is performed at every time step. Since the coefficient matrix does not

change during the time integration, it is decomposed only once before the time integration. A

substitution is performed at each time step to update the solution.

6 Model verification

In this section, we assess the capability of SVM and RSVM in modeling transient wave

propagation in periodic composites. Numerical examples of wave propagation in phononic

crystals (PC) and acoustic metamaterials (AMM) are presented. The proposed model is veri-

fied against direct numerical simulations (DNS) using the finite element method where the full

heterogeneous domain is resolved for a wide range of frequencies. The effects of coarse-scale

element spectral order, material property contrast and the number of fine-scale normal modes

on the accuracy and efficiency of the proposed model are discussed.

Figure 5(a) shows the two-dimensional unit cells of the acoustic metamaterial and phononic

crystal that are used in the numerical examples. All examples are performed in plane strain

condition. The acoustic metamaterial unit cell consists of three material phases: epoxy ma-

trix, rubber coating and lead core. Under dynamic excitation, this material absorbs kinetic

energy through locally resonant motion of the rubber coating and the lead core. This acoustic

metamaterial design is originally proposed by Liu et al. [43] and has been analyzed using the

computational homogenization framework [57]. In the current work, the dimensions of the unit

cell, rubber coating and lead core, as well as the material properties of each phase are identical

to those used in Ref. [43]. The phononic crystal unit cell is designed to have the same size as

acoustic metamaterial unit cell. The steel inclusion has identical geometry as the lead core of
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the acoustic metamaterial unit cell. The material properties of epoxy used for the phononic

crystal are identical to those used for the acoustic metamaterial. The material properties used

in the simulations are summarized in Table 1.

Table 1: Material properties used in simulations.

Material Young’s modulus (GPa) Poisson’s ratio Density (kg/m3)

Epoxy 3.6 0.3679 1, 180
Rubber 11.8× 10−5 0.4688 1, 300

Lead 40.8 0.3698 11, 600
Steel 210 0.3 7, 900

Each acoustic metamaterial unit cell is discretized using 2,752 linear quadrilateral elements

and it contains 5,346 fine-scale DOFs. A fine mesh is used in the rubber coating phase with

10 elements in the radial direction in order to capture the resonant motion. The number of

DOFs associated with the epoxy matrix, matrix-coating interface, rubber coating, coating-core

interface and lead core are respectively 782, 256, 2,304, 256 and 1,748. The same mesh is used

for the phononic crystal unit cell. The number of DOFs associated with epoxy matrix, matrix-

inclusion interface and steel inclusion is respectively 3,342, 256 and 1,748. The proposed

multiscale method leverage the periodic arrangement of unit cell discretization, therefore the

element matrices are evaluated only for one unit cell and they are assembled block-by-block

to construct the global matrices. In direct finite element simulations, each unit cell is dis-

cretized identically as the fine-scale discretization of the proposed multiscale method, i.e.,

2,752 elements are used for each unit cell. Two composite structure configurations are inves-

tigated below, and transient sinusoidal velocity is applied for both cases, ṽx(t) = sin(2πft)

m/s. The time step size is determined such that each loading cycle is resolved by 100 time

steps: ∆t = 0.01/f . It is verified that decreasing the time step size does not change the results

significantly.

Both direct numerical simulations and the proposed model are excuted on a 4-core desktop

with 2.3 GHz Intel processors and 16 GB of memory. In direct numerical simulations, the

matrices of each element within each unit cell is computed and assembled. The time integration

scheme and time step size are identical to the proposed multiscale method. For all simulations

(DNS, SVM and RSVM), sparse matrix storage is used for the global matrices and sparse

matrix Cholesky decomposition is applied to the global coefficient matrix.

6.1 Spectral variational multiscale model

In this section, we investigate wave propagation in the phononic crystal and acoustic meta-

material as shown in Fig. 5 using SVM. As explained previously, SVM constitutes the founda-
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Figure 5: (a) Acoustic metamaterial and phononic crystal unit cells. (b) Composite
structure and boundary conditions.

tion of RSVM, thus the numerical accuracy of SVM is examined for both acoustic metamate-

rials and phononic crytals. However, SVM does not offer computational efficiency compared

to DNS, since they have similar number of degrees of freedom. The composite structure is

composed of a row of nec microstructures. The right edge is fixed and the left edge is subject

to sinusoidal velocity load, ṽx. Periodic boundary condition is applied to the top and bottom

edges. nec is 50 for acoustic metamaterial and 20 for phononic crystal examples. The simula-

tion time is T = 1/f s for acoustic metamaterial and T = 1.5 × 10−4 s for phononic crystal

examples. The simulation setup for the acoustic metamaterial example is identical to that

used in Ref. [57].

6.1.1 Accuracy of SVM at various wave frequencies

Figure 6 shows the velocity profiles along the bottom edge of the phononic crystal structure

at time t = T as predicted by SVM and the reference simulations. The vertical axis label vx

denotes the measured velocity in x direction. The responses at the applied frequencies of

10, 50, 100, 140 kHz are shown. The frequencies are respectively in the first pass band,

the first stop band, the second pass band and the second stop band. For all applied loading

frequencies, SVM very accurately captures the wave field, including wave dispersion in the

acoustic regime (10 kHz), wave attenuation in the stop bands (50 kHz and 140 kHz) and wave

amplification in the optical regime (100 kHz). Within the second stop band (f = 140 kHz), the

wavelength is shorter than the microstructure. Since the present approach does not rely on the

assumption of separation of scales, the short wavelength response is accurately captured. The
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Figure 6: Velocity profiles as predicted by SVM and reference simulations along the bottom
edge of the PC structure at t = T : (a) 10 and 50 kHz, (b) 100 and 140 kHz.

lateral velocity contours within the phononic crystal for the aforementioned four frequencies

are shown in Fig. 7. In the first pass band, the wave propagates through both the matrix

and inclusion with similar amplitudes. In contrast, the wave appears to propagate through

the matrix only when its frequency is within the second pass band. While both the first and

second stop bands feature a significant reduction in wave amplitude, the distribution of the

kinetic energy density within the phases is different. The kinetic energy is concentrated in the

inclusion within the first stop band, whereas it is concentrated in the matrix when the wave

frequency is within the second stop band. SVM accurately predicts the wave patterns at all

four frequency regimes.

Figure 8 shows the velocity profiles along the bottom edge of the structure when acoustic

metamaterial unit cell is used. Compared to the phononic crystal, wave attenuation occurs at

much lower frequencies in the acoustic metamaterial. At these frequencies, the wavelength is

much larger than the size of microstructures. The mechanism of wave attenuation is the local

resonance. As shown in Fig. 9, the local resonance is mainly due to the resonant motion of the

lead core at f = 500 Hz. As the wave frequency increases, a transition from the core resonance

to the coating resonance occurs (f = 700 Hz). At f = 1, 300 Hz, the coating resonance becomes

dominant. This observation is consistent with Ref. [43]. The local resonance becomes weaker

as the wave frequency further increases (f = 2, 700 Hz). The rubber-coated lead inclusion

behaves more like a soft scatterer than a resonator and less kinetic energy is absorbed in the

lead core and the rubber coating. As a consequence, the wave amplitude increases at high

frequencies as shown in Fig. 8(b).

The transmitted wave amplitude spectra for the phononic crystal and acoustic metamaterial

are shown in Fig. 10. The spectra are built based on wave amplitudes measured along the

bottom edge of the composite structure (Fig. 5(b)) at t = T . Along the measurement line (i.e.,

the bottom edge), the maximum amplitude of the velocity field is employed for the acoustic
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Figure 7: Velocity contours of the PC structure as predicted by SVM and reference
simulations at t = T .

metamaterial spectrum, whereas the maximum amplitude of the velocity field 5 unit cells away

from the loaded end is used for the phononic crystal spectrum. The probed frequency range

covers up to the third pass band for the phononic crystal and the pass band beyond the local

resonance stop band for the acoustic metamaterial. For wave propagation in the phononic

crystal (Fig. 10(a)), SVM accurately captures the transmission spectrum up to the second

stop band. The accuracy decreases as the wave frequency increases. In the third pass band,

the wavelength is much shorter than the length of the unit cell. The septic shape functions

used at the coarse scale does not provide sufficient resolution to accurately capture the wave

field, and the error is therefore larger in this regime. For wave propagation in the acoustic

metamaterial (Fig. 10(b)), SVM is accurate in the entire range of probed frequencies.

6.1.2 Parametric study for accuracy assessment

A parametric study is performed to examine the accuracy of SVM as a function of the

spectral order of the coarse-scale shape functions. Figure 11 compares the velocity field ob-

tained using SVM with spectral coarse-scale elements of different orders with the reference

simulations. The composite structure made of phononic crystal unit cells is considered in this

study. The structure is excited at two frequencies. At f = 10 kHz, the wavelength is about

12 times of the size of a coarse-scale element. A slight numerical dispersion is observed when

linear elements are used. Simulations with higher-order spectral elements agree very well with
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Figure 8: Velocity profiles as predicted by SVM and reference simulations along the
bottom edge of the AMM structure at t = T : (a) 300, 500, 700, 900 and 1,300 Hz, (b)

1,500, 1,800, 2,100, 2,400 and 2,700 Hz.

the reference simulations. At f = 100 kHz, linear coarse-scale element fails to capture the

propagation of the high frequency wave, and a significant phase shift is observed for cubic

element. Quintic and septic coarse-scale elements accurately capture the wave field. This ob-

servation confirms the importance of using higher-order spectral elements at the coarse scale

to capture the high frequency waves using the proposed multiscale approach.

Similar to the observations for phononic crystals, the accuracy of SVM requires sufficiently

high order spectral coarse-scale elements in modeling acoustic metamaterials. Figure 12 shows

the velocity profiles predicted by SVM with varying orders of coarse-scale elements compared

with the reference simulations under two loading frequencies. The figure demonstrates con-

vergence to the reference simulations as the order of the coarse-scale elements is increased. At

f = 300 Hz and f = 2, 000 Hz, the wavelength within the epoxy matrix is much larger com-

pared to the size of coarse-scale element. However, the velocity profiles predicted by models

using linear and cubic elements show significant discrepancy. This is attributed to the obser-

vation that the wavelength within the rubber coating is much shorter than it is in the epoxy

matrix, and these short waves could not be accurately captured using low-order elements.

Next, we assess the accuracy of the proposed multiscale approach in capturing the transient

dynamic response within the composite domain as a function of contrast in the constituent

elastic moduli. Figure 13 shows the velocity profiles as predicted by SVM and reference

simulations for various Young’s modulus contrasts. The parametric study is performed by

varying the Young’s modulus ratio by 0.1 times (rE = 5.83 for PC and rE = 3.5 × 104

for AMM) or 10 times (rE = 583 for PC and rE = 3.5 × 106 for AMM) compared to the

Young’s modulus ratio used in previous examples (rE = 58.3 for PC and rE = 3.5 × 105 for

AMM). Varying Young’s modulus contrast is achieved by varying the Young’s modulus of epoxy

for phononic crystals and rubber for acoustic metamaterials, while other material properties
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Figure 9: Velocity contours of the AMM structure as predicted by SVM and reference
simulations at t = T .

remain unchanged. In the phononic crystal case (Fig. 13(a)), a change in the Young’s modulus

of the matrix constituents results in a significant change in the length of the propagating

wave when excited with a frequency of 20 kHz. Compared to rE = 58.3, increasing the

modulus ratio by decreasing the modulus of the matrix leads to shorter wavelength, resulting

in strong destructive interactions and stop band formation when rE = 583. When the acoustic

metamaterial is excited at f = 2, 000 Hz, the wavelength remains nearly unchanged when the

modulus of the coating is decreased 10 times. Contrary to the strong attenuation observed

in the phononic crystal, increasing the modulus contrast results in weaker attenuation. This

is because the stop band shifts to lower frequencies due to the decreased coating modulus.

The loading frequency is further away from the stop band. On the other hand, reducing the

modulus contrast leads to stronger attenuation at f = 2, 000 Hz, as the frequency range for

the stop band is shifted to higher frequencies and f = 2, 000 Hz falls in the stop band.

6.2 Reduced order spectral variational multiscale model

In this section, we investigate the accuracy and numerical efficiency of the proposed reduced

order spectral multiscale model for wave propagation in the phononic crystal and acoustic

metamaterial. The geometry, boundary and loading conditions for the numerical example are

identical to those described in Section 6.1. Septic coarse-scale basis functions are employed for
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Figure 11: The effect of the spectral order of coarse-scale element on the accuracy of
SVM for the phononic crystal structure simulation: (a) f = 10 kHz, and (b) f = 100 kHz.

RSVM.

Figure 14 shows the velocity profiles along the bottom edge of the phononic crystal eval-

uated using RSVM compared to reference simulations and UCRSVM. The selected number

of normal modes for RSVM are 20, 40, 80, 160. The numbers of selected modes for matrix,

matrix-inclusion interface and inclusion are respectively 5-10-5, 10-20-10, 20-40-20 and 40-80-

40. UCRSVM incorporates the first 320 unit cell normal modes. The frequency of the highest

selected mode is about 10 times of the maximum frequency of interest for both PC and AMM.

In the first pass band (Fig. 14(a)), RSVM agrees well with the reference simulations using as

few as 40 modes. Using fewer modes results in a slight phase shift. Even with significantly

larger number of modes, UCRSVM does not capture the wave field as accurately. As the wave

frequency increases, the wavelength becomes shorter, and additional modes are required to

capture the wave field with similar accuracy. At f = 50 kHz (the first stop band), 40 modes

are not sufficient to accurately capture the wave field. RSVM with 80 modes agrees well with

the reference simulations. At higher frequencies, in the second pass band and second stop

27



-1

-0.5

0

0.5

1

x (m)

-1

-0.5

0

0.5

1

x (m)

Septic

DNS

Quintic
Cubic
Linear

(a) 300 Hz (b) 2,000 Hz

v x
  (m

/s
)

0 0.15 0.3 0.45 0.6 0.75 0 0.15 0.3 0.45 0.6 0.75

v x
  (m

/s
)

Figure 12: The effect of the spectral order of coarse-scale element on the accuracy of
SVM for the acoustic metamaterial simulation: (a) f = 300 Hz, and (b) f = 2, 000 Hz.
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Figure 13: The effect of the material property contrast on the accuracy of SVM: (a)
PC at f = 20 kHz, (b) AMM at f = 2, 000 Hz.

band, while RSVM with 80 and 160 modes both predict the short wavelength responses, it is

apparent that more retained modes result in better accuracy. The computational efficiency

decreases as the number of modes increases. It is important to note that due to the high mod-

ulus contrast between epoxy and steel, the critical time step size for explicit time integration is

approximately 3.6×10−9 s. Using vectorized explicit time integration for reference simulations

in fact is more computationally expensive than the implicit time integration.

Figure 15 shows the velocity profiles as predicted using RSVM with 80, 160 and 320 modes,

compared to reference simulations and UCRSVM for the acoustic metamaterial. The numbers

of modes for the epoxy matrix, matrix-coating interface, rubber coating, coating-core inter-

face and lead core are respectively 10-20-30-10-10, 20-40-70-20-10 and 20-100-150-40-10. The

number of modes selected for the lead core is much smaller than the others since it undergoes

primarily rigid body motion due to high density and modulus compared to the soft rubber

coating. The wave within the epoxy matrix can also be well captured with relatively small

number of modes, because the wavelength within the epoxy matrix is much larger than the
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Figure 14: Velocity profiles as predicted by RSVM with different number of modes
and reference simulations along the bottom edge of the PC structure at t = T : (a)

10 kHz, (b) 50 kHz, (c) 100 kHz, (d) 140 kHz.

size of the unit cell in the frequency range of interest. The rubber coating requires significant

number of modes to accurately capture its deformation since higher natural modes of vibration

can be easily excited even at low frequency. As the number of selected modes increases, more

modes are incorporated for the rubber coating and the adjacent interfaces, while the numbers

of modes for the epoxy matrix and lead core remains unchanged. The number of modes for the

rubber coating is approximately 1.5 and 3 to 4 times the numbers of modes for the coating-core

interface and matrix-coating interface, respectively. The latter interface retains more modes

because more modes are selected for the epoxy matrix than the lead core. Figure 15 shows that

the accuracy of RSVM improves with increasing number of modes. Compared to the phononic

crystal example, modeling acoustic metamaterial requires more modes to accurately predict

the wave field. This is due to the more complex unit cell architecture with more phases and

interfaces, and the presence of the soft rubber phase that requires a large number of modes

to resolve its deformation. The UCRSVM approach exhibits significant discrepancy even with

a large number of modes (800). This implies that the unit cell normal modes with homoge-

neous boundaries are not proper basis for the fine-scale problem for the proposed multiscale

formulation, and justifies the phase mode synthesis strategy.

Figure 16 shows the velocity history of the middle point in vertical direction of phononic
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crystal and acoustic metamaterial structures at x = 0.155 m with different Young’s modulus

contrasts at different frequencies. SVM and RSVM are compared to DNS, in order to exam-

ine the effects of using homogeneous Dirichlet boundary condition at the fine-scale and the

material-phase-based model order reduction. Comparing respectively Fig. 16(a) with (b), (c)

with (d), (e) with (f), and (g) with (h), it is observed that as the wave frequency increases,

the accuracy of SVM and RSVM decreases. In addition, higher material property contrast

leads to higher error, comparing Fig. 16(d) with (b), and Fig. 16(h) with (f), respectively.

This observation reveals that the error introduced by the assumptions of homogeneous Dirich-

let boundary condition at the fine-scale and material-phase-based mode synthesis increases as

wave frequency and material property contrast increase.
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Figure 15: Velocity profiles as predicted by RSVM with different number of modes
and reference simulations along the bottom edge of the AMM structure at t = T :

(a) 300 Hz, (b) 700 Hz, (c) 1,300 Hz, (d) 2,700 Hz

The computational efficiency of the example in Fig. 15(a) is shown in Table 2. the normal-

ized computation time indicates the computation time of RSVM divided by the computation

time of the reference simulation during the preprocessing and time integration. The preprocess-

ing step includes element matrices evaluation and global matrices assembly for the reference

simulation, and element matrices evaluation at both scales, fine-scale model basis reduction

and global matrices assembly for RSVM. Significant computational efficiency is achieved at
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Figure 16: Velocity history of the middle point of vertical unit cell boundary at
x = 0.155 m for phononic crystals and acoustic metamaterials with different
Young’s modulus contrasts at different frequencies: (a) PC at 10 kHz with

rE = 58.3, (b) PC at 100 kHz with rE = 58.3, (c) PC at 10 kHz with rE = 583, (d)
PC at 100 kHz with rE = 583, (e) AMM at 300 Hz with rE = 3.5× 105, (f) AMM at
2000 Hz with rE = 3.5× 105, (g) AMM at 300 Hz with rE = 3.5× 106, (h) AMM at

2000 Hz with rE = 3.5× 106.

both preprocessing and time integration steps. As more modes are incorporated, the com-

putation time remains nearly unchanged in preprocessing, and increases in time integration.

For preprocessing, the efficiency is mainly attributed to that the coarse- and fine-scale ele-

ment matrices are evaluated only once for one unit cell and the block-by-block global matrices

assembly. The computational efficiency of RSVM in time integration is achieved due to the

reduced global matrices size compared to reference simulations.

Table 2: Normalized computation time of RSVM for the AMM structure simulation.

Number of modes Preprocessing Time integration

80 0.343 0.034
160 0.345 0.082
320 0.349 0.185
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6.3 Elastic waveguide simulation using RSVM

In this section, we investigate the transient wave propagation in an elastic waveguide shown

in Fig. 17. The length and height of the structure are 15 unit cells and 12 unit cells, respec-

tively. The waveguide is constructed as the periodic arrangement of the phononic crystal unit

cell (Fig. 5), except along an elbow path made of homogeneous epoxy. This design has been

previously investigated experimentally and numerically in the context of acoustic wave guid-

ing [36] in water using periodic array of steel cylinders. The right boundary of the waveguide

is fixed and sinusoidal velocity is applied along the left boundary. The total simulation time

is T = 4× 10−4 s.

x

y

Figure 17: The geometry and boundary conditions of the elastic waveguide simulation.

The discretization for the phononic crystal unit cell is identical to the previous sections for

both DNS and RSVM. In reference simulations, 495,360 elements are used to discretize the

domain. In multiscale simulations, the elements within the homogeneous path region are not

enriched with the fine-scale problem, but are discretized using the septic coarse-scale shape

functions. 80 modes are incorporated as the fine-scale basis and the number of modes for

epoxy matrix, interface and steel inclusion are respectively 20, 40 and 20. The total numbers

of DOFs for DNS and RSVM are respectively 991,439 and 21,605.

Figure 18 shows the velocity contours of wave propagation in the composite structure.

Sinusoidal velocity at a frequency of f = 10 kHz is applied to the left boundary and the

snapshots are taken at 4 separate time instances. The elastic wave travels through the entire

composite structure and forms a complex wave pattern due to reflections at the structural

boundaries. The dispersion induced by the microstructures is relatively minor, because the

macroscopic wavelength is significantly larger than the size of the microstructure. When the

wave frequency is increased to 60 kHz, the frequency falls within the first stop band (Fig. 10).
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Figure 18: Velocity contours of wave propagation in elastic waveguide, f = 10 kHz.

At this frequency, the wavelength is approximately twice of the unit cell size, resulting in

significant destructive interactions within the composite structure. Because of the stop band

formation, the elastic wave is only permitted to propagate within the homogeneous guide, as

shown in Fig. 19. The wave amplitude outside of the guide is strongly attenuated and is much

lower than it is within the guide. At both of these frequencies, it is observed that RSVM with

80 modes accurately captures the overall wave field.
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Figure 19: Velocity contours of wave propagation in elastic waveguide, f = 60 kHz.

The computation time for DNS and RSVM in preprocessing and time integration is shown

in Table 3. Similar to the acoustic metamaterial case shown in Table 2, RSVM is significantly

faster than DNS in both preprocessing and time integration. In the present numerical example,

since a relatively short period of time is simulated, the time integration is less computationally

expensive than the preprocessing. The computation time of time integration linearly increases

as longer total simulation time is investigated.
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Table 3: Computation time in the phononic crystal waveguide simulation.

Simulation model Preprocessing Time integration

DNS 9.5 hours 765.7 seconds
RSVM 0.5 hours 4.7 seconds

7 Conclusion

This manuscript presented a spectral variational multiscale model for transient wave prop-

agation in phononic crystals and acoustic metamaterials. The proposed model is developed

based on the variational multiscale enrichment method, employing the additive split of the so-

lution field and numerically evaluating the coupled system of equations at two scales. Spectral

elements are employed at the coarse scale to accurately resolve the wave field. A material-

phase-based model order reduction method is proposed for efficient evaluation of the fine-scale

numerical solution. Based on the Craig-Bampton component mode synthesis and the charac-

teristic constraint mode reduction, the proposed approach distinguishes material phases and

interfaces at the fine scale and perform modal reduction individually.

A novel contribution of the proposed model is that it does not introduce drastic accuracy

reduction in composites with high material property contrast and it does not employ the scale

separation principle. This permits the proposed model to accurately capture wave propaga-

tion in both phononic crystals and acoustic metamaterials over a wide frequency range. The

accuracy and computational efficiency of the spectral variational multiscale model is demon-

strated for both phononic crystals and acoustic metamaterials. It is shown that the wave field

in the phononic crystal is accurately predicted by the proposed model up to the second stop

band, where the wavelength is shorter than the microstructure. The proposed model well

captures the local resonance and wave attenuation in acoustic metamaterials. Computational

cost reduction is achieved in both preprocessing and time integration for the reduced order

model. The computational efficiency decreases as the number of incorporated modes increases.

It is observed that more modes are required to accurately capture the wave field in acoustic

metamaterials than phononic crystals, due to the increased number of modes to resolve the

soft material phase and adjacent interfaces.

In the near future, the current model will be extended to 3D for more general applica-

tions in design and analysis of phononic crystals and acoustic metamaterials. Furthermore,

a broader range of material constitutive behaviors need to be investigated, including the vis-

coelasticity and thermal effect [26], in order to explore undiscovered design space for exotic

dynamic properties of architectured composites. The proposed model can also be formulated

in frequency domain for steady-state wave propagation, which is frequently employed to in-
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vestigate the response of complex architectured composites at a single frequency [51]. From

the computational perspective, the use of other fine-scale boundary conditions (e.g., periodic

boundary condition) and modal basis functions will be investigated for improved accuracy and

computational efficiency.
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Appendix A Inverse isoparametric mapping

This appendix provides the detailed procedure of the inverse isoparametric mapping for

2D quadrilateral elements. The procedure is developed based on Ref. [39] that maps any point

within the coarse-scale element in Cartesian coordinates to the isoparametric coordinates.

The inverse isoparametric mapping for a higher order element is performed based on its

cord element, which is the 4-node linear quadrilateral element that is formed by the corner

nodes of the quadrilateral, i.e., node 1, 2, 3, 4 in Fig. 2. The isoparametric mapping for the

cord element is expressed as: xy
 =

a0 + a1ξ + a2ξη + a3η

b0 + b1ξ + b2ξη + b3η

 (A.1)

where,

a0 =
1

4
(x1 + x2 + x3 + x4); b0 =

1

4
(y1 + y2 + y3 + y4)

a1 =
1

4
(−x1 + x2 + x3 − x4); b1 =

1

4
(−y1 + y2 + y3 − y4)

a2 =
1

4
(x1 − x2 + x3 − x4); b2 =

1

4
(y1 − y2 + y3 − y4)

a3 =
1

4
(−x1 − x2 + x3 + x4); b3 =

1

4
(−y1 − y2 + y3 + y4)

(A.2)

Following the formula provided in Ref. [39], the geodesic parameters are written as:

ξg = ξ̄ − γξ̄η̄ + (αγξ̄2η̄ + γ2ξ̄η̄2)− (α2γξ̄3η̄ + 2αγ2ξ̄2η̄2 + γ3ξ̄η̄3)

ηg = η̄ − αξ̄η̄ + (α2ξ̄2η̄ + αγξ̄η̄2)− (α3ξ̄3η̄ + 2α2γξ̄2η̄2 + αγ2ξ̄η̄3)
(A.3)

where, ξ̄η̄
 =

1

J0

 b3 −a3

−b1 a1

xy
 (A.4)

The parameters are:

J0 = a1b3 − a3b1

α = (a1b2 − a2b1)/J0

γ = (a2b3 − a3b2)/J0

(A.5)

A linear mapping is then performed to map the geodesic parameters to the isoparametric
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variables: ξη
 =

â0 + â1ξ
g + â2ξ

gηg + â3η
g

b̂0 + b̂1ξ
g + b̂2ξ

gηg + b̂3η
g

 (A.6)

where, âi and b̂i, i = 1, 2, 3, 4, are computed using Eq. A.2 with (xi, yi) taken as: (−1,−1),

(−1, 1), (1, 1) and (−1, 1), respectively.
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