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Abstract

This manuscript presents a new reduced order computational homogenization method for

failure analysis of composite materials. The proposed approach relies on the discrete repre-

sentation of the fracture process at the fine scale that consistently bridges to a continuum

representation of damage at the coarse scale. In order to achieve very high computational effi-

ciency, the proposed approach builds on the ideas of the eigendeformation-based reduced order

homogenization method, but tracks microscale failure evolution over a set of discrete cohesive

failure surfaces. The formulation concurrently achieves mesh size objectivity and multiscale

consistency by establishing analytical relationships between the microstructure size and the

macroscale element size. The performance of the proposed formulation is demonstrated in

the context of three-dimensional, laminated fiber reinforced composite configurations. The

numerical experiments demonstrate mesh size objectivity in the presence of multiscale failure

mechanisms including fiber fracture and transverse matrix cracking.

Keywords: Multiscale modeling; Fracture; Computational homogenization; Reduced order

modeling.

1 Introduction

Failure prediction in composites materials is of significant interest since these materials are

being increasingly deployed in various engineering applications at or near their limit states to

maximize weight reduction or performance. Multiscale computational methods provide a rigor-

ous framework and a strong mathematical basis for failure prediction in composites and holds
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significant promise. While a number of multiscale methodologies such as the heterogeneous

multiscale method [1], multiscale finite element method [2], variational multiscale enrichment

and other numerical subgrid methods [3–6] are available and could be adopted for failure

modeling, the present work focuses on the computational homogenization method (CH) [7, 8].

The adoption of CH for failure prediction requires overcoming a number of computational

challenges. For instance, when progressive failure is described using the continuum damage

mechanics approach, localization limiters must be employed at all relevant scales to ensure

mesh objectivity. Regardless of continuum or discrete representation of failure, consistent

bridging of failure information across scales (i.e., homogenization and localization operators)

must be established. In the presence of localization of damage, statistical homogeneity and

ergodicity at the scale of the microstructure is lost and a representative volume element (RVE)

cannot be defined [9]. An additional, no less critical challenge is that the computational cost

associated with evaluating multiple nested numerical problems that involve failure and frac-

ture processes is typically computationally prohibitive beyond small problems of academic

relevance. In the past decade, significant effort has been therefore devoted to alleviate the

above-mentioned computational challenges.

A number of early studies focused on applying computational homogenization principles

to address problems, where fracture is localized to material interfaces (see e.g., [10, 11]). The

applicability and generality of CH to address fracture problems has been further extended

since then. The formulations of CH for fracture typically differ slightly according to the type

of representation of failure at the fine and coarse scales. Discrete-discrete (for fine and coarse

scales respectively), continuum-discrete and continuum-continuum representations have been

proposed. From the algorithmic standpoint, the work by Belytschko et al. [12] is of signifi-

cance as it introduced the concept of microstructural domain splitting to bridge the fracture

process and the bulk behavior separately across scales. The idea has been employed by a

number of others since then. Verhoosel et al. [13] introduced the methodology to link the

progressive evolution (i.e., cohesive cracks) of macroscopic interfacial and bulk cracks to the

corresponding microscopic processes in the discrete-discrete sense. This approach was later

extended to continuum-discrete failure representations [14, 15]. Coenen et al. [16] introduced a

methodology to perform bulk and discontinuity upscaling without the need for microstructure

domain splitting. Bosco et al. [17] extended this methodology to account for strain disconti-

nuities across the macroscale crack surface. A computational framework similar to above that

includes strong discontinuity enrichment has been developed in Refs. [18, 19].

Extending CH to problems where failure at the coarse scale is modeled in a continuum set-

ting typically requires a different treatment to achieve objective formulations. One approach

is to explicitly treat the coarse scale problem using a nonlocal formulation (e.g., gradient or in-

tegral type localization limiter [20, 21]). Kouznetsova et al. [22] proposed a gradient enhanced
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CH theory to study localization problems where the characteristic length of localization is

larger than the microstructure size. Oliver et al. [23] proposed a multiscale approach, where

failure at each scale is represented using the continuum strong discontinuity approach. Lever-

aging their earlier work on RVE existence, Gitman et al. [24] proposed an alternative scale

bridging strategy, in which the RVE size is tied to the macroscale finite element size for regu-

larization, named the couple volume approach. An idea similar to the couple volume approach

is employed in the current study.

While the elegant theories mentioned above provide a consistent upscaling strategy in the

presence of nucleation and propagation of failure, they are often computationally too costly

for application to problems that involve large structures. Due to this limitation, a signifi-

cant majority (if not all) of these approaches has been applied in 2-D problems. The issue of

high computational cost can be alleviated based on either surrogate modeling (e.g., machine

learning [25–27]) or basis reduction strategies to approximate the response at the scale of the

microstructure. In the context of nonlinear behavior of composites, a number of methodogies

have been proposed, including generalized method of cells [28], proper orthogonal decompo-

sition [29], proper generalized decomposition [30], fast Fourier transform [31], transformation

field analysis [32, 33] and eigendeformation-based homogenization [34–36], among others. De-

spite significant progress in this domain, consistent formulations that address all complications

arising from treatment of material softening or crack propagation in multiscale formulations

have been rare. Oliver et al. [37] recently proposed a model order reduction methodology that

builds on the continuum strong discontinuity approach to accelerate multiscale failure simu-

lations in random composites. In addition to basis reduction techniques and particularly in

conjunction with it, massive parallelization [38], effective linear [39] and nonlinear [40] solver

methodologies, adaptive/selective multiscale representation within the problem domain offer

additional approaches for accelerated multiscale computations.

In this manuscript, we present a new reduced order computational homogenization ap-

proach for failure analysis of composite materials. The proposed approach relies on the discrete

representation of the fracture process at the fine scale that consistently bridges to a continuum

representation of damage at the coarse scale. The choice of discrete-continuum representation

is motivated by experimental observations in fiber reinforced polymer composites, where a few

distinct cracks morphologies and orientations observed at the microstructure scale culminates

to diffuse damage patterns at the macroscale. The proposed approach builds on the ideas of the

Eigendeformation-based reduced order Homogenization Method (EHM) [35], but introduces

the following novel contributions:

1. The evolution of damage at the microscale is tracked over a set of discrete cohesive

“potential” failure surfaces (i.e., failure paths) defined over surface morphologies and
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represented using a reduced approximation basis. This is in contrast to the classical

EHM, where volume-based failure paths define the progressive damage evolution idealized

using continuum damage.

2. Leveraging the surface-based representation of failure, the fracture process is expressed

in terms of experimentally-measurable fracture metrics, such as the fracture energy and

cohesive strength.

3. The proposed formulation alleviates mesh size sensitivity and concurrently achieves mesh

objectivity and multiscale consistency by establishing analytical relationships between the

microstructure size and the macroscale element size.

The performance of the proposed formulation is demonstrated using laminated fiber reinforced

composite configurations. The numerical experiments demonstrate mesh size objectivity in

the presence of multiscale failure mechanisms including fiber fracture and transverse matrix

cracking in the context of three-dimensional configurations.

The remainder of this manuscript is organized as follows: In Section 2, the formulation of

the proposed modeling approach, the treatment of multiple and possibly intersecting failure

paths, the basis reduction approach and the treatment of mesh size objectivity are discussed.

The details of the numerical implementation of the D-EHM model is presented in Section 3.

Section 4 provides the verification of the proposed approach in the context of unnotched and

notched laminated composite configurations. Section 5 discusses the summary and conclusions.

An appendix is included that provides the detailed formulation of the coefficient tensor scaling

for mesh size objectivity.

2 Discrete EHM Formulation

Consider a heterogeneous structure that occupies a domain, Ω ⊂ Rnsd , where nsd = 2, 3

is the number of spatial dimensions. The body is made of a periodic arrangement of a mi-

crostructural volume. In the absence of failure processes, the microstructure volume is defined

by a statistically representative volume element (RVE), a statistical volume element (SVE) or

a unit cell (UC). In the presence of the failure process, the RVE concept is no longer valid. In

this manuscript, the microstructure volume is chosen large enough to adequately represent the

geometrical features of the material composition and denoted as Θ ⊂ Rnsd . The microstruc-

ture typically consists of two or more material constituents, but reticulated single material

morphologies are also admissible. Under the applied loading, the structure undergoes brittle

or quasi-brittle fracture. While it is possible to include nonlinear, path dependent deforma-

tion within the material constituents, these effects are ignored and we focus our attention

to modeling of the fracture events in otherwise elastic constituents. Due to the geometrical
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Figure 1: Multiple spatial scales.

arrangement of the constituents at the micro- or mesoscales (e.g., laminated configurations of

a unidirectionally reinforced composite), the fracture patterns within the structure could be

complex and diffuse.

The proposed approach is based on the computational homogenization method with multi-

scale spatial scales [41]. The macroscopic and the microstructural domains are parameterized

using position coordinates, x and y, respectively (Fig. 1). The two scales are related to each

other by the scaling parameter, 0 < ζ � 1 such that y(x) = x/ζ, and the response fields (e.g.,

displacement, stress, strain) are expressed as a function of the micro- and macroscopic coor-

dinates. The governing equations of the boundary value problems that describe the nonlinear

deformation processes at the micro- and macroscopic scales are obtained through a two-scale

asymptotic analysis, the details of which are available in the literature and skipped herein for

brevity [7, 8, 41].

We focus our attention to a progressively damaging microstructure at an arbitrary macro-

scopic position, x ∈ Ω. The displacement field over the microstructure, u is expressed in terms

of a two-scale asymptotic decomposition:

u (x,y, t) = u0 (x, t) + ζu1 (x,y, t) (1)

The leading order displacement field u0 is continuous and constant across the microstructure.

Under the applied loading, a microcrack nucleates and forms within the microstructure (Fig. 1)

resulting in a displacement jump discontinuity (i.e., separation), δ (x,y, t) := Ju1K along a

discontinuity path, y ∈ S ⊂ Rnsd−1 as illustrated in Fig. 1. The microscale displacement

field u1 and the separation δ are taken to be periodic over the microstructure and their

contribution to the overall displacement field is of O(ζ). It is also possible to consider different

boundary conditions such as that suggested in Ref. [42–44]. Our approach to localize the
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jump discontinuity leveraging the periodicity condition are further discussed in Section 2.3.

Employing the concept of eigen-separations [35] and the classical arguments of mathematical

homogenization, the microstructural displacement field is expressed as:

u1 (x,y, t) = H (y) : ε0 (x, t) + (h ∗ δ)S (x,y, t) (2)

where, ε0 = ∇sxu0, ∇sx is the symmetric gradient operator with respect to the macroscopic

coordinates, considering the small strain theory, H(y) and h(y, ŷ) are the elastic and separa-

tion influence functions of the microstructure, respectively, and (· ∗ ·)S denotes the convolution

operation over the discontinuity path, S:

(h ∗ δ)S (x,y, t) =

∫
S

h(y, ŷ) · δ(x, ŷ)dŷ (3)

In the absence of a fracture event(i.e., δ = 0), the formulation results in the classical elastic ho-

mogenization theory, where the third-order elastic influence function, H provides the variation

of the response over the microstructure volume. The numerical evaluation of H is standard [7].

The second-order separation influence function h is computed as responses to unit normal and

tangential separations applied along the discontinuity path (ŷ ∈ S). The numerical evaluation

procedure to compute the separation influence function is provided in Ref. [35].

Employing the scaling relationship and taking the symmetric gradient of Eq. 1, the strain

field over the microstructure is expressed as:

ε (x,y, t) = ε0 (x, t) + ε1
y (x,y, t) = A(y)ε0 + (g ∗ δ)S (4)

in which, ε1
y = ∇syu1, A = I + G, I is the fourth order identity tensor, G = ∇syH is the

elastic polarization tensor, and g = ∇syh stands for the separation polarization tensor. The

macroscopic strain, ε̄ is obtained by averaging Eq. 4 over the domain of the microstructure:

ε̄ (x, t) := 〈ε〉Θ = ε0 (x, t) + 〈(g ∗ δ)S〉Θ (5)

where, 〈·〉Θ denotes the volume (or surface) averaging operator with respect to the domain

denoted in the subscript, |Θ| and |S| are the volume of the microstructure and the surface area

of the discontinuity path, respectively.

Equation 5 employs the continuity and periodicity of the elastic influence function, which

implies that the elastic polarization function has null average. Unlike H, the separation influ-

ence function is discontinuous across the discontinuity path, S. Nevertheless, it is straightfor-

ward to see that the second term in Eq. 5 vanishes (i.e., 〈(g ∗ δ)S〉Θ = (〈g〉Θ ∗ δ)S = 0) and

hence ε̄ = ε0.
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The microscale equilibrium equation defined over the microstructural volume is:

∇y · σ (x,y, t) = ∇y · (L (y) : ε) = 0; y ∈ Θ (6)

in which, σ denotes stress, and L is the tensor of elastic moduli that varies within the mi-

crostructure due to the presence of multiple material constituents. Substituting Eqs. 4 and 5

into Eq. 6, premultiplying the resulting equation with the influence function, h and integrating

over the microstructure yields (∀ŷ ∈ S):

t (x, ŷ, t)−C (ŷ) : ε̄−
∫

Θ
g (y, ŷ) : L : (g ∗ δ)S (x,y, t) dy = 0 (7)

where, t is the traction along the discontinuity path, and C is a third order coefficient tensor:

C (ŷ) :=

∫
Θ

g (y, ŷ) : L (y) : A (y) dy (8)

Equation 7 constitutes a weak equilibrium statement defined over the microstructure. The

construction described above is equivalent to weighted residuals method with collocation over

the discontinuity path and provides a relationship between the tractions and separations along

the discontinuity path as a function of the macroscopic strain. The system of equations

governing the microscale behavior is closed by employing a cohesive law, where the traction

along the discontinuity path is expressed as a history dependent, nonlinear function of the

separations:

t = t̂ (δ,q) (9)

in which, q denote a vector of internal state variables that define the evolution of the cohesive

law. The evolution laws for the internal state variables are material-specific and provided in

Section 4 as a part of the numerical verifications.

Figure 2 provides the summary of the system of equations for the microscale boundary

value problem obtained through classical computational homogenization and the alternative

form of the microscale problem obtained using the eigen-separation concept. In the proposed

formulation, the microstructural boundary value problem is defined over the discontinuity

path, S instead of the microstructure domain, Θ.

2.1 Multiple Failure Paths

Within the heterogeneous structure, Ω with complex geometry and loading, cracks along

different orientations may form at different parts of the domain, propagating cracks may change

direction to follow a load path, or multiple cracks may form near each other and interact. In

the context of the proposed D-EHM methodology, we consider the simultaneous presence of
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Classical microscale problem (           ):
Given: macroscale strain:    ; cohesive law and 
            associated parameters and ISVs.
Compute: microscale displacement: 

Equilibium equation:

Constitutive equation:

Cohesive behavior:

Boundary condition:

Eigenseparation form (           ):
Given: homogenized strain:    ; cohesive law and 
            associated parameters and ISVs.
Compute: microscale separation: 

Equilibium equation:

Cohesive behavior:

u 1

¯

Figure 2: Summary of the microscale boundary value problems based on the computational
homogenization approach and the eigenseparation-based approach.

multiple “potential” discontinuity paths that could form within the same microstructure.

Consider a microstructure that includes n potential discontinuity paths (or failure paths)

as illustrated in Fig. 3. The morphology of each potential failure path is denoted as, Sa

(a = 1, . . . , n) and assumed to be known a-priori. In the presence of multiple potential failure

paths, the microscale displacement field is expressed as:

u1 (x,y, t) = H (y) : ε0 (x, t) +
n∑
a=1

(ha ∗ δa) (x,y, t) (10)

in which, ha (y, ŷ) is the separation influence function for the failure path, a (ŷ ∈ Sa and

y ∈ Θ), and δa (x, ŷ, t) denotes the separation along Sa. Following a similar algebra to that

for a single failure path case, the microstructural equilibrium is expressed on each failure path

as:

ta (x, ŷ, t) − Ca (ŷ) : ε̄ (x, t) −
n∑
b=1

∫
Θ

ga (y, ŷ) : L (y) : (gb ∗ δb) (x,y, t) dy = 0 (11)

in which,

Ca (ŷ) :=

∫
Θ

ga (y, ŷ) : L (y) : A (y) dy (12)

Remark 1. It is often not possible to avoid that the potential failure paths intersect each other

as also illustrated in Fig. 3. At any point along the intersection of two failure paths, Sa and
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Figure 3: Schematic description of the multiple potential failure paths: (a) multiple matrix
cracking modes in a 2-D microstructure volume; (b) matrix cracking (S1) and fiber fracture
modes S2 in a 3-D microstructure volume

.

Sb: ∫
Θ

ga (y, ŷ)σ (x, ŷ, t) dy =

∫
Θ

gb (y, ŷ)σ (x, ŷ, t) dy; ŷ ∈ (Sa ∩ Sb) ⊂ Rnsd−2 (13)

which is clearly satisfied if the following, stronger condition holds:

ga (y, ŷ) = gb (y, ŷ) ; ŷ ∈ Sa ∩ Sb (14)

The condition in Eq. 14 is in fact trivial and satisfied in the formulation since the right and

left hand sides of the equation both correspond to the response under the same unit separation

loading.

Remark 2. In a fully random composite subjected to arbitrary loading (e.g., concrete), the

orientation of the crack is primarily dictated by the loading direction on the microstructure.

In such a scenario, prescribing a finite set of morphologies that a microcrack can form and

propagate along may not be feasible. A dynamic failure path identification strategy could be em-

ployed instead, where a failure nucleation criterion based on a macroscopic (i.e., homogenized)

or a microscopic stress, strain or energy metric dictates the nucleation state and propagation

direction of the crack. Such a strategy would require the identification of the path of the mi-

crocrack and computation of the influence functions during a macroscopic analysis. In other

widely applicable problems such as laminated composite structures, failure occurs due to a finite

set of mechanisms (e.g., transverse matrix cracking, delamination, fiber fracture, etc.) whose

orientations are dictated by the direction of the lamination. The latter set of problems is more

amenable to presetting the potential failure paths, and is the focus of the current study.
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2.2 Model Reduction

In what follows, we employ a reduced order approximation to obtain a small, algebraic

system of equations from the eigen-separation form of the microscopic boundary value problem.

For simplicity, the formulation is explained for a single failure path, but the resulting system

is directly applicable to the multiple failure path case with a slightly altered interpretation, as

further explained below.

We start by the approximation of the separation as a function of a number of reduced-order

basis functions, N (α):

δ (x, ŷ, t) =

m∑
α=1

N (α) (ŷ) δ(α) (x, t) ; ŷ ∈ S (15)

where, δ(α) denotes the reduced-order separation coefficient associated with the αth basis

function, and m is the number of basis functions employed in the reduced-order approximation.

The separation coefficients are taken to be microscopically nonlocal quantities, expressed as a

function of nonlocal weight functions, ν(α) as:

δ(α) (x, t) =

∫
S
ν(α) (ŷ) δ (x, ŷ, t) dŷ (16)

Substituting Eq. 15 into Eq. 7, premultiplying the resulting equation with the weight

function ν(α) and integrating over the domain of the failure path, S results in the following

expression:

t(α) (x, t)−C(α) : ε̄ (x, t) +

m∑
β=1

D(αβ) · δ(β) (x, t) = 0; α = 1, 2, . . . ,m (17)

where,

C(α) :=

∫
S
ν(α) (ŷ) C (ŷ) dŷ (18)

D(αβ) := −
∫
S
ν(α) (ŷ) D(β) (ŷ) dŷ (19)

D(α) (ŷ) :=

∫
Θ

g (y, ŷ) : L (y) : R(α) (y) dy (20)

R(α) (y) :=

∫
S
N (α) (ŷ) g (y, ŷ) dŷ (21)

and the traction coefficient, t(α) is defined analogous to Eq. 16.

The cohesive behavior within the failure path is interpreted as a relationship between the

traction and separation coefficients instead of the point-wise quantities. In this manuscript, the
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cohesive behavior within the failure path is expressed using the following traction-separation

relationship:

t(α) = (1− ω(α))K(α) · δ(α) (22)

where ω(α) ∈ [0, 1] is a scalar internal state variable that defines the progressive debonding

of the cohesive surface. ω(α) = 0 and ω(α) = 1, respectively denote the initial state with full

cohesive stiffness and a cohesionless crack along the failure path, respectively. In what follows

ω(α) is referred to as “damage” in the failure path. K(α) is the tensor of cohesive stiffnesses,

a second order tensor that is diagonal when expressed in the local basis aligned with the unit

normal to the failure path, n(α):

n(α) :=
1

|S|

∫
S
N (α) (ŷ) n (ŷ) dŷ (23)

Equations 17 and 22 along with the appropriate evolution equations that describe dam-

age growth in the failure path constitute the reduced order approximation of the microscale

problem in its eigenseparation form (Fig. 2). The reduced order microscale problem is an

algebraic nonlinear system of equations in which, the macroscale strain acts as the forcing

function and the traction and separation coefficients are evaluated as unknowns. Upon con-

densation (i.e., substituting Eq. 22 into Eq. 17), the number of equations in the nonlinear

system is precisely nsd×m. The evaluation procedure for the nonlinear system is discussed in

detail below. Provided that a relatively small number of shape functions are employed in the

discretization of the separation fields, the evaluation of the proposed reduced order system is

very efficient compared to the numerical evaluation of the microscale problem obtained from

classical computational homogenization.

2.2.1 Model reduction with multiple failure paths

The reduced order representation of the microstructural equilibrium is extended to multiple

failure paths in a straightforward fashion. The separation on an arbitrary failure path, a is

approximated as:

δa (x,y, t) =

ma∑
α=1

N (aα) (y) δ(aα) (x, t) ; y ∈ Sa (24)

The total number of basis functions used in the reduced basis approximation of all potential

separation fields is denoted as m =
∑n

a=1ma. Using a similar algebra in the derivation of the

reduced order equilibrium equation for the single failure path case, we arrive at the identical
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expression of Eq. 17 if the equations are re-indexed such that:

δ(aγ) {a = 1 : n; γ = 1 : ma} → δ(α) {α = 1 : m} (25)

S(aγ) = Sa {a = 1 : n; γ = 1 : ma} → S(α) {α = 1 : m} (26)

Noting that S(aγ) = Sa for all γ = 1, . . . ,ma. The coefficient tensors become:

C(α) :=

∫
S(α)

ν(α) (y) C (y) dy (27)

D(αβ) := −
∫
S(α)

ν(α) (y) D(β) (y) (28)

R(α) (y) :=

∫
S(α)

N (α) (ŷ) g (y, ŷ) dŷ (29)

n(α) :=
1

|S(α)|

∫
S(α)

N (α) (ŷ) n (ŷ) dŷ (30)

It is straightforward to compute the macroscopic stress field at an arbitrary position, x ∈ Ω

as a function of the separation coefficients. Averaging the stress field over the domain of the

microstructure:

σ̄ (x, t) := 〈σ (x,y, t)〉Θ = L̄ : ε̄ (x, t) +

m∑
α=1

Z(α) · δ(α) (x, t) (31)

where,

Z(α) :=
〈
L (y) : R(α) (y)

〉
Θ

(32)

L̄ := 〈L (y) : A (y)〉Θ (33)

in which, L̄ is the tensor of homogenized elastic moduli of the composite. The third order

coefficient tensor, Z(α) provides the stress contribution due to the separation coefficient, δ(α).

2.2.2 Reduced order basis and weight functions

The accuracy and computational efficiency characteristics of the D-EHM model are con-

trolled by the order of the model (i.e., m) as well as the form of the basis and weight functions

employed to discretize the separation fields. In order to ensure consistency of the formulation,
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the basis and weight functions must satisfy four constraints [36]:

Orthonormality:
∫
S ν

(α) (ŷ)N (β) (ŷ) dŷ = δαβ (34a)

Partition of unity:
∑m

α=1N
(α) (ŷ) = 1; ŷ ∈ S (34b)

Positivity: ν(α) (ŷ) ≥ 0; ŷ ∈ S (34c)

Normality:
∫
S ν

(α) (ŷ) dŷ = 1 (34d)

in which, δαβ denotes Kronecker delta, and S is interpreted as all failure paths within the

microstructure (i.e., S = ∪na=1Sa). Equation 34a is a direct consequence of Eqs. 15 and 16 and

implies that the weight and basis functions must exhibit orthonormality. The remainder of the

constraints (i.e., Eq. 34b- 34d) respectively indicate the partition of unity of the separation

fields within the microstructure; the positivity of the weight function to eliminate negative

nonlocal contributions, and the weight function normalization. Derivation of these conditions

have been demonstrated in Ref. [36] in the context of the EHM formulation, and is also

applicable to D-EHM.

In the current manuscript, we make the simplest choice for the basis and weight func-

tions that satisfy the four constraints mentioned above. First, each failure path within the

microstructure is represented by a single basis function: ma = 1 for all a = 1, . . . , n, hence

m = n. Second, the basis and weight functions are taken to be piecewise constant over the

failure paths:

N (α) (ŷ) =

{
1 if ŷ ∈ S(α)

0 elsewhere
ν(α) (ŷ) =

{
1/|S(α)| if ŷ ∈ S(α)

0 elsewhere
(35)

Remark 3. The reduced order modeling methodology could be enhanced in two ways. In the

first approach, the number of basis functions employed to discretize each failure path could be

increased (i.e., ma > 1) to better represent the progressive nature of crack formation within the

microstructure domain. This model improvement introduces two complications. Subdomains

within the failure paths over which the piecewise constant basis functions need to be defined

in a fashion that ensures model accuracy improvement compared to the present case. The

presence of multiple basis functions in the same failure path also introduces a discontinuity

in the separation field at the interfaces of the subdomains. In the second approach, nonlinear

basis functions can be employed mimicking the ideas of the nonuniform transformation field

analysis [33]. These more complex basis function selection strategies and their consequences

in approximating the response fields will be the focus of future investigations. All numerical

examples described in this manuscript employs Eq. 35.
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Figure 4: Schematic illustration of the scaling idea: (a) reference microstructure; (b) domain
in the absence of localization represented by the repetition of the reference microstructure;
(c) domain in the presence of localization, where the behavior is represented by scaling of the
coefficient tensors.

2.3 Crack Localization

The macroscopic stress-strain relationship defined by the D-EHM model exhibits strain

softening. If not regularized, a macroscopic analysis using the formulation above exhibits spu-

rious mesh localization and mesh size sensitivity. In this study, we propose to regularize the

formulation for mesh size sensitivity based on the idea of effective adjustment of microstructure

size. The proposed idea bears resemblance to that proposed by Gitman et al. [24]. Following

the crack band regularization approach of Bazant and Oh [45], damage at the macroscopic

scale is allowed to localize. Mesh size consistency is achieved by adjusting the energy dis-

sipated at the element level as a function of element size in such a way that the resulting

macroscopic fracture energy is independent of the mesh size. A related concept is also used

in element removal/deletion schemes with energy dissipated adjustment that are based on ele-

ment sizes [46]. Unlike the crack band approach that relies on adjusting the damage evolution

parameters, we adjust the size of the microstructure domain to achieve mesh size objectiv-

ity. In view of the periodicity of the microstructure, adjusting the microstructure domain in

turn sets the local microcrack density and ensures energetic consistency. For computational

efficiency, the size adjustment is performed in an effective manner by obtaining analytical

equivalency relationships, rather than numerically computing a separate reduced order model

for every macroscopic element with a different size.

Figure 4 schematically illustrates the proposed concept. Let L denote the size of the hetero-

geneous domain undergoing failure subjected to uniaxial loading. The size of the localization

zone is denoted as w. Let ξ = L/w denote the size scale ratio of localization. In the absence

of any localization within the domain (i.e., ξ = 1 as shown in Fig. 4b) and in view of local

periodicity, the microstructures shown in Fig. 4a and Fig. 4b behave identically and have iden-
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tical microcrack densities, whereas the failure behavior in Fig. 4c is different, and has lower

microcrack density.

Let <ξ = <(Θξ, Sξ; C,Dξ,Zξ) denote the reduced order model defined by the microstruc-

ture with size scale ratio, ξ (e.g., <1 and <4 denote the models for Figs. 4b and 4c, respectively).

The reduced order model is a function of the microstructure domain, Θξ and the discontinuity

paths embedded in the microstructure domain, Sξ. For simplicity the subscript 1 is omitted

from the “reference” microstructure (i.e., < = <1). We seek to find an equivalent represen-

tation of the ROM with an arbitrary size scale ratio as a function of the reference ROM.

Let:

<̂ξ = < (Θ, S; C, η(ξ)D, η(ξ)Z) = <ξ = <(Θξ, Sξ; C,Dξ,Zξ) (36)

The equivalency is achieved by scaling the coefficient tensors (D and Z) associated with the

reference microstructure using a function η expressed in terms of the size scale ratio. In the

numerical simulations, the size of the localization zone is dictated by the size of the macroscale

element. We therefore express the size scale ratio as ξ = l/h, where l and h respectively denote

the size of the microstructure and the macroscopic element length.

By this approach, for each element of the macroscale discretization, we employ the regular-

ized ROM, <̂l/h. The above discussion therefore indicates that the size of the microstructure

volume, and hence microcrack density within the element, is effectively adjusted as a function

of macroscale element size to ensure mesh size objectivity. The implementation of this ap-

proach is computationally efficient provided that closed form expression for coefficient tensor

scaling (i.e., η(ξ)) is available. In what follows, we demonstrate the derivation of η under

simplified conditions. The detailed derivation of coefficient tensor scaling for the more general

case is provided in the Appendix.

Consider a microstructure with one failure path subjected to failure under mode I condition,

such that the separation coefficients are expressed of the form, δ = δNn. Since only one failure

path is considered, we omit the use of superscript (1) for simplicity of the presentation. We

make the approximation that the Mode I condition is achieved by considering the macroscale

strain state of the form: ε̄ = ε̂Nn ⊗ n. In fact, exact derivation of pure Mode I condition

requires considering nonzero normal strains along the two orthogonal directions as shown

in Eq. A1, but the approximation provided by a pure uniaxial strain state turns out to be

sufficiently accurate. We further consider a traction-separation law such that the softening

behavior exhibits constant softening slope, resulting in a homogenized stress-strain behavior

that also softens with a constant slope. The microscale equilibrium using the regularized ROM,

<̂ξ is expressed as:

[(1− ω) K + η(ξ)D] · δ −C : ε̄ = 0 (37)

Substituting the forms of the separation and the macroscopic strain tensors into Eq. 37,
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taking an inner product of the resulting equation with n yields the following scalar equation:

[(1− ω)K + η(ξ)D] δN − Cε̂N = 0 (38)

where, K = n ·K · n, D = n ·D · n and C = n ·C : (n⊗ n).

Similarly, the macroscopic stress-strain relationship is:

σ̄ = L̄ : ε̄+ η(ξ)Z · δ (39)

Substituting the forms of the separation and macroscopic strain tensors into the above equation

and considering the component of the stress field along the normal direction results in:

σ̄ = Ēε̂N + η(ξ)ZδN (40)

in which, σ̄ = n · σ̄ · n, Ē = (n ⊗ n) : L̄ : (n ⊗ n), and Z = (n ⊗ n) : Z · n. Differentiating

Eq. 40 with respect to the macroscopic strain and considering linear softening, the softening

slope of the stress-strain curve is expressed as:

Esξ = Ē +
η(ξ)ZC

A+ η(ξ)D
(41)

where, A is the softening slope of the traction-separation relationship. A straightforward anal-

ysis of the heterogeneous domains shown in Fig. 4b and 4c under simplifying one dimensional

conditions indicate that the softening slope of a domain localizing with a scaling ratio of ξ is:

Esξ =
ĒEs

ξĒ + (1− ξ)Es
(42)

in which, Es denotes the softening slope of the reference microstructure (i.e., when < = <1).

Noting that η(1) = 1 (i.e., <1 = <̂1) and substituting Eq. 41 into Eq. 42, a closed form

expression for the scaling relationship is obtained:

η(ξ) =
ξA

A+ (1− ξ) (DĒ + ZC)Ē−1
(43)

For a given macroscopic element size, h, the scaled coefficient tensors are employed in the

reduced order model. The expressions for the coefficient tensor scaling in the presence of

multiple modes of loading and failure paths are more complicated since scaling for each failure

path and mode is different. Details of the scaling laws in the general case are provided in the

Appendix. The scaled coefficient tensor, D̂(αβ) takes the form:

D̂(αβ)
(
ξ(α)

)
= η(α)

(
ξ(α)

)
·D(αβ) (44)
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When expressed in terms of the local coordinate systems aligned with the unit normals of the

failure paths, the matrix form of the scaling tensor is diagonal:

[
η(α)

(
ξ(α)

)]
=


η

(α)
N (ξ(α)) 0 0

0 η
(α)
S1

(ξ(α)) 0

0 0 η
(α)
S2

(ξ(α))

 (45)

in which, ξ(α) denotes the size scale ratio for the failure path α. The size scale ratio for a

failure path loaded in normal and shear modes is taken to be the same. Each component

of the scaling parameter is of the same form as in Eq. 43, but computed in terms of the

appropriate coefficient and the scaling parameter as described in the Appendix.

Ẑ(α)
(
ξ(α)

)
is a third order tensor and its scaling takes a slightly different form, but expressed

in terms of the same scaling parameters. Expressing in the matrix form:

[
Ẑ(α)

(
ξ(α)

)]
=


η

(α)
N Z

(α)
11 η

(α)
S1

Z
(α)
12 η

(α)
S2

Z
(α)
13

η
(α)
S1

Z
(α)
12 Z

(α)
22 Z

(α)
23

η
(α)
S2

Z
(α)
13 Z

(α)
23 Z

(α)
33

 (46)

where the third component of Z(α) is suppressed for brevity (i.e., Z
(α)
ij ← Z

(α)
ijp in the indicial

form).

Remark 4. The scaling law formulated above makes use of characteristic lengths of the macro-

scopic element to determine ξ(α). Algorithms for identifying the element lengths relative to the

crack orientation have been proposed and studied previously (see e.g., [47, 48]) for the crack

band method. In the verification studies below, we employed structured and crack aligned

meshes within critical regions of the macrostructure. For a given failure path, the characteris-

tic length for normal and shear modes are taken to be the length of the macroscopic element

along the failure path normal.

2.4 Residual stiffness correction

Eigenstrain-based homogenization models have been shown to exhibit spurious post-failure

residual stiffness, particularly when low order models are employed [36]. The existence of non-

trivial residual stiffness allows the macroscopic element to retain some load carrying capacity

after failure and alters load redistribution in a failure propagation scenario. This problem has

been tied to the incompatibility of eigenstrains by Furuhashi and Mura [49] and a number of

solution strategies have been discussed in Refs. [34, 36, 50]. We encountered this problem in

the current formulation as well. In the current manuscript, the issue of post-failure residual

stiffness is alleviated by extending the idea of coefficient tensor scaling.
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Herein, we demonstrate the proposed scaling approach for the simple case shown in Fig. 4.

Consider the following scaled reduced order model:

<̂rξ = < (Θ, S; C, η̃(ξ)D, η̃(ξ)ηrZ) (47)

where, η̃(ξ) and ηr stand for the scaling parameters for crack localization and residual stiffness

correction, respectively. The residual stiffness correction only affects the macroscopic stress-

strain relationship through scaling of Z. Considering mode I loading of the failure path,

the scalar microstructure equilibrium equation and the macroscopic stress-strain relationship

becomes:

[(1− ω)K + η̃(ξ)D] δN − Cε̂N = 0 (48)

σ̄ = Ēε̂N + η̃(ξ)ηrZδN (49)

Following a similar derivation as in the previous section, the softening slope of macroscopic

stress-strain curve is expressed in terms of the two scaling factors η̃ and ηr:

Esξ = Ē +
η̃(ξ)ηrZC

A+ η̃(ξ)D
(50)

Considering the reference microstructure (i.e., ξ = 1) and after damage along the failure path

reaches unity, the slope of the traction-separation curve vanishes (A = 0). The scaled residual

stiffness is then:

Êr(ηr) = Ē + ηr
ZC

D
(51)

In the absence of correction, the residual stiffness predicted by the model is Er = Êr(ηr =

1). We therefore seek to set ηr such that the resulting residual stiffness is sufficiently small.

Defining a correction factor kr = Êr/Er, the scaling factor is obtained from Eq. A30 as:

ηr = −(1− kr)DĒ
ZC

+ kr (52)

Noting that the residual stiffness scaling is independent of the length scale ratio, ξ and

by substituting Eqs. 50 and 52 into Eq. 42, the expression for the scaling parameter of crack

localization is obtained:

η̃ =
ξA

A+ kr (1− ξ) (DĒ + ZC)Ē−1
(53)

Equation 53 differs from Eq. 43 only by the presence of the correction factor kr. If the

uncorrected residual stiffness predicted by the reduced order model is zero, the second term in

the denominator of Eq. 53 vanishes and the scaling parameter is η̃ = ξ, which is the classical

scaling law for the crack band model. Similarly, setting the residual correction factor, kr to a
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Reduced Order Model:
Given: homogenized strain:   ; scaled coefficient tensors:                                      ;
constituent material parameters for cohesive behavior
Compute: homogenized stress:
 
Equilibium equation:

Cohesive law:

Damage evolution equations:

Homogenized stress update: 

¯

Figure 5: Summary of the reduced order microscale problem.

very small value recovers the simple relationship: η̃ ≈ ξ.
Employing both the residual stiffness correction and scaling for localization in the general

case of failure paths and multiple modes of loading, the matrix form of the localization tensor

for scaling D̂(αβ) becomes (considering sufficiently small residual stiffness correction):

[
η̃(α)

(
ξ(α)

)]
= ξ(α)


1 0 0

0 1 0

0 0 1

 (54)

The form for scaling of Ẑ(α)
(
ξ(α)

)
is the same as in Eq. 46, but includes the residual

correction terms. In the matrix form defined based on the local basis aligned with the failure

path normals, we obtain:

[
Ẑ(α)

(
ξ(α)

)]
=


ξ(α)η

r(α)
N Z

(α)
11 ξ(α)η

r(α)
S1

Z
(α)
12 ξ(α)η

r(α)
S2

Z
(α)
13

ξ(α)η
r(α)
S1

Z
(α)
12 Z

(α)
22 Z

(α)
23

ξ(α)η
r(α)
S2

Z
(α)
13 Z

(α)
23 Z

(α)
33

 (55)

in which, the values of η
r(α)
N , η

r(α)
S1

and η
r(α)
S2

are obtained analogously to the 1-D loading case

described above. The detailed expressions of these factors are provided in the Appendix.

Figure 5 shows the summary of the governing equations of the resulting reduced order

system, which is evaluated for the homogenized stress.

19



Microstructure

- Micro-morphology
- Constituent material properties

Failure Paths

- Crack morphologies
- Reduced model basis

Nonlinear Analysis of 
the Macroscale Problem

Macroscopic Stress Update
Macroscale Discretization and 

Boundary Conditions

Macro- Analysis Preprocessing
For each macroscale element:
- Size scale ratio:
- Scaled coefficient tensors: 

Reduced Order Model

- Influence functions:

- Coefficient tensors:

Figure 6: Numerical implementation strategy.

3 Numerical Implementation

The overall strategy for the numerical implementation of the D-EHM model is shown in

Fig. 6. The implementation consists of the construction of the reduced order microstructure

model at the pre-processing stage, and the evaluation of the macroscopic problem.

The pre-processing stage consists of the following steps: (1) Characterization and discretiza-

tion of the material microstructure; (2) Identification of crack morphologies to be included in

the reduced order model; (3) Evaluation of microstructure problems to compute the influence

functions, and numerical integrations to compute the coefficient tensors; (4) Identification of

the size scale ratios and scaling the coefficient tensors for mesh size and residual stiffness. In

the current manuscript, simple unit cell morphologies (i.e., square and hexagonal) have been

employed. In general, it is also possible to consider representative (i.e., prior to fracture)

microstructures with randomly distributed fibers generated using appropriate statistical met-

rics. The crack morphologies to be included in the reduced order model could be identified

based on (a) a-priori selection of failure paths for specific microstructure/loading conditions

the macroscopic structure is expected to undergo; and (b) dynamic identification of the failure

path during the macroscopic analysis, where the failure path is included in the reduced order

model once a critical state of damage onset is detected. This study focused on the former

strategy, where the number and morphologies of the failure paths are selected based on set of

expected failure modes (e.g., transverse matrix crack, fiber fracture). The role of the selection

of microstructure and failure path morphology is investigated in Section 4.1.3. The evaluation

of the elastic and separation influence functions follow the procedures outlined in Ref. [35] and

20



skipped herein for brevity. The computation of the size scale ratios require the identification

of the characteristic element lengths associated with each failure path at each macroscale el-

ement. The average length of the macroscale element along the direction of the failure path

normal, n(α) is used.

The macroscale problem is evaluated using the commercial finite element analysis package,

Abaqus. The reduced microstructure model summarized in Fig. 5 constitutes the homog-

enized stress update at a quadrature point, and incorporated into Abaqus using the user

supplied subroutine capability, UMAT. Identification of size scale ratios and scaling of the co-

efficient tensors are performed immediately before the macro-analysis, using the user supplied

subroutine, UEXTERNDB.

The use of standard finite element method to evaluate the macroscale problem limits the

general applicability of the approach, particularly when cracks arbitrarily cross the macroscale

elements. This issue is similar to the difficulties encountered in the classical crack band ap-

proach [48]. In the context of long fiber reinforced composite problems, this issue is typically

circumvented by aligning the mesh with the fiber orientation, which allows the dominant fail-

ure modes to align with the mesh [51, 52]. The extension of the proposed multiscale approach

to arbitrary crack orientations with respect to the mesh requires enrichment of the standard

approximation basis at the macroscale (e.g., using XFEM or other strong discontinuity meth-

ods), local mesh realignment, or other advanced methods. The numerical examples discussed

below employ fiber aligned macroscale meshes.

3.1 Damage evolution equations

Damage evolution is expressed as a monotonically increasing function of the history vari-

able, κ(β) as:

ω(β) = Φ
(
κ(β)

)
(56)

where,

κ(β) = max
τ∈[0,t]

{〈
ν(β)(τ)− ν(β)

0

〉
+

}
(57)

in which, ν(β)(τ) and ν
(β)
0 are the damage equivalent separation and the initial damage equiv-

alent separation, respectively. ν
(β)
0 is a parameter that indicates damage initiation (i.e., the

value of ν(β)(τ) below which damage does not evolve). 〈·〉+ represents the Macaulay bracket

expressed as 〈·〉+ = [(·) + | · |]/2. Damage equivalent separation can be expressed as a function

of the components of the separation coefficients:

ν(β) = k
(β)
N δ̂

(β)
N + k

(β)
S

√(
δ̂

(β)
S1

)2
+
(
δ̂

(β)
S2

)2
(58)
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in which, [δ̂(β)] = [δ̂
(β)
N , δ̂

(β)
S1
, δ̂

(β)
S2

] is the separation vector and its components expressed along

the basis aligned with the failure path normal (i.e., δ̂
(β)
N is normal separation and δ̂

(β)
Si

, i = 1, 2

are tangential separation components). Expressed in terms of the same basis, the tensor of

cohesive stiffnesses become:

[K(β)] =


k

(β)
N 0 0

0 k
(β)
S 0

0 0 k
(β)
S

 (59)

kN and kS are the normal and tangential stiffnesses, respectively.

The damage evolution in the failure path as a function of the history variable has the form:

Φ
(
κ(β)

)
=


1

α
(β)
2

arctan
(
α

(β)
1 κ(β)

)
if κ(β) ≤ tan(α

(β)
2 )

α
(β)
1

1 otherwise

(60)

In the numerical implementation, the presence of Macaulay bracket in Eq. 57 introduces a

discontinuity and results in lack of convergence in some cases. In order to improve convergence

of the nonlinear evaluation of the system, we replace the Macaulay bracket with a C1 contin-

uous approximation, which introduces continuity by the addition of a small arc with radius r

at the elbow of the ramp (i.e., Macaulay) function (see Ref. [53]):

〈x〉c =


0 x < − tan−1(3πr/8)

r −
√
r2 − [x+ tan−1(3πr/8)]2 − tan−1(3πr/8) ≤ x ≤ tan−1(3πr/8)√

2

x x >
tan−1(3πr/8)√

2

(61)

In the following numerical examples, r is selected to be 8.5× 10−4.

3.2 Macroscopic stress update procedure

Given: Homogenized strain tε̄ and its increment ∆ε̄, separations in local coordinate system

tδ̂
(β) and damage variables tω

(β) of each failure path (β = 1, 2, ...,m). The left subscript

denotes the incremental step, i.e., t(·) and t+∆t(·) stands for the variables at the previous and

current increments, respectively. For simplicity, subscript t+∆t(·) is omitted for simplicity.

Compute: The macroscopic stress σ̄; current separations δ̂(β) and damage variables ω(β)

of each failure path.

In this section, the coefficient tensors and other tensors are expressed in matrix form

following the Voigt notation. To obtain the separation vector δ̂(β) = [δ̂
(β)
N , δ̂

(β)
S1
, δ̂

(β)
S2

], the

governing equations of the reduced order model (Fig. 5) are solved using the Newton-Raphson
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method. A penalty term is added to enforce contact constraint along the failure paths under

compression. The general form of the resulting nonlinear system is given as:

Ψ = M(d)d + f(ε̄) + f c(d) = 0 (62)

where f is the force vector, f c is the penalty function, d is the state variable vector constituted

by the separation vectors: d = [δ̂(1), δ̂(2), ...δ̂(m)]T. Based on Eq. 17, M is defined as:

M =


(1− ω(1))K(1) + D(11) D(12) · · · D(1m)

D(21) (1− ω(2))K(2) + D(22) · · · D(2m)

...
...

. . .
...

D(m1) D(m2) · · · (1− ω(m))K(m) + D(mm)

 (63)

where K(β) represents cohesive stiffnesses and the matrix form of the coefficient tensor is

stated as D(αβ) = [D
(αβ)
ij ]; i, j = 1, 2, 3. The damage variable ω(β) is computed using the

damage evolution equations (Section 3.1) in terms of the corresponding separation δ̂(β).

The force vector, f(ε̄) is given as:

f = [C(1); C(2); ...C(m)]ε̄ (64)

in which, semicolon indicates column matrix construction, and the components of the homog-

enized strain vector is expressed in the Voigt form: ε̄ = [ε̂11, ε̂22, ε̂33, ε̂12, ε̂13, ε̂23]T.

The penalty function f c(d) to enforce the unilateral contact constraint is given as:

f c =
1

χ
[〈δ(1)

N 〉−, 0, 0, 〈δ
(2)
N 〉−, 0, 0, ...〈δ

(m)
N 〉−, 0, 0]T (65)

where χ� 1 is the penalty parameter, and 〈·〉− is defined as 〈·〉− = [| · | − (·)]/2.

Based on the definitions above, the solution procedure for the nonlinear system consists of

the following steps:

1. Update the homogenized strain: ε̄ = tε̄+ ∆ε̄;

2. Initialize the unknown coefficients: 0d = td;

3. Loop until convergence;

3a. Compute the system residual: k∂Ψ(kd);

3b. Check convergence: ‖ k∂Ψ ‖≤ tol;
3c. If convergence: Exit loop;

3d. Compute system Jacobian: k(∂Ψ/∂d);

3e. Update unknown coefficients: k+1d = kd− k(∂Ψ/∂d)−1 kΨ;

3f. k ← k + 1
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4. Update the macroscopic stress σ̄ based on Eq. 31.

3.3 Macroscopic tangent moduli

A closed form expression for the macroscopic tangent moduli tensor is defined based on

Eq. 31:

L =
∂σ̄

∂ε̄
= L̄ +

m∑
β=1

Z(β)∂δ̂
(β)

∂ε̄
(66)

The derivative of the separation vector with respect to the homogenized strain is computed

by leveraging Eq. 62 and expressing the residual as (d(ε̄), ε̄):

∂d

∂ε̄
= −

[
∂Ψ

∂d

]−1 ∂Ψ

∂ε̄
(67)

where,
∂Ψ

∂ε̄
= [C(1); C(2); ...C(m)] (68)

and

∂Ψ

∂d
=
∂M

∂d
d + M +

∂f c

∂d
(69)

The derivative of penalty function is given as:

∂f c

∂d
=

1

2χ


F

(1)
c 0 · · · 0

0 F
(2)
c · · · 0

...
...

. . .
...

0 0 · · · F (m)
c

 ; F (β)
c =


1− sgn(δ̂

(β)
N ) 0 0

0 0 0

0 0 0

 (70)

The derivative of M is calculated by:

∂M

∂d
=

m∑
β=1

∂M

∂ω(β)

∂ω(β)

∂d
(71)

in which the only nonzero components are −K(β) and ∂ω(β)/∂δ̂(β), respectively. The derivative

of damage ω(β) can be expanded through the damage evolution equations by the chain rule:

∂ω(β)

∂δ̂(β)
=
∂ω(β)

∂κ(β)

∂κ(β)

∂ν(β)

∂ν(β)

∂δ̂(β)
=

α1Hc(∆ν
(β))

α2[1 + (α1κ(β))2]

[
k

(β)
N , k

(β)
S

δ̂
(β)
S1

‖δ̂(β)
S ‖

, k
(β)
S

δ̂
(β)
S2

‖δ̂(β)
S ‖

]T

where ∆ν(β) stands for the increment of equivalent separation kν(β)−tν(β), ‖δ̂(β)
S ‖ =

√(
δ̂

(β)
S1

)2
+
(
δ̂

(β)
S2

)2
,
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the function Hc is the derivative of the modified Macaulay bracket in Eq. 61:

Hc(x) =


0 x < − tan−1(3πr/8)

x+ tan−1(3πr/8)√
r2 − [x+ tan−1(3πr/8)]2

− tan−1(3πr/8) ≤ x ≤ tan−1(3πr/8)√
2

1 x >
tan−1(3πr/8)√

2

(72)

fiber fracture

x

y

z

matrix cracking

Figure 7: Microstructure configuration with failure paths of “transversely matrix cracking” and “fiber
fracture”.

4 Numerical Verification

4.1 Unnotched lamina analyses

The performance of D-EHM model is first assessed in the context of uniformly loaded

specimens, which corresponds to the behavior of an unnotched lamina. Figure 7 shows the

microstructural configuration and the failure paths employed in the analysis. The unit cell is

a unidirectional fiber-reinforced matrix with 65% fiber volume fraction. Two failure paths are

considered (m = 2). The “transverse matrix cracking” path resides within the domain of the

matrix material, whereas the fiber fracture path is within the domain of the fiber material.

The matrix cracking and fiber fracture paths are approximate planes with normals along x

and z directions, respectively as indicated in Fig. 7. These two failure paths correspond to

two of the primary failure modes observed in laminated fiber reinforced composites subjected

to tension loading. In case of failure under uni-axial loading along the z direction, the unit

cell is expected to undergo failure by fiber fracture as well as the fracture within the matrix

ligament. Under this loading condition, the matrix ligament failure is expected to immediately
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follow or simultaneously occur with fiber fracture. In the current model, the fracture of the

matrix ligament is ignored in view of the high disparity between the fiber and matrix moduli,

and due to the brittle nature of the fracture process along the fiber direction. In long fiber

composites, the path of a transverse matrix crack often follows fiber-matrix interfaces as well.

Including an additional combined failure path that goes through both the matrix and the fiber-

matrix interface (or alternatively replacing the intra-matrix path used in this study with the

combined path) within the reduced order model is straightforward. Inclusion of such a path

requires defining the interface strength and failure parameters in addition to the bulk matrix

fracture properties that are not straightforward to identify using traditional experimental

characterization techniques. For purposes of model verification, the path of the transverse

matrix cracking mode is taken to go through the matrix phase only.

The elastic and fracture parameters for matrix and fiber employed in the numerical ex-

amples are summarized in Table 1. The mode I cohesive strength and energies are 4.87 GPa

and 48.72 MPa-mm for fiber fracture, and 84.86 MPa and 4.24 MPa-mm for transverse ma-

trix cracking. Fracture energies employed in this section are relatively large to exacerbate the

quasi-brittle behavior and the softening stage, in order to clearly demonstrate mesh size objec-

tivity. Figure 8 shows the mode I traction-separation curves of the constituents generated by

the cohesive law described by Section 3.1. The overall traction-separation curve is very similar

to a bilinear law, but the present model form allows a smoother transition from the hardening

to the linear softening regime.

Table 1: Model parameters for matrix and fiber

Matrix Properties (isotropic)

E [GPa] ν α1[MPa−1] α2[rad] K [MPa]

3.55 0.35 8× 10−3 1.57 109

Fiber Properties (transversely isotropic)

E1 [GPa] E2 [GPa] G12[GPa] ν12 ν23 α1[MPa−1] α2[rad] K [MPa]

263.00 13.00 27.50 0.32 0.20 1.3× 10−4 1.57 1010

4.1.1 Mesh size objectivity

Figure 9 displays the geometry, loading and boundary conditions of the macroscopic do-

main. The macroscopic specimen is subjected to displacement-controlled loading until failure.

In Fig. 9a and 9c, the configurations are perpendicular to the failure paths under uniaxial

tension condition resulting in mode I fracture within the matrix and fiber, respectively. Sym-
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Figure 8: Traction-separation relationship of (a) the matrix constituent (b) the fiber constituent under
mode I loading. The inset figures shows close-ups near the ultimate traction

metry boundary conditions are applied to the three sides normal to x,y and z directions. The

configuration in Fig. 9b is a simple shear test, in which mesh size sensitivity is studied under

mode II fracture conditions. This is achieved by suppressing the possibility of the onset of

mode I dominated fracture through the use of single failure path parallel to the shear loading.

The inclusion of a failure path oriented at 45 degree angle to the shear loading would enable

mode I fracture under simple shear. In order to ensure damage localization in the examples,

the properties in one layer of elements along the expected fracture surface (illustrated as dark

regions in Fig. 9) have been slightly perturbed. The macroscale domain is discretized using

four different element sizes (denoted as h) of 1 mm, 0.5 mm, 0.25 mm, 0.125mm. 8-noded

tri-linear hexahedral elements with reduced integration (1 quadrature point per element) and

hourglass control are employed in the macroscale discretizations.

Figures 10a-c show the macroscopic stress-strain curves, along with the evolution the crit-

ical cohesive damage variable (i.e., ω(m) or ω(f)) in the localization zones for the three loading

configurations shown in Fig. 10. The first two loading configurations result in failure com-

pletely dominated by transverse matrix cracking, whereas the last configuration results in

fiber fracture dominated failure. In all cases, no appreciable damage accumulation is observed

in the non-dominant failure path. The stress-strain curves for the four discretizations are

nearly overlapping and the overall softening stiffness in the specimen stays the same regardless

of the mesh size in both matrix cracking and fiber fracture dominated cases. In all cases, the

macroscopic stress (along with the traction along the dominant failure path within the unit

cell) reaches its peak when the cohesive damage variable of the dominant failure path reaches
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Figure 9: Geometry and loading conditions for the unnotched specimen under (a) matrix cracking dom-
inated mode I condition, (b) matrix cracking dominated mode II condition, (c) fiber fracture dominated
mode I condition.
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Figure 10: The macroscopic stress-strain curves (denoted by circle mark) and damage evolution (denoted
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under (a) matrix cracking dominated mode I condition, (b) matrix cracking dominated mode II condition,
(c) fiber fracture dominated mode I condition, (d) matrix cracking dominated mode I with and without
residual stiffness correction.
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Figure 11: The macroscopic stress-strain curves for unit cells with different fiber volume fractions.

a value slightly lower than unity. Macroscopic stress (and traction along the failure path)

vanishes when damage value reaches unity. Figure 10d illustrates the impact of the residual

stiffness correction on the resulting macroscopic stress-strain curves. The figure compares

those predicted by the h = 1mm and h = 0.5mm simulations for matrix dominated failure

under uniaxial loading (Fig. 9a). In the absence of residual stiffness correction, a significant

residual stiffness is predicted, which gets larger as the mesh is refined. The proposed correction

eliminates this spurious effect.

In Fig. 11, mesh size insensitivity of the proposed formulation has been demonstrated for

unit cells with different fiber volume fractions subjected to matrix dominated failure under

mode I loading as shown in Fig. 9a. Three unit cells with fiber volume fractions of 55%,

60% and 65% were considered. The simulations demonstrate that the behavior is mesh size

independent for all values of fiber volume fraction. Only small discrepancies have been observed

between the specimens with different fiber volume fractions. The macroscopic stiffnesses are

7.85 GPa, 8.28 GPa, and 8.73 GPa for 55%, 60% and 65% configurations, respectively. The

ultimate macroscopic strengths and strains to failure are largely unaffected by the fiber volume

fractions within the range of values considered. This is because the failure is dictated by the

matrix properties, and the overall traction state that the matrix failure path undergoes is not

significantly affected by the change in the fiber volume fraction.

The proposed model has been verified by comparing the model predictions with direct

numerical simulations of fully resolved microstructure. Abaqus in-built cohesive zone model

(CZM) is employed as the reference. The unnotched specimen with the same geometry and

failure path conditions is considered. The finite element mesh of the unit cell and the failure

path modeled using cohesive zone elements are shown in Fig. 13. COH3D8 elements from

the Abaqus cohesive element library were used. Maximum nominal stress criterion for dam-

age initiation and linear energy-based damage evolution are employed for traction-separation
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response of the cohesive element. The stress-strain curves obtained under mode I and II con-

ditions compared with the D-EHM model are shown in Fig. 13. A good overall agreement is

observed between the two methods. Damage contours of the cohesive interface demonstrate

spatially non-uniform damage evolution. Before reaching the ultimate stress, damage evolves

more rapidly in regions closer to the fiber and propagates outward. The -DEHM model ap-

proximates spatial evolution of damage as uniform within the failure path. The discrepancies

between the reference and proposed models near the peak strength are attributed to this

approximation.

4.1.2 Effect of unit cell size and microcrack density

The role of using unit cells with different sizes on the overall macroscopic response is inves-

tigated using the unnotched specimen configuration under mode I loading shown in Fig. 9a.

Three unit cells (named UC1, UC2 and UC3) shown in Fig. 13a are considered. UC1 is the

single fiber square unit cell employed in the verification studies above, whereas UC2 and UC3

are generated by tiling UC1 twice and four times along all directions, respectively. All unit

cells consider a single transverse matrix failure path. While the geometric attributes of all

three unit cells are identical, the microcrack densities they represent are different. Simulations

are performed using h = 1 mm over the same macroscale domain (Fig. 9a). ROMs for the

unit cells were not regularized to ensure that the crack spacing is not adjusted based on the

size scale ratio. The stress-strain curves for the three unit cells are compared in Fig. 13b.

The pre-peak response as well as the peak strength predicted by the three configurations are
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Figure 13: (a) Unit cells with different sizes and microcrack densities, and (b) the corresponding macroscale
stress-strain curves.

identical since the behavior is controlled by the geometric attributes of the unit cells in this

regime. In the softening regime, the stress-strain response becomes progressively more brittle

with increasing unit cell size. This is because, the smaller microstructure with larger crack

density dissipates more energy compared with larger microstructures with wider microcrack

spacing via progressive loss of cohesion along the microcracks.

4.1.3 Effect of unit cell morphology

Next, we investigate the failure behavior of the composite as a function of the choice

of the unit cell and the failure path morphology. The investigations compare the failure

behavior in the square unit cell (Fig. 7) to a unit cell with hexagonal fiber arrangement

with identical fiber volume fraction (Fig. 14). The use of hexagonal unit cell introduces two

complications compared to the square unit cell. Under uni-axial loading, the square unit cell

permits the selection of a planar failure path orthogonal to the loading axis (with the smallest

possible surface area). In contrast, the failure path in the hexagonal unit cell is necessarily

tortuous due to the fiber arrangement. Additionally, hexagonal configuration of the fibers

introduces anisotropy evidenced by the higher tortuosity of fracture paths along directions

perpendicular to the fibers. The current study focused on characterization of fracture paths

along x−z and y−z planes within the matrix constituents of the hexagonal unit cell. In order

to understand the role of discretization on the selection of the failure path, five separate paths

with near identical surface areas are chosen as illustrated in Fig. 14. The relative surface areas,

(normalized by the area of an extended surface of the square unit cell) of the failure paths in

the square and hexagonal unit cells are approximately 1 for the square unit cell and 1.5 for the
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hexagonal unit cell, respectively. The macroscale discretization consists of a single hexahedron

element subjected to uniaxial loading along the transverse direction with displacement control.

Figure 15 shows the stress-strain plots produced by different failure path morphologies and

unit cells. The stress-strain behavior of the failure paths within the x−z plane of the hexagonal

unit cell (Hex FP1, Hex FP2, Hex FP3 and Hex FP4) are nearly identical to each other. This

indicates stable response, where perturbations in the choice of fracture path morphology do

not result in significant changes in the stress-strain behavior. In addition, failure path Hex

FP1 - Hex FP4 result in substantially higher strength (92 MPa) and dissipated energy (6.16

MPa-mm) than square unit cell (85 MPa and 4.2 MPa-mm) and the orthogonal failure path

Hex FP5 (79.2 MPa and 3.762 MPa-mm) in the hexagonal unit cell. This is primarily due to

larger cross sectional areas (by approximately 50%) of the Hex FP1 - Hex FP4 paths which are

highly tortuous to get across the center fiber in the hexagonal unit cell. Additionally, because

of the failure path tortuosity, the fracture path turns away from pure Mode I configuration,

potentially resulting in higher resistance to crack formation particularly when the constituent

materials exhibit high Mode II fracture energy.

(a)

 

Hex FP5

(c)

x

y

z

Hex FP1

Hex FP2

(b)
Hex FP4

Hex FP3

Figure 14: Failure paths in hexagonal unit cells. (a) “Hex FP1”, “Hex FP2” along x− z plane (b) “Hex
FP3”, “Hex FP4” along x− z plane (c) “Hex FP5” along y − z plane.
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4.2 Open-hole laminate analysis

The capabilities of the D-EHM approach are further assessed using two open-hole laminated

composite configurations. Figure 16a shows the geometry, loading and boundary conditions

of a 90◦ (i.e., the fibers are oriented along the z-direction) single-ply lamina specimen. The

reduced order model shown in Fig. 7 that includes matrix cracking and fiber fracture paths

is employed in this section. The overall dimensions of the specimen are 38mm, 80mm and

0.125mm in width, length and thickness, respectively. The radius of the hole is 3.175mm.

Symmetry boundary conditions are applied at the three sides and 1/8 of the specimen is

modeled. The domain is subjected to displacement-controlled uniaxial tension loading. The

model parameters and the corresponding fracture properties for the fiber and matrix materials

are shown in Table 2. The resulting mode I cohesive strength and energies for fiber fracture

are 3.97 GPa and 12.57 MPa-mm, and for transverse matrix cracking are 84.75 MPa and 0.27

MPa-mm. The values for the strength of the fiber, and the strength and fracture energy of the

matrix are generally consistent with generic unidirectionally carbon fiber reinforced thermoset

composites. While the fracture energy for the fiber is not easy to obtain experimentally and

generally considered purely brittle, new experimental studies point to quasi-brittle behavior

for fiber as well (see Ref. [54]). Under the applied loading and geometry conditions, fracture in

the specimen is expected to initiate near the hole in the form of matrix cracking and propagate

as mode I dominated fracture. In order to ensure that the mesh alignment does not impede

crack propagation, the domain of the specimen around the notch is discretized using structured

meshes aligned with the fiber direction. The sizes of h=0.5mm, 0.25mm, 0.125mm, 0.0625mm,
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and 0.03125mm are used in the structured portion of the mesh (see Fig. 16b-f). For all the

meshes, there is single element discretization per ply in the thickness direction.

Table 2: Fracture process parameters used in the open-hole simulations

Matrix Failure

GIc GIIc tult α1 α2 KI KII

[MPa mm] [MPa mm] [MPa] [MPa−1] [rad] [MPa] [MPa]

0.27 0.98 84.75 7.5× 10−3 1.57 105 2.8× 108

Fiber Failure

GIc GIIc tult α1 α2 KI KII

[MPa mm] [MPa mm] [MPa] [MPa−1] [rad] [MPa] [MPa]

12.57 12.57 3967.82 1.6× 10−4 1.57 1010 1010

(b) (f)(c) (d) (e)(a)

x

z

Figure 16: (a) Geometry, loading and boundary conditions for open-hole configuration. Mesh discretiza-
tions of (b) h=0.5 mm, (c) h=0.25 mm, (d) h=0.0625 mm, (e) h=0.03125 mm.

Figure 17 compares the transverse matrix damage contours and crack propagation paths

predicted using three different discretizations (h=0.25mm, 0.125mm, 0.0625mm) at the exact

same stage of the loading process. The other two discretizations show the same pattern of

response. In the figure, the crack is displayed by removing the elements which have reached

complete damage state (ω(m) = 1) during the post processing stage. Element erosion is

not employed in the simulations. The damage contours show that damage nucleates at the

brim of the hole, followed by the crack initiation and extension along the fiber direction.

The simulation results show that a damage process zone forms near the notch followed by
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rapid propagation of the transverse matrix crack. Both the process zone as well as the crack

propagation are independent of the element size employed in the discretization. Figure 18a

shows the force-displacement curves generated by various mesh densities. The formation of

the damage process zone around the notch occurs during the hardening stage. Near the onset

of crack nucleation (when damage in the transverse matrix crack path reaches unity in the

first element), the force-displacement curve reaches peak. The crack propagation occurs as the

force-displacement curve undergoes vertical drop. Despite the brittle nature of the structural

cracking, the crack propagation phase is well-resolved using the proposed approach. This is

evidenced by the fine resolution of the force drop in all simulations. The structural stiffness and

strength is consistently predicted using the proposed approach with different mesh resolution

(see inset in Fig. 18a). The mesh size insensitivity is further evidenced in Fig. 18b that shows

the failure strength as a function of element size. The mean predicted value is 45 MPa, the

standard deviation of 0.5 MPa.
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Figure 17: Transverse matrix damage (ω(m)) contours and crack propagation in 90o open-hole specimens
with three element sizes of (a) h=0.25 mm, (b) h=0.125mm, (c) h=0.0625mm.

Next, we demonstrate the capabilities of the proposed approach in a laminate configuration

that results in more complex failure patterns. We study a [0◦/90◦]S laminate that includes four

plies along the thickness direction. Only two of the plies were modeled exploiting symmetry in

the thickness direction. The remaining geometrical, loading and mesh configurations are set

identical to those of the 90◦ lamina example described above. The damage contours within

the zero and ninety plies predicted by three mesh sizes (i.e. h=0.25mm, 0.125mm, 0.0625mm)

at the exact same stage of the loading process are shown in Fig. 19. In the 0◦ ply, both fiber
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Figure 18: (a) Force-displacement curves of the 90o open-hole specimens, (b) Peak (ultimate) strength as
a function of element size.

and matrix damage are observed, which nucleate at the notch. Fiber crack propagation is

the critical mode and determines the strength of the structure. Before the nucleation of fiber

fracture, the matrix damage forms a process zone near the notch and transverse matrix crack

propagates along the vertical direction parallel to loading (i.e., splitting). The length of the

split is approximately twice the radius of the hole. The lines(identified as red on the electronic

version of the manuscript) in the figures are included to indicate the orientation of the matrix

cracks and not a part of the simulations. The fiber crack then initiates and quickly propagates

along the lateral direction. In the 90◦ layer, no fiber damage is observed. Fig. 19c shows the

contours of matrix damage, which extends around the axial splits formed by the matrix damage

in the 0◦ ply. The matrix damage in both plies form and propagate at approximately the same

stages of loading. The pattern of damage contours described above matches well with those

experimentally observed in specimens with similar laminate configurations (See e.g. Ref. [55]).

No significant delamination occurs in [0◦/90◦] cross-ply configurations. It is important to note

that there are no significant differences between the failure patterns predicted by different

discretizations, pointing to the mesh size insensitivity of the proposed approach, even in more

complex damage propagation cases.

Figure 20 displays the force-displacement curves predicted by the five discretizations, as well

as the variation of the peak strength of the laminate as a function of element size. Similar to

the 0◦ lamina case, the D-EHM approach captures the crack propagation stage in the cross ply

laminate. There is a very good agreement in strength predictions of different discretizations.

The mean strength is 805 MPa with a standard deviation of 9 MPa.
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Figure 19: Damage contours and crack propagation for (a) fiber fracture in 0◦ ply, (b) matrix cracking in
0◦ ply, (c) matrix cracking in 90o ply, in [0◦/90◦]S open-hole specimens with three element sizes of h=0.25
mm, 0.125mm, and 0.0625mm.
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Figure 20: (a) Force-displacement curves of [0◦/90◦]S lamina, (b) Peak (ultimate) strength as a function
of element size.

5 Conclusions

This manuscript presented a new computational homogenization method to study the be-

havior of composite materials undergoing failure. The proposed approach offers a reduced

order representation of the fracture process at the scale of the material microstructure, which

allows orders of magnitude computational efficiency compared with the existing CH formula-

tions. The proposed formulation achieves mesh size objectivity by employing the concept of

macroscale element size-dependent microstructure volume. The mesh size objective formula-

tion is achieved in an “effective” manner through analytical formulae that scales the reduced

order model coefficients as a function of the macroscale element size. The capabilities of the

proposed multiscale approach has been demonstrated in the context of 3-D laminated compos-

ite specimen configurations subjected to tensile loading. Numerical studies point to mesh size

independence, as well as accurate treatment of simultaneous presence and growth of multiple

mechanisms of failure including matrix damage and fiber fracture.

The proposed approach will be extended and generalized in a number of respects. The role

of microstructural features, microstructure morphology and failure path discretization on the

overall failure prediction of composite specimens will be further investigated. Additional failure

mechanisms (e.g., compression, fatigue) will be incorporated to extend the applicability of the

proposed approach to a broader array of failure problems. Furthermore, despite alleviating

mesh size sensitivity, the proposed approach does not address the important issue of mesh bias

– the propensity of macroscale cracks to follow mesh lines. The present formulation will be

extended to alleviate the mesh bias issue.
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Appendix

In this appendix, we derive the general equations for the scaling of the coefficient tensors.

In the case of a single failure path subjected to mode I loading (the same case considered

in Section 2.3), the only nonzero component of the separation coefficients is the normal one

δ = {δN , 0, 0}T . The corresponding homogenized strain tensor is expressed as:

ε̄ = ε̂Nn⊗ n + ε̂S1s1 ⊗ s1 + ε̂S2s2 ⊗ s2 (A1)

where n, s1 and s2 are basis vectors of local coordinates along with the failure path. The

tensor components are all expressed in the local coordinates. Note that Section 2.3 ignored

the presence of the latter two terms.

With <ξ = <(Θξ, Sξ; C,Dξ,Zξ) defined by microstructure with size scale ratio ξ, the weak

equilibrium equation (Eq. 17) and the macroscopic constitutive relationship (Eq. 31) are:

[(1− ω) K + Dξ] · δ −C : ε̄ = 0 (A2)

σ̄ = L̄ : ε̄+ Zξ · δ (A3)

Substituting the form of the mode I separation coefficient vector and the macro strain state

yields (in the indicial notation):

[(1− ω)Ki1 + (Dξ)i1] δN − (Ci11ε̂N + Ci22ε̂S1 + Ci33ε̂S2) = 0 (A4)

σ̂ij = L̄ij11ε̂N + L̄ij22ε̂S1 + L̄ij33ε̂S1 + (Zξ)ij1δN (A5)

Since K21 = 0, K31 = 0 and setting i = 2, 3 in Eq. A4, ε̂S1 and ε̂S2 are expressed in terms

of ε̂N and δN :

ε̂S1 = ν1ε̂N + µ1(ξ)δN (A6)

ε̂S2 = ν2ε̂N + µ2(ξ)δN (A7)

where ν1, ν2, µ1(ξ) and µ2(ξ) are:

ν1 = −C211C333 − C311C233

C222C333 − C322C233
(A8)

ν2 = −C211C322 − C311C222

C233C322 − C333C222
(A9)

µ1(ξ) =
(Dξ)21C333 − (Dξ)31C233

C222C333 − C322C233
(A10)
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µ2(ξ) =
(Dξ)21C322 − (Dξ)31C222

C233C322 − C333C222
(A11)

Substituting Eqs. A6 - A11 into Eqs. A4 and A5 yield:

[(1− ω)K11 +Dξn] δN − Cnε̂N = 0 (A12)

σ̂11 = Enε̂N + ZξnδN (A13)

σ̂22 = Es1 ε̂N + Zξs1δN (A14)

σ̂33 = Es2 ε̂N + Zξs2δN (A15)

Each coefficient can be written as:

Dξn = (Dξ)11 − C122µ1(ξ)− C133µ2(ξ) (A16)

Cn = −C111 − C122ν1 − C133ν2 (A17)

En = L̄1111 − L̄1122ν1 − L̄1133ν2 (A18)

Es1 = L̄2211 − L̄2222ν1 − L̄2233ν2 (A19)

Es2 = L̄3311 − L̄3322ν1 − L̄3333ν2 (A20)

Zξn = (Zξ)111 − L̄1122µ1(ξ)− L̄1133µ2(ξ) (A21)

Zξs1 = (Zξ)221 − L̄2222µ1(ξ)− L̄2233µ2(ξ) (A22)

Zξs2 = (Zξ)331 − L̄3322µ1(ξ)− L̄3333µ2(ξ) (A23)

Taking the derivative of Eq. A13 and using Eq. A12, the softening slope of the normal

stress-strain relationship Esξ = ∂σ̂11/∂ε̂N is obtained as:

Esξ = En +
ZξnCn

An +Dξn
(A24)

where An = ∂tN/∂δN , representing the approximately linear softening of traction-separation

relations denoted as tN = (1−ω)K11δN . Setting ξ = 1 and denoting the corresponding values

of Dξn, Zξn and Esξ as Dn, Zn and Es, respectively:

Es = En +
ZnCn

An +Dn
(A25)

For the purpose of mesh size objectivity as explained in the main text above and as shown

in Figure 4, the relationship between Esξ and Es becomes:

Es
h(l − h)

l
=

EnE
s
ξ

En/(l − h) + Esξ/h
(A26)
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and by substituting the scaling ratio ξ = l/h, we obtain:

Esξ =
EnE

s

ξEn + (1− ξ)Es
(A27)

Considering the forms Dξn = ηNDn and Zξn = ηNZn for the adjustment of the coefficient

tensors in mode I, the scaling parameter ηN can be obtained by substituting Eqs. A24, A25

into A27:

ηN =
ξAn

An + (1− ξ)(DnEn + ZnCn)E−1
n

(A28)

The above expression is different from the one provided in Section 2.3 in that ν1, ν2, µ1(ξ)

and µ2(ξ) are introduced to account for the strain triaxiality. In the examples provided in this

manuscript, the differences were found to be small.

Next, we extend the derivation of the residual stiffness correction along the same lines. In

this case, we set Dξn = ηNDn and Zξn = ηNη
r
NZn, where η̃N and ηrN respectively stand for the

scaling parameters for crack localization and residual stiffness in the normal direction. The

softening slope of the normal stress-strain relationship then becomes:

Esξ = En +
η̃Nη

r
NZnCn

An + ηNDn
(A29)

At the onset of complete loss of cohesion (i.e., An = 0), the scaled normal residual stiffness

Êrn is expressed as:

Êrn(ηr) = En + ηrN
ZnCn
Dn

(A30)

Let Ern denote the value of Êrn when ηr = 1. If we set the correction factor krN for normal

residual stiffness: krN = Êrn/E
r
n, ηrN is expressed as:

ηrN = −(1− krN )
DnEn
ZnCn

+ krN (A31)

Similarly, setting ξ = 1 enables the normal softening slope to become:

Es = En +
ηrNZnCn
An +Dn

(A32)

Substituting Eqs. A31, A29, A32 into Eq. A27, η̃N is expressed as:

η̃N =
ξAn

A+ krN (1− ξ) (DnEn + ZnCn)E−1
n

(A33)

If krN is set to vanish, we observe that η̃N = ξ.

In addition to the mode I condition discussed above, the scaling relationships are derived

for mode II condition. In this case, the separation vector is first set to δ = {0, δS1 , 0}T . The
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corresponding homogenized strain tensor takes the form:

ε̄ =


0 γ̂ns1 γ̂ns2

γns1 0 γ̂s1s2

γ̂ns2 γ̂s1s2 0

 (A34)

The weak equilibrium equation and macroscopic constitutive relationship become:

[(1− ω)K22 + (Dξ)22] δS1 − C212γ̂ns1 = 0 (A35)

σ̂12 = L̄1212γ̂ns1 + (Zξ)122δS1 (A36)

It is important to note that C213, C223, L̄1213 and L̄1223 are neglected due to the observation

that C213 � C212, C223 � C212, L̄1213 � L̄1212, L̄1223 � L̄1212. Considering the form:

(Dξ)22 = ηS1D22 and (Zξ)122 = ηS1Z122, the softening shear modulus Gsξ = ∂σ̂12/∂γ̂ns1 is

computed by differentiating Eq. A36 and using Eq. A35:

Gsξ = L̄1212 +
ηS1Z122C212

As1 + ηS1D22
(A37)

where, As1 stands for the softening slope of traction-separation curve in shear direction. Sim-

ilarly, ηS1 = 1 is ensured when ξ = 1. the softening shear modulus therefore becomes:

Gs = L̄1212 +
Z122C212

As1 + ηS1D22
(A38)

An approximate simple shear case is considered corresponding to mode II condition as

shown in Figure 21. The relationship between Gsξ and Gs set to achieve mesh size objectivity

is given as:

Gs
h(l − h)

l
=

L̄1212G
s
ξ

L̄1212/(l − h) +Gsξ/h
(A39)

By substituting Eqs. A37 and A38 to A39, scaling parameter ηS1 for mode II can be written

as:

ηS1 =
ξAs1

As1 + (1− ξ)(D22L̄1212 + Z122C212)L̄−1
1212

(A40)

The residual stiffness correction in mode II follows the same scheme as discussed above for

mode I. The scaling parameters η̃S1 and ηrS1
corresponding to damage localization and residual

stiffness correction are:

η̃S1 =
ξAs1

As1 + krs1 (1− ξ) (D22L̄1212 + Z122C212)L̄−1
1212

(A41)
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(a) (b)

=

Figure 21: Scaling illustration under approximate simple shear load (a) domain without damage localiza-
tion represented by repetition of reference microstructure (b) domain with damage localization

ηrS1
= −(1− krS1

)
D22L̄1212

Z122C212
+ krS1

(A42)

In the orthogonal direction that excites mode II, the separation coefficient vector is set to

δ = {0, 0, δS2}T . The form of scaling relationships are exactly the same as above, only the

components of the coefficient tensors are changed in the expressions of scaling parameters:

ηS2 =
ξAs2

As2 + (1− ξ)(D33L̄1313 + Z133C313)L̄−1
1313

(A43)

Extending to residual stiffness correction, scaling parameters η̃S1 and ηrS1
corresponding to

damage localization and residual stiffness correction are given as:

η̃S2 =
ξAs2

As2 + krs2 (1− ξ) (D33L̄1313 + Z133C313)L̄−1
1313

(A44)

ηrS2
= −(1− krS2

)
D33L̄1313

Z133C313
+ krS2

(A45)

Considering the case that the correction factors krS1
and krS2

vanish, we obtain the usual

classical scaling relationship: η̃S1 = η̃S2 = ξ.
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