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Summary

This manuscript presents a novel multiscale modeling approach to simulate the evo-
lution of the Backward Erosion Piping (BEP) process in Flood Protection Systems
(FPSs). Amultiphase description of the BEP phenomenon is proposed for the numer-
ical solution at the local scale and validated by means of full-scale experimental
results available in literature. Results of the local scale simulations are used as the
training set for a multilayer Machine Learning (ML) model to bridge the informa-
tion between the local and system scales. Accuracy of the trained ML algorithms is
demonstrated by comparing results obtained from detailed physics-based numerical
models. The novelty of the proposed methodology lies in its capability of real-time
predictions of the overall response at the system scale. A case study is presented
where a portion of the Nashville Metro Levee System is analyzed over the span of
a year, to assess the likelihood of BEP in the infrastructure. The capability of the
model to accept water height data obtained from field measurements is exploited in
the numerical simulations.
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1 INTRODUCTION

Backward erosion piping is one of the main driving factors
for embankments and dam failures (Foster, Fell, & Spanna-
gle, 2000b), and it is considered to be the cause of approxi-
mately one third of the piping failures occurred in the last 100
years (K. S. Richards & Reddy, 2007). For this reason, accu-
rate prediction of the evolution of erosion process is critical
to the maintenance and stability analysis of FPSs, particularly
in view of the catastrophic consequences flooding events can
have on impacted communities.
BEP refers to the progressive erosion of the fine fraction

of soil from the foundation of a FPS. The process starts at
the downstream side of the FPS, often caused by localized
damage that exposes the permeable soils, creating high lev-
els of local hydraulic gradient. This initial damage propagates

’backwards’, towards the upstream side of the water-retaining
structure, eventually leading to the formation of a full pipe
(see Fig. 1 ) that undermines the stability of the whole sys-
tem. BEP is a complex phenomenon, encompassing concepts
of sediment transport, undergroundwater flow, hydrodynamics
and soil mechanics. In view of its catastrophic consequences,
different approaches have been proposed to assess the likeli-
hood of BEP in FPS. The classical design approaches include
the Bligh’s method (Bligh, 1910; Lane, 1934), Terzaghi’s
method (Terzaghi, Peck, & Mesri, 1996) and the blanket the-
ory (USACE, 1956). Sellmeijer’s method (J. B. Sellmeijer,
1988) offers a simplified analytical solution to distinguish
between critical and non-critical conditions when a local dam-
age is present at the downstream side of the FPS (usually
referred to as "sand boils"). Schmertmann (2000) proposed a
semi-empirical approach to define safety factors against BEP,
by defining different correction factors based on theoretical
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considerations accounting for the specific features of the struc-
ture (e.g. granulometry, slope inclination, blanket thickness).
Foster, Fell, & Spannagle (2000a) proposed an empirical pro-
cedure to determine the likelihood of erosion to progress in
the FPS by collecting data from a total of 1462 embank-
ments. In view of the complexity of the phenomenon, several
experimental works have been carried out to quantify the
dependence of BEP on the relevant, measurable soil, geome-
try and load parameters. Among others, Bendahmane, Marot,
& Alexis (2008) designed an experimental setup compris-
ing three triaxial cells coupled with air-water cells, in order
to investigate the erodibility of soils for different levels on
confinement. V.M. vanBeek, Knoeff,&Sellmeijer (2011) per-
formed experiments at different scales (i.e. small, medium and
large) and compared their observations with results from Sell-
meijer’s model. H. Sellmeijer, de la Cruz, van Beek, & Knoeff
(2011) analyzed the results obtained from different laboratory
tests to perform a parametric investigation of their theoretical
model. K. Richards & Reddy (2012) designed a triaxial test
setup to investigate the effect of confining stress on the initi-
ation of BEP in cohesionless soils. Fleshman & Rice (2014)
tested different vertical flow conditions in order to measure
the hydraulic response of the soil during erosion processes. Ke
& Takahashi (2014) measured the mechanical and hydraulic
characteristics of soils at the onset and during the progres-
sion of internal erosion. Sharif, Elkholy, Hanif Chaudhry,
& Imran (2015) tested different mixtures of sands, silts and
clays in flume experiments to investigate the effect of the
compaction level on erosion resistance. The above-mentioned
studies aimed at defining empirical rules to assess the like-
lihood of BEP progression in different types of structures,
providing valuable information on the dependence of the BEP
phenomenon on soil parameters and geometrical characteris-
tics of the site (e.g. the shape and size of the exit condition,
geometrical arrangement of the soil layers, presence of filter
cutoffs etc.).
The capability of predicting the evolution of BEP in FPSs is

highly desirable due to the transient nature of the phenomenon.
While the experiments clarify the relevance of various quan-
tities with respect to the evolution of the erosion process,
in-situ conditions are often very different from the laboratory
environment because of the time and spatial variability of the
driving factors (hydraulic loads, soil properties, seasonality
of the water table, presence of localized defects and dam-
age). To this end, numerical predictions offer a valuable tool
to assess the likelihood of BEP progression, helping design-
ers and decision makers quantify the health of the systems
and plan maintenance accordingly. Three different classes of
numerical approaches have been proposed: 1) models in which
the erosion progression is described by amplifying the soil
conductivity (e.g. Fascetti & Oskay (2019); Robbins (2016);

FIGURE 1 Schematic description of the backward erosion
piping phenomenon.

Vandenboer, van Beek, & Bezuijen (2014)); 2) discrete ele-
ment method (DEM) coupled with water flow description
(e.g. El Shamy & Aydin (2008); Y. Wang & Ni (2013));
and 3) multiphase modeling in which the eroded particle den-
sity is described by appropriate constitutive relationships and
coupled to the flow description (e.g. Fujisawa, Murakami, &
Nishimura (2010); Luo (2013); D.-y. Wang, Fu, Jie, Dong,
& Hu (2014); Zhang et al. (2013)). In this work, a multi-
phase description is used to simulate BEP progression, where
a nonlinear transport model is coupled with a description of
the eroded mass by means of a concentration-dependent con-
stitutive law. The porosity evolution is then used to express the
change in permeability due to the erosion process.
In this context, the present manuscript proposes a novel

multiscale framework for the simulation of BEP in earthen
embankments. First, a multiphase local scale model for the
simulation of BEP is proposed, based on models formulated
in literature for different types of erosion problems. The infor-
mation obtained from a set of such numerical simulations are
used as a dataset to train a multilayerMachine Learningmodel,
which is used to track the response evolution at the system
scale (see Fig. 2 ). The proposed methodology is also inher-
ently capable of accepting data obtained from field testing.
Accuracy of the system scale predictions is demonstrated by
comparing results obtained from the local model. The influ-
ence of model parameters is investigated by using the ML
predictions and results are reported in a compact and efficient
graphical fashion using response tables. The capabilities of the
proposedmultiscale framework in simulating BEP progression
in FPS at the system scale is demonstrated by a case study
on a portion of the Nashville Metro Levee System, in which
available water height recordings were used as input. To the
best of the authors’ knowledge, there has been no attempt yet
in literature to model the flood protection infrastructure at the
system scale (∼ 105 m). Existing approaches typically focus
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System Scale (~105 m)

Local scale (~10m)

FIGURE 2 Multiscale approach for the simulation of Flood
Protection System infrastructure.

on simulating response at the local scale, investigating one
representative cross-section of the infrastructure.
The primary novel contributions of the present manuscript

are: a) the definition of a flux-dependent constitutive relation
embedded in amultiphase description of BEP at the local scale,
b) a multilayer ML model composed of a combination of clas-
sification and regression tools for the solution of the system
scale problem with substantial reductions in computational
costs (several orders of magnitude), c) a sensitivity analysis of
the response of the system with respect to the model parame-
ters, d) a case study on a portion of the Nashville Metro Levee
System infrastructure which shows the potential of the pro-
posed approach in the definition of the likelihood of BEP to
happen in FPSs of massive size using data obtained from field
measurements.

2 PHYSICS-BASED, "LOCAL" SCALE
MODELING OF BEP

Modeling of the BEP process in the embankment is per-
formed using a multiphase approach, in which the nonlinear
diffusion equation governing the groundwater flow is cou-
pled with the mass-balance of the fluidized particles by means
of a concentration-dependent constitutive law. This section
presents the system of governing equations and the solution
strategy.
The groundwater flow is governed by a nonlinear diffusion

equation (Hagerty & Curini, 2004; Robbins, 2016; Vanden-
boer et al., 2014):

)ℎ(x, t)
)t

= ∇⋅(D(ℎ(x, t))∇ℎ(x, t)) x ∈ Ω , t ∈ (0, T ) (1)

where Ω is a given domain of saturated soil, ℎ represents the
hydraulic head field, T is the total time andD is the diffusivity
coefficient evaluated as the ratio between the hydraulic con-
ductivity and the specific storage of the soil. The nonlinearity

comes from the dependence of D on the response field ℎ. The
domain is subject to the following boundary conditions:

ℎ = ℎb(t) on Γb ⊂ )Ω

q ≡ −D)ℎ
)n

= qb on Γq ⊂ )Ω
(2)

with Γb ∩ Γq = ∅ and Γb ∪ Γq = )Ω. q is the outward
flux orthogonal to the domain boundary with normal n, qb the
prescribed boundary flux and ℎb is the time-dependent pre-
scribed hydraulic head at the boundary. The description of the
evolution of erosion is enriched by the mass-balance equation
for the fluidized particles (Stavropoulou, Papanastasiou, &
Vardoulakis, 1998):

)(c(x, t)�(x, t))
)t

+
)(c(x, t)q(x, t))

)x
=
)�(x, t)
)t

(3)
where c represents the fluidized particle concentration defined
as the ratio of the particle volume over the pore space, and �
is the soil porosity. The right hand side of Eq. 3 represents the
mass generation term, and must be defined by means of appro-
priate constitutive relations. Based on previous findings for
different erosion problems by other authors (Sakthivadivel &
Irmay, 1966; Stavropoulou et al., 1998; Vardoulakis, Papanas-
tasiou, & Stavropoulou, 2001; Vardoulakis, Stavropoulou, &
Papanastasiou, 1996), we propose the following relation for the
evolution of BEP in earthen embankments:

ṁ
�s
= )�(x,t)

)t
=

⎧

⎪

⎨

⎪

⎩

0 if |q| ≤ qcrit

�c
√

1 − �2

�2max
(|q| − qcrit) if |q| > qcrit

(4)
where ṁ is the mass generation term, �s the particles density,
�max the maximum allowable value of porosity (related to the
fine fraction of the soil), qcrit the critical value of flux, and �
is a model parameter related to the spatial frequency of ero-
sion starter points in the solid skeleton of the soil (Vardoulakis
et al., 1996). The evaluation of qcrit can be performed either
experimentally (Bendahmane et al., 2008; Van Beek, 2015) or
numerically (Fascetti & Oskay, 2019; Robbins, 2016). In this
work, the latter approach is used based on comparison with
experimental evidence available in literature.
The system of governing equations is completed by consid-

ering Darcy’s law:
q = −ki (5)

in which i is the hydraulic gradient and k is the conductivity
of the soil, related to the porosity using the Kozeny-Carman
equation:

k = ckz
�3

(1 − �)2
(6)

where ckz is the Kozeny-Carman constant for the given soil.
The diameter of the pipe is an important characteristic of

the BEP process, as it has an influence on the shear stress
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FIGURE 3 Graphical representation of the local scale model
parameters.

exerted by the fluid on the particles of the soil skeleton at the
pipe tip and the internal boundary. The pipe diameter grows
with the progression of the erosion mechanism due to the tur-
bulent nature of the flow at the pipe tip (Rotunno, Callari, &
Froiio, 2017). This can lead to increasedwater flow and erosion
rates. Hole erosion tests (HETs) are generally used to char-
acterize soil erodibility in the context of BEP (Fell & Wan,
2002). The interpretation of results is based on the Shields
erosion law �̇ = ce(< �ℎ − �c >). This equation describes
the eroded mass rate as a function of the erosion coefficient
ce, the fluid shear stress �ℎ and its critical value �c . To esti-
mate the critical shear stress, common practice is to deduce the
pipe evolution from the initial and final diameters, and subse-
quently the erosion rate is evaluated from the rate of growth
of the pipe diameter (Lominé, Scholtes, Sibille, & Poullain,
2013) as �ℎ = (dpi)∕(2lp). As the pipe widens, the shear stress
tends to increase, as described in the previous equation. This
aspect is indirectly considered in our model through the ero-
sion constitutive law reported in Equation 4. As the porosity
increases at a given point in the domain, in fact, the rate of
erosion obtained from Eq. 4b increases accordingly, scaling
linearly with porosity. The same behavior was also reported
in the works of Vardoulakis et al. (2001 1996) on which the
constitutive law we propose is based.
The domain of the problem is schematized as 1-dimensional

(the erosion path in Fig. 1 ). The previously described system
of equations is discretized in space using the midpoint finite
difference scheme, while discretization in time is performed
through forward finite differences leading to an explicit solu-
tion scheme. Accuracy of the local scale model was tested
numerically, by increasing the mesh density until the values
of the local hydraulic gradient converged to the exact solution,
for the case of highest applied global gradient in the defined
intervals (see Table 3 )). The same mesh density was used in
all the local scale simulations.

2.1 Initial Conditions
In the blanket theory, the US Army Corps of Engineers (2000)
defines 12 different cases and sub-cases to take into account all
possible geometrical and material arrangements that can occur
in river levees. These aspects are related to the 2-dimensional
distribution of the flowlines induced by the different conductiv-
ity in the top and bottom soil strata in a typical levee geometry.
The scope of the so-conducted seepage analysis is to evalu-
ate the local hydraulic gradient at the toe of the levee. This
value is used to perform a design check on the heave gradient
at that point. In this way, it is possible to consider the effects of
two-dimensional flow in the domain for the design of earthen
levees.
Rather than checking the value of the hydraulic gradient

at a single point, the methodology we propose considers a
1-D domain to quantify the evolution of the hydraulic head,
porosity and fluidized particle concentration fields. The geo-
metrical arrangement and the definition of the quantities used
to define the local domain are now reported in a revised ver-
sion of Figure 3, which shows all the parameters involved in
the simulations.
Even though the local scale model we propose uses a 1-

dimensional discretization to describe pipe progression, it is
possible to consider the effect of the 2-D groundwater flow
by adopting an initial distribution for the hydraulic head field
derived from a 2-D seepage analysis such as the blanket the-
ory. This allows, similarly to the provisions given in US Army
Corps of Engineers (2000), to use values of the hydraulic head
field compatible with the local geometry of the levee in the
simulations.
BEP is triggered by the presence of localized damage in the

impermeable soil layers on the downstream side of the struc-
ture (see Fig. 1 ). In the model, the dimension of such damage
is considered a known value and introduced as the initial con-
dition for the hydraulic head ℎ(x, t). The effect of the damage
is a local decrease of the hydraulic head in the initiation region,
as shown in Fig. 3 . This choice is consistent with experimen-
tal and numerical observations available in literature (De Wit,
Sellmeijer, & Penning, 1981). The head drop is considered
to happen instantaneously in the foundation soil, increasing
the local hydraulic gradient. The BEP simulation starts at the
moment when the head drop is imposed.

2.2 Solution Strategy
The steps involved in the solution of the problem are the
following:

1. Define domain, mesh size, boundary and initial condi-
tions;

2. Solve continuity equation for ℎ(x, t);
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FIGURE 4 Typical porosity (top) and particle concentration
(bottom) evolution obtained from the proposed model. x̄ and t̄
denote normalized position and time, respectively.

3. Calculate i from the so obtained hydraulic head field and
q from Darcy’s law (Eq. 5);

4. Evaluate the porosity evolution term )�(x,t)
)t

from the
constitutive law (Eq. 4);

5. Calculate concentration c(x, t) from the mass-balance
equation (Eq. 3);

6. Calculate new values of conductivity k using the
Kozeny-Carman equation;

7. Update diffusivity D(x, t);

8. Update time step;

9. Iterate steps 2-8 until total time is met.

Fig. 4 shows the typical evolution of the porosity and par-
ticle concentration in the domain, as a function of normalized
space and time. The length measure was normalized to the
total length of the pipe, while the time was normalized to
the total time to complete evolution of the piping process.
The erosion phenomenon evolves from the downstream to the

Layer 1

Layer 2Regression 
Stage

Regression 
Stage

QuantificationQuantification

Classifier Stage

FIGURE5 MultilayerMachine Learningmodeling approach.

upstream side of the domain as typically observed in the exper-
iments (Bendahmane et al., 2008; H. Sellmeijer et al., 2011;
V. M. van Beek et al., 2011).

3 DATA-BASED "SYSTEM" SCALE
MODELING OF BEP

Machine learning algorithms are receiving growing atten-
tion in different applications for engineering problems (Adeli,
2001; Bogdanor, Mahadevan, & Oskay, 2013; Bogdanor,
Oskay, & Clay, 2015; Lin, Nie, & Ma, 2017; Nabian &
Meidani, 2018; Rafiei & Adeli, 2018; Reich, 1997; Zhang
& Oskay, 2018). The growing capabilities and possibilities
to obtain big databases to use as training sets for ML mod-
els make it a convenient and effective tool for the solution of
problems that are in general too expensive, or when the time
required for the solution is not acceptable with respect to the
need they are trying to address. In this work, the information
from the physics-based local scale simulations is bridged to
the system scale (i.e., the FPS) using the multilayer prediction
strategy graphically described in Fig. 5 . The employed mul-
tilayer prediction strategy encompasses a set of classifier and
regression models that are trained by means of a database of
results of the local scale problem. The classifier model is used
to assess wether piping will occur or not, while the regression
models furnish quantitative information of the extent of piping
for all the cases for which BEP is predicted.

3.1 Classifier Learner
Classifier algorithms are employed when, given an input data
set x, it is necessary to assign each entry to one of a set of
discrete classes k. The goal is to divide the input hyperspace
into a set of decision regions by means of decision boundaries
or surfaces. In this study, Support VectorMachines (SVMs) are
employed to classify the possibilities of ”full piping”, ”partial
piping” or "no piping" in the FPS system at a specified time T .
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FIGURE 6 Two-class SVM and support vectors.

The three states refer to the occurrence of erosion mechanisms
in the whole domain, in a portion of it, or to a condition where
of no erosion, respectively.
SVM models are a class of kernel-based algorithms with

sparse solutions (Vapnik, 1998). Rather than discarding the
dataset after the training phase, SVM use the training set (or
a subset of it) in the prediction phase as well. Predictions are
made by means of a linear combination of a set of functions
defined at the data points. These functions are called kernels,
and for models comprising a fixed feature space mapping N,
they are defined symmetric:

k(x, x′) = N(x)TN(x′) (7)
The idea of using kernel functions was first presented by

(Aizerman, Braverman, & Rozonoer, 1964) and then applied
to ML classifiers by (Boser, Guyon, & Vapnik, 1992), which
originated the SVM models. The main advantage of SVM is
that the kernel-based algorithm has a sparse solution, meaning
that the prediction phase only relies on a subset of the training
dataset, allowing for both faster training and predictions.
SVMs separate the samples space through the concept of

margin, defined as the smallest distance between the decision
boundary and the closest data point. The decision boundary is
set to be the one that maximizes the margin. By doing so, the
location of the boundary can be determined by using a subset
of the data points, known as Support Vectors. SVMmodels are
a decision machine and therefore they do not provide posterior
probabilities.
Given that the margin can be calculated as the distance of

the border to the closest dataset point xn, the maximization of
the margin is equivalent to solving the optimization problem:

max
w,b

{

1
||w||

min
n
[tn(wTN(xn) + b)]

}

(8)

where w and b represent the model parameters, tn the target
vector for the input xn. The sign of the quantity tn(wTN(un)+b)
is positive for correctly classified items and negative otherwise.

For the point that is closest to the surface, one can rescale w
and b so that (Bishop, 2006):

tn
(

wTN(xn) + b
)

= 1 (9)

By doing so, it is guaranteed that all other points will satisfy:

tn
(

wTN(xn) + b
)

≥ 1 (10)
which is the canonical representation of the decision hyper-
plane. By introducing a set of Lagrange multipliers an ≥ 0
(one for each of the constraint given by Eq. 10), the Lagrangian
function is obtained:

L(w, b, a) = 1
2
||w||2 −

N
∑

n=1
an

{

tn(wTN(xn + b) − 1)
}

(11)

By setting )L∕)x and )L∕)b equal to zero, two relations are
obtained:

w =
N
∑

n=1
antnN(xn)

0 =
N
∑

n=1
antn

(12)

that can be used to eliminate w and b from Eq. 11, obtaining
the so called dual representation of the model:

L̃(a) =
N
∑

n=1
an −

1
2

N
∑

n=1

N
∑

m=1
anamtntmk(xn, xm) (13)

where the kernel function definition provided in Eq. 7 has been
used. The constraints of the dual problem are:

an ≥ 0, n = 1, ..., N
N
∑

n=1
antn = 0

(14)

In order to classify a new data point, the sign of the function:

y(x) = wTN(x) + b =
N
∑

n=1
antnk(x, xn) + b (15)

is evaluated. Equation 15 explains how the choice of sup-
port vectors is made. Every point for which an = 0 has no
role in the prediction phase, and can therefore be discarded.
Every other point with an > 0 is retained as a support vec-
tor. Figure 6 shows a graphical interpretation of the choice of
support vectors for a two-class SVM.

3.2 Regression Learner
Regression algorithms are used to predict the value of a
set of continuous target variables t given the value of a D-
dimensional vector x defining the input. The simplest example
of this procedure is the interpolation of available data to obtain
values of a defined output quantity inside or outside of the
original range in which the data was collected. In this study,
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FIGURE 7 Experimental setup used in the Ijkdijk full-scale experiments.

Gaussian Process (GP) models are used to predict the time to
failure or length of pipe progression in the FPS under the given
loading conditions in the cases of "partial" and "full" piping,
respectively.
GP approaches are used in several fields, such as geo-

statistics (kriging models), 3-d navigation (Kalman filters) or
financial science (autoregressive-moving-average models). A
GP is defined as a collection of random variables representing
the value of a function f (x) at the input locations x. The values
of y(x) evaluated at any arbitrary set of input points have a joint
Gaussian distribution (Rasmussen, 2004). Each observation y
is related to the function f (x) through a Gaussian model:

y(x) = f (x) + (0, �2n ) (16)
The process f (x) is therefore completely defined by the

mean m(x) and covariance k(x, x′) functions, defined as:

m(x) = E[f (x)],
k(x, x′) = E[(f (x) − m(x))(f (x′) − m(x′))]

(17)

The accuracy of the predictions depends on the chosen
covariance function. In this work, a squared exponential func-
tion is used:

k(x, x′) = �2f exp(−
1
2l2

|x − x′|2) + �2nI (18)

where l is a length-scale, �f is the signal variance and �n
the noise variance. The previous equation defines the covari-
ance between pairs of random variables. This particular choice
has the advantage of yielding values of the covariance close to
unity between variables with similar inputs, and decreases as
the distance in the input is increased.
In this framework, the joint distribution of the observed

target values and the function values at test location is:

[

y
f∗

]

∼
(

0,
[

K(X,X) + �2nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])

(19)

where X represents a training subset of the input points, X∗ a
subset of test points, and K∗ represents the n × n∗ covariance
matrix evaluated at every training-test pair. The conditional

probability p(f∗|y) indicates the likelihood of the prediction for
f∗ given the input data:

f∗|y ∼ (K∗K−1y, cov(f∗)) (20)
The accuracy of the predictions performed by means of the

previous set of equations depends on the covariance function.
The set of hyperparameters � that gives the maximum a pos-
teriori estimate is the one for which p(�|x, y) is maximized,
which is equivalent to maximizing the marginal likelihood:

logp(y|X) = − 1
2
yT (K + �2nI)

−1y − 1
2
log|K + �2nI|+

− n
2
log(2�)

(21)

The local and system scalemodels defined above are embed-
ded in a multiscale framework to obtain real-time predictions
of the response of the FPS. The multiscale strategy is based
on the use of Machine Learning models trained by means
of a database of results obtained from a large set of local,
physics-based models.

4 NUMERICAL RESULTS

This section will present the numerical results obtained from
the previously described models. In what follows, "local scale"
model refers to the physics-based model described in Section
2. The "system scale" model refers to the multilayer MLmodel
described in Section 3. The capabilities of the proposed mod-
eling approach are assessed using the following steps: 1) the
local scale model was validated by comparing results obtained
from physical experiments available in literature (Section 4.1),
2) the multilayer ML model was first constructed based on a
dataset generated by exercising the validated local model. The
MLmodel was validated by comparing its predictions with the
local model predictions within a wide range of parameter val-
ues. 3) Once the two models were validated, a real case study
is investigated by analyzing a large portion of the Nashville
Metro Levee System under three selected scenarios.
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TABLE1 Soil characteristics and parameters in IJkdijk exper-
iments

Type d70 d60∕d10 Porosity Conductivity
[-] [mm] [-] [-] [mm/s]
Fine 0.18 1.6 0.35-0.45 0.08

Coarse 0.26 1.8 0.34-0.45 0.12-0.14

0.8 0.9 1 1.1 1.2 1.3 1.4

Permeability [m/s] 10
-4
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FIGURE 8 Comparison between experimental and numerical
results for the full-scale IJkdijk experiments.

4.1 Local scale model validation
The local scale model was first validated by comparing numer-
ical results with the experimental results from tests carried out
at IJkdijk facilities (Koelewijn et al., 2014; V. van Beek, Bezui-
jen, & Sellmeijer, 2013; V. M. van Beek et al., 2011). The
schematic setup for the tests is illustrated in Fig. 7 and the
measured mechanical characteristics are reported in Table 1 .
In the field tests, four different full scale levees were tested.

In these tests, the applied hydraulic head on the wet side of
the levee was increased at the rate of 100 mm/hr until pip-
ing occurred. The tests were simulated using the numerical
approach described above to obtain the value for the critical
head. The strategy adopted for the simulation of the differ-
ent tests was the following: all the parameters that could be
directly obtained from the results reported in (V. M. van Beek
et al., 2011) were used in the simulations, while the other
parameters were obtained by fitting the first test setup (i.e.
the one that employed the soil with the lowest permeability).
The calibrated values were kept constant in all the subsequent
simulations. Consistently with the reported test setup, the ini-
tial hydraulic head distribution in the domain was imposed
so that the hydraulic head value for the downstream side of
the structure was equal to 0 (see fig. 7 ). This assumption
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FIGURE 9 Confusion matrix for the Quadratic Support Vec-
tor Machine model.
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FIGURE 10 Real values vs predictions scatter plot for the
"full piping" regression case.

is general and does not influence the results of the simula-
tions. Figure 8 shows the comparison of the experimental and
numerical results, exhibiting a good agreement and indicating
that the model adequately captures piping progression at the
local scale. All the parameters used in the validation procedure
are reported in Table 2 .

4.2 System scale model validation
Considering the calibrated local model as reference, we pro-
ceed with the construction of the system scale model, and
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TABLE 2 Model parameters used in the local model validation

Test no. L Lexit iglobal c0 k �0 �max � icrit
[mm] [mm] [-] [-] [mm/s] [-] [-] [mm−1] [-]

1 15000 10 - 0.009 0.08 0.408 0.8 0.08 0.34
2 15000 10 - 0.009 0.09 0.408 0.8 0.08 0.34
3 15000 20 - 0.009 0.12 0.395 0.8 0.08 0.34
4 15000 20 - 0.009 0.14 0.395 0.8 0.08 0.34

TABLE 3 Definition of the model parameters and observation intervals

Parameter Unit Symbol Minimum Maximum
Length [mm] L 10000 20000

Exit Condition [mm] Lexit 0 500
Hydraulic Gradient [-] iglobal 0.01 0.225
Initial Concentration [-] c0 0.001 0.01

Initial Porosity [-] �0 0.35 0.45
Soil Conductivity [mm/s] k 1e−3 2e−1

Maximum Porosity [-] �max 0.7 0.85
Lambda [mm−1] � 0.01 0.1

Critical Gradient [-] icrit 0.25 0.4

assessment of its accuracy characteristics compared with the
physics-based local model. The parameter subspace for the
ML model is defined based on continuous ranges for each
geometric and soil parameter summarized in Table 3 . All
model parameters represent a set of continuous variables for
which no prior knowledge is available. For this reason, Sim-
ple Random Sampling (SRS) is chosen as a suitable sampling
technique (Tillé, 2006). Based on this approach, random sam-
pling is performed inside the given intervals shown in Table 3
for each of the set of parameters that constitutes the input for
the local model. Every value in the defined intervals has the
same probability of being drawn, so that a uniform probability
distribution is used. It is important to note that, in order for the
classification model to correctly predict cases in which piping
does not occur, the parameters spacemust contain values of the
parameters for which the solution of the problem is trivial (as
in the case of absence of upstream flow or exit condition). For
this reason, low values of the global hydraulic gradient and exit
condition width must be included in the training set to improve
the accuracy of the classification model.
A total of 7400 simulations were used to train the multilayer

ML model. For each training simulation, a set of 9 randomly
drawn model parameters is used to construct a local model.
A class is assigned to each simulation based on the numerical
results, establishing whether erosion evolves completely ("full

piping" case), partially ("partial piping" case), or does not start
at all ("no piping"). For the cases of full and partial piping, the
output chosen as the response measures are the time to fail-
ure and the normalized pipe length (see Fig. 5 ). The former
is evaluated as the time at which the simulated erosion process
is fully developed (�upstream = �max), while the latter is sim-
ply calculated as the distance of the furthest completely eroded
point to the origin, divided by the total length of the domain
(see Fig. 7 ). The outcome of the 7400 simulations shows that
4881 local models resulted in no piping cases, 2078 in full pip-
ing cases and 441 in partial piping cases. Differences in the
numbers of the observed outcomes follow directly from the
SRS of the model parameters, showing how the case of par-
tial piping corresponds to a smaller portion of the parameters
hyperspace when compared to the full or no piping cases. The
observed imbalance in the dataset size for the different classes
is due to the fact that the outcome of the local scale simula-
tions is not known a-priori, so that the numerical results yield
a higher number of no piping simulations with respect to the
other two groups.
The first step in the proposed multiscale approach consists

of the use of a classifier learner. For a given set of parameters,
the trained model predicts the class of the current simula-
tion (meaning that the model can select if the current set of
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TABLE 4 Model parameters used in the validation of the
system scale model

iglobal c0 �0 �max � icrit
[-] [-] [-] [-] [mm−1] [-]

0.2043 0.009 0.35-0.45 0.81 0.08 0.34

parameters yields a full, partial or null piping process), allow-
ing for the prediction of the current state of the structure.
The Quadratic Support Vector Machine shows an accuracy
of 95.5% when considering a 5-fold cross-validation for the
obtained dataset, meaning it can confidently be used to clas-
sify the current state of the system based on a given set of
parameters. Figure 9 shows the confusion matrix for the
trained classifier model, which graphically describes the num-
ber of true positive samples for every class (on the matrix
diagonal), together with false positive and negative samples
(non-diagonal terms). Due to the difference in dataset sizes
for the three different groups, the model exhibits higher confi-
dence values for the "no piping" case and the lowest value for
the "partial piping" one.
In the second step of the multiscale procedure, a set regres-

sion ML models ware trained for the partial and full piping
classes. The predictors used in the training phase are the
parameters reported in Table 3 , while the observed responses
were the length of the observed pipe and the time to the com-
plete evolution of the erosion process. It is worth noticing that
for the case of full piping, the evaluation of the pipe length
Lpipe is trivial (i.e. Lpipe = L) and therefore it does not
require direct evaluation (as shown in Fig. 5 ). A 5-fold cross-
validation was used on these two dataset as well, and the GP
regression model exhibits R2 values of 97% and 94% for the
"full" and "partial" piping, respectively (see Fig. 10 ).
One interesting feature of the trained ML model is the capa-

bility of generating predictions of the influence of one or more
parameters on the response of the system. In order to assess the
accuracy of the proposed system scale model, obtained results
are compare with the local scale model. Both tests involved the
solution of 200 simulations in which all the parameters were
kept constant except for the initial porosity, which varied lin-
early inside the interval. The summary of themodel parameters
involved is given in Table 4 .
Fig. 11 shows the comparison between the two models.

The good agreement between the two curves indicates that
the ML model can be used to obtain information on the sys-
tem response. Both sets of simulations were run using an Intel
i7 desktop computer. The total run-time for the physics-based
local scale model was 58 minutes, while the run-time for the
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FIGURE 11 Influence of the initial porosity on the time to
failure: numerical model vs ML model predictions

ML system scale model was 3.2 seconds, with a speedup of
approximately three orders of magnitude.

4.3 Sensitivity Analysis
The fast prediction capability of the ML model was also lever-
aged to perform a parameter sensitivity analysis. In contrast
with traditional local sensitivity characterizations, which rely
on varying one parameter, while all others are kept constant,
we create response maps, where two parameters are simulta-
neously varied. All the possible combinations of two from the
nine parameters involved in the study were investigated. The
intervals chosen for the values of the parameters were the same
reported as in Table 3 . The remaining parameters not directly
investigated at each step were taken equal to the mean value of
the respective interval, for comparison purposes.
The subplots in Fig 12 were obtained by discretizing the

plane of two variables into a regular grid of 200 by 200 points.
The first step involved the use of the classifiermodel previously
trained, in order to discern between cases of "no piping", "par-
tial piping" or "full piping". This information allows for the
creation of three different zones in the parameters space. Sub-
sequently, for each point residing in the partial or full piping
domains, a prediction was made based on the trained regres-
sion models. For the case of "partial piping", the ML model
allows for the prediction of the extension of the pipe (reported
as normalized to the length of the domain), while in the case
of "full piping" it is possible to evaluate the time to failure
(expressed in hours). The time to failure and length of partial
piping are reported as contours in Figs 12 .
In this way, several tables are obtained, which provide useful

information on the response of the system based on the param-
eters values. The so-obtained tables provide a tool to assess the
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FIGURE 12 Sensitivity study performed by means of the proposed ML approach.
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FIGURE 13 Spatial distribution of the water level control
points for Cumberland River in the Nashville Metro area.

likelihood of piping, and the severity of the process evolution,
in a compact yet systematic way. It is worth noticing that per-
forming such sensitivity analysis was only possible because of
the fast predictions guaranteed by the proposed multilayer ML
approach, as the computational cost associated with the solu-
tion of the problem would be prohibitive for the physics-based
approach.
The sensitivity analysis shows how the value of the differ-

ent parameters affect the results of the simulations, detailing
interesting features of the numerical model while describing
the extent and severity of BEP in the infrastructure for different
cases. For instance, Fig. 12 c shows the interaction between
the critical gradient icrit (i.e., a measure of the soil resistance
to erosion) and the global gradient iglobal (i.e., a measure of the
hydraulic loads acting in the structure). The plot shows a lin-
ear relationship between the two parameters, with the expected
result that higher values of the hydraulic loads or lower values
of the critical gradient yield more critical states with respect
to the progression of BEP in the system. On the other hand,
other parameters show a clear non-linear trend, as in Fig. 12 h,
where the interaction between the model parameter � and the
initial concentration c0 was investigated.
Information obtained from the sensitivity analysis can there-

fore be used to the twofold objective of: 1) evaluating the effect
of different combinations of model parameters on the results
of the simulation, 2) convey a graphical interpretation of the
proposed model.

4.4 System Scale Predictions
The predictions obtained from the ML model are used in a
multiscale framework in order to evaluate the system level
response in an efficient fashion. By analyzing the entire levee
system, it is possible to capture localized failures as a function
of the geometrical and mechanical features of the system. The
capabilities of the proposedmultiscalemodel are demonstrated

by simulating the progression of BEP in a river levee system.
The chosen testbed is the Nasvhille Metro Levee System (see
Fig. 13 ). This infrastructure is of great importance for the
Nashville Metro area, which has already experienced a severe
flood event in 2010 (Moore, Neiman, Ralph, & Barthold,
2012). At each time step of the simulation the input parame-
ters are evaluated and the output response of the system scale
model is used to evaluate the state at every computational point
in the system. The evaluation of the total length of eroded
path at time step ns at an arbitrary position in the system is
performed as follows:

Lpipe(t = nsdt) =
ns
∑

i=1
vpipe(i) ⋅ dt (22)

where i is the counter for the time steps of amplitude dt and
vpipe represents the linearized speed of the process defined as:

vpipe(i) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if case = ’safe’
L∗

t∗
if case = ’partial’ &Lpipe < L∗

0 if case = ’partial’ &Lpipe ≥ L∗
L
t∗∗

if case = ’full’

(23)

where L∗ and t∗ are the length and time to failure obtained
from the "partial" piping regression case, L is the total length
of the erosion path and t∗∗ is the time to failure obtained from
the ’full piping’ regression model.

4.4.1 Construction of the computational
domain
The reconstruction of the geometry of the system is a task
associated with several levels of difficulty and uncertainties.
The planar geometry of the levee system at the structural
level (i.e. the levee centerline) can be reconstructed from
publicly available satellite information with satisfactory preci-
sion. This information itself is not sufficient to reconstruct the
3-dimensional geometry of the structure, but only its arrange-
ment in a horizontal plane. For this reason, data obtained from
satellite images is enriched with the information obtained from
a remote sensing campaign carried out by the authors on the
Nashville Metro Levee System. A portion of the FPS in exam
was scanned by means of both photogrammetric and LiDAR
techniques, using Unmanned Aerial Vehicles (UAVs) to per-
form fast and accurate reconstructions of the infrastructure.
Fig 14 shows the two 3-dimensional models obtained by
means of the two techniques, while Fig. 15 shows the average
reconstructed cross-section for the Nashville Metro Levee that
was used in this study. Each one of the so-obtained sections
represents a computational point in the domain of the FPS,
which was discretized over the length of the levee centerline.
The water level tables were obtained from the USGS

National Water Information System, which is a database
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FIGURE 14 Two 3-dimensional reconstructions of a portion of the Nashville Metro Levee system executed by means of
photogrammetry (left) and LiDAR-based SLAM algorithms (right).

FIGURE 15 Cross-section of the Nashville Metro Levee
system reconstructed by means of the UAV remote sensing
campaign.

composed of approximately 1.5 million sites in the United
States (Goodall, Horsburgh, Whiteaker, Maidment, &
Zaslavsky, 2008). The data obtained from the database is the
water level height at the six locations reported in Fig. 13 . The
values of the water height recorded at the six discrete points
reported in Fig. 13 were then interpolated in space in order
to obtain values at the computational nodes. An observation
period of 1 year was considered in the simulations (from Jan-
uary to December 2016). This time period was chosen so that
the effect of seasonality can be properly taken into account.
Obtaining information on the mechanical properties of the

soil is a challenging task for several reasons: 1) the levee
system was built in the early 1920’s so that original design
plans are not readily available, 2) different stakeholders are
responsible for themaintenance of the infrastructure, 3) several
natural hazards required partial reconstructions of the struc-
ture leading to changes inmaterials and sectional arrangements
over the length of the system. The information used in this
study was obtained from the available technical reports on
the Nashville Metro Levee System (Metropolitan Nashville-
Davidson County, 2015; Nashville Area Metropolitan Plan-
ning Organization, 2015; Nashville Metro Water Services,
2013).

4.4.2 Safety factors
The Factor of Safety (FoS) against BEP failure is defined as
follows:

FoS(x, t) = 1 −
Lpipe(x, t)
L(x)

(24)

The FoS, defined as a function of time and position along
the system domain, is equal to 0 when the pipe length is equal
to the levee length, and 1 when the pipe length equals zero.

4.4.3 Considered scenarios and full scale
results
The performed system scale simulations took into account the
portion of the Nashville levee shown in Fig. 13 , for a total
length of the structure of approximately 47 km. Three different
fictional scenarios were considered as the initial conditions for
the simulations. For all of them, the simulations were run for a
full year. This choice wasmade to take into account seasonality
on the evolution of BEP. The model input constitutes the nine
parameters defined in Table 3 at every computational point in
the levee. In the first scenario, spatially constant geometrical
and mechanical parameters of the levee were considered along
with the water data recordings. The values of the parameters
are reported in Table 5 . This choice is equivalent to imposing
a spatially constant initial damage on the downstream side of
the FPS for the considered length. Even though this scenario
is highly unlikely to happen in reality, it represents the first
benchmark to test the numerical procedure. As expected, the
evaluated FoS decreases in all the sections according to the
measured water levels (points at a lower altitude have a higher
value of the hydraulic load and therefore the pipe progression
runs faster). Eventually, after enough time all the monitored
sections of the levee undergo extensive piping, as shown in
Fig. 16 .
In the second scenario, spatial variability of the input param-

eters was considered. The size of the structure is big enough
that the mechanical and geometrical features of the FPS
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TABLE 5 Values of the parameters used in the system scale simulations

Parameter Unit Symbol Mean Value Distribution Parameters Variability
(All Scenarios) (Scenario 2) (Scenario 2) (Scenario 3)

Length [mm] L 16100 Normal � = 100 -
Exit Condition [mm] Lexit 400 Weibull a = 5, b = 0.5 500 (localized)

Hydraulic Gradient [-] iglobal Calculated - - -
Initial Concentration [-] c0 0.005 Normal � = 1e−3 -

Initial Porosity [-] �0 0.35 Normal � = 0.01 -
Soil Conductivity [mm/s] k 1e−1 Normal � = 1e−4 -
Maximum Porosity [-] �max 0.8 Normal � = 0.1 -

Lambda [mm−1] � 0.3 Normal � = 0.01 -
Critical Gradient [-] icrit .275 Normal � = 0.025 -

exhibit a significant variation throughout the system. Probabil-
ity distributions were assumed for all the parameters listed in
Table 3 and the value of the coefficients were either obtained
through literature review (in the case of mechanical quantities)
or numerical considerations (in the case of model parameters).
The simulations show that the non-uniform input parameters
distribution results in a variable FoS distribution along the
structure. Fig. 17 displays the results of the numerical sim-
ulation at the end of the simulation, showing how several
damage localization zones develop, indicating the presence of
extensive BEP in the infrastructure.
In the third scenario, a constant distribution of the parame-

ters was considered, with the difference that two portions of the
levee (the Bordeaux area and a portion in-between the Ingle-
wood and Omohundro areas) were considered as experiencing
severe damage on the downstream side of the FPS. This choice
represents the presence of extensive maintenance works on
parts of other infrastructures that might impact the stability of
the FPS, or the presence of a highly aggressive source of exter-
nal damage (such as tree branches or fauna). This increased
damage was modeled by imposing an exit condition length
(Lexit) of 500 mm in the two areas. This scenario represents a
relatively common case of practical interest, as the infrastruc-
ture often experiences high levels of localized damage on the
downstream side, as reported in previous studies (Foster et al.,
2000b; Hagerty & Curini, 2004). The presence of such initial
damage could be detected by human or automated inspections.
Figure 18 shows the results of the third scenario. The local-
ization of the downstream damage triggers higher erosion rates
in the zone, resulting in localized damage and lower factor
of safety in the triggered area. It is also possible to see dif-
ferent levels of erosion between the two localized areas. This
is explained by the fact that the Inglewood area is situated in
a depressed region and therefore experiences higher levels of

water height and hydraulic gradients, resulting in more severe
piping.

5 CONCLUSIONS

A novel multiscale procedure is proposed for the simulation
of BEP progression in earthen embankments. A multiphase
model is defined at the local scale, simulating the progression
of erosion by means of a concentration-dependent constitu-
tive law. Numerical solutions of such model are employed as
database for the training of a ML model at the system scale,
which predicts the possible states of failure in the domain and
provides quantitative information regarding the damage in the
system as a function of space and time. The proposed multi-
scale framework is computationally efficient enough to allow
evaluation of health at the system scale. Moreover, full sensi-
tivity studies are possible by means of the fast ML predictions,
allowing for the evaluation of response maps that graphically
represent the influence of different parameters on the results.
As a case study, the proposed model was employed for the
simulation of the portion of FPS that protects the Nashville
area. Simulations were performed according to different sce-
narios that correspond to common practical situations, and the
capability of the model to accept field data was demonstrated.
The proposed multiscale framework could be embedded in
resilience and risk analysis platforms, providing an accurate
and efficient tool for the real-time prediction of damage pro-
gression in FPSs. Natural extension of our work for future
research is the definition of a 3-dimensional numerical model
for the solution of the local scale problem that could potentially
lead to an increased level of description of the erosion process.
This would allow for a greater accuracy in the description of
the global scale behavior through the proposed multilayer ML
model. This, however, would come at the cost of a significant
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FIGURE 16 Spatial distribution of the computed factor of
safety for Scenario 1.

FIGURE 17 Spatial distribution of the computed factor of
safety for Scenario 2.

FIGURE 18 Spatial distribution of the computed factor of
safety for Scenario 3.

increase in the computational demand for the solution of the
local scale problems and the creation of the results database.
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