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Abstract4

This manuscript investigates the sensitivity of plastic dissipation expressed in the form of5

temperature rise to anisotropic elasticity constants and crystal plasticity properties of crys-6

talline β-HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane) under impact loading conditions. Para-7

metric sensitivity analyses are performed using a global sensitivity analysis framework to quan-8

tify the relative roles of the elasticity constants of the monoclinic β-HMX crystal, as well as9

to delineate thermal activation and phonon drag induced slip mechanisms that contribute to10

the nonlinear response. The plastic behavior of β-HMX is modeled using a Crystal Plasticity11

Finite Element model incorporating the slip mechanisms of thermal activation and phonon12

drag driven by the evolution of dislocation generation and annihilation. The results of the sen-13

sitivity analyses show that the anisotropic elasticity coefficients of the monoclinic crystal have14

a nominal effect on the energy dissipation and temperature rise, dominated by sensitivities of15

a few coefficients. Among the two primary slip mechanisms, phonon drag appears dominant16

within the load rate and amplitude regimes considered in this study.17

Keywords: Energetic materials, Crystal plasticity, Global Sensitivity Analysis, Dynamic be-18

havior, Polycrystalline materials19

1 Introduction20

Dynamic behavior of energetic materials (e.g., HMX, TATB, PETN) subjected to high ampli-21

tude transient loads is complicated due to high crystal anisotropy, interacting thermo-plastic22
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processes within the polycrystalline microstructure, and the interactions between different23

phases acting at multiple length scales [29]. A significant body of work exists on numerical mod-24

eling and experimental characterization of various mechanisms within energetic particles (e.g.,25

pore collapse, inter-granular friction, particle fracture, dislocation pile-ups [10, 17, 47, 66, 15])26

in order to understand and predict the overall performance of the energetic particles under27

dynamic loadings. Particularly in mesoscale simulations that involve complex anisotropic poly-28

crystalline particles deforming at non-uniform high rate load regimes, characterization of the29

relative roles of the competing and interacting deformation and failure mechanisms within30

the energetic particles is important [6, 14, 78]. This manuscript investigates and quantifies31

the sensitivities of the elasticity constants and plasticity mechanisms of β-HMX polycrystals32

subjected to dynamic loading.33

HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane) is a polymorphic molecular crystal. β phase is34

of significance since it is the stable phase at room temperature and pressure. The dynamic de-35

formation behavior in β-HMX crystals is crystal orientation dependent [16, 40, 74], and the low36

symmetry monoclinic structure of β-HMX plays an important role in its thermo-mechanical37

response. A number of previous efforts focused on measuring the anisotropic elastic constants38

of β-HMX. Zaug [76] reported, through experiments, five of the thirteen monoclinic elastic39

constants. Stevens and Eckhardt [62] reported a complete tensor of elastic moduli for crys-40

talline β-HMX by Brillouin scattering. Sun et al. [63] reported elastic constants obtained by41

the impulsive stimulated thermal scattering (ISTS) method, which are significantly different42

than those obtained previously using Brillouin scattering. Sewell et al. [57] performed molec-43

ular dynamics simulations to compute the thirteen elasticity constants. Bedrov et al. [8] also44

performed molecular dynamics simulations using a quantum chemistry-based atomistic force45

field to obtain unit cell parameters (a, b, c, β), coefficients of thermal expansion and heats46

of sublimation for the β-, α-, and δ-HMX. Pressure-temperature dependency of the elastic47

constants also influences deformation within crystalline HMX particles particularly when sub-48

jected to shock, which induces large variations in pressure and temperature. Piermarini et al.49

[45] employed a Fourier transform infrared (FTIR) microspectroscopy method to measure the50

effects of pressure and temperature on the thermal decomposition rate of β-HMX in a diamond51

anvil high-pressure cell. Sewell et al. [58] calculated the complete elastic tensor at room tem-52

perature and pressure via analysis of microscopic strain fluctuations for β-, α-, and δ-HMX.53

Cui et al. [13] performed isothermal-isobaric molecular dynamics simulations to investigate the54

variation of the mechanical properties of β-HMX in the temperature range of (5-555) K at 055

GPa and the pressure range of (0-40) GPa at 298 K.56

Dynamic behavior of HMX is marked by the presence of complex plastic deformation mech-57

anisms. Menikoff and Kober [38] reported that, for relatively weak waves, plastic deformation58

is the dominant dissipative mechanism and leads to dispersed waves that spread out in time.59

Winter and Field [69] noted that the deformation is concentrated in narrow adiabatic shear60

bands, and investigated the role of localized plastic flow in the impact initiation of explo-61
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sives. Numerical simulations complement the study of visco-plastic behavior of HMX crystals62

since experimental measurements are very difficult under high-rate loading given the time and63

length scales involved. Austin et al. [4] developed a numerical model of HMX, and found64

that the shear bands are an important mode of localization for HMX in void collapse region65

as documented in earlier experimental studies [12, 59]. Menikoff and Sewell [39] employed a66

numerical model of HMX incorporating crystallographic, thermal, mechanical and transport67

properties to understand the physics associated with the formation and growth of hot spots.68

Wang et al. [67] investigated the effects of crystal anisotropy and microstructural heterogene-69

ity on mesoscale thermo-mechanical response of PBXs based on a crystal plasticity model.70

Typically, the plastic deformation stage results in substantial heat generation due to viscous71

flow [7], adiabatic shear [69], fracture [44] and interfacial friction effects [18, 29].72

In view of the complexity of the deformation and failure mechanisms associated with the73

mesostructure of energetic particles such as HMX, we seek to systematically understand how74

each mechanism incorporated into a numerical model affects and contributes to the overall75

behavior of the material. Various sensitivity analysis methods such as the One-at-a-time76

(OAT) [52], screening method [41], differential analysis/local method [48], scatter plot [64],77

regression analysis [11], global sensitivity analysis [54], and others [19, 53] have been proposed78

to understand parametric sensitivities in the general context of particulate composites [51,79

56, 72, 73]. For energetic materials, the OAT method has been primarily employed. OAT80

probes the vicinity of a calibrated parameter set by varying one parameter at a time while81

other parameters are kept constant [6, 14]. The main drawback of the OAT method is that82

it cannot account for the interactions between parameters since only one parameter is probed83

each time [52]. In contrast, global sensitivity analysis (GSA) methods offer the capability84

to quantify the sensitivity of all parameters along with the interactions between them [54].85

Recently, Zhang and Oskay [78] proposed a global sensitivity analysis framework for particulate86

composites, and investigated the material and morphology parameter sensitivities for polymer87

bonded explosive, with focus on the particle and binder interface properties.88

In this manuscript, we focus on investigating the roles of anisotropic elasticity and plastic89

deformation mechanisms on the overall behavior of β-HMX single crystal and polycrystalline90

materials. The dynamic behavior of β-HMX is captured by a polycrystal plasticity model val-91

idated at intermediate impact loading conditions, where the material deformation is driven by92

thermo-visco-plastic effects. Through the sensitivity analysis studies, the monoclinic elastic93

constants have been analyzed to quantify their contributions to the material response over94

a large parameter space. Parameters that control the plastic deformation mechanisms are95

also analyzed through the sensitivity analysis framework. In particular, two slip mechanisms,96

thermal activation and phonon drag are considered as the primary contributing sources to the97

overall shear strain rate. The material hardening or softening described by the evolution of slip98

strength are represented through dislocation density evolution equations that include disloca-99

tion generation and annihilation. A novel contribution of this manuscript is the identification100
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of the most consequential elasticity coefficients, and slip and dislocation evolution mechanisms101

within the given dynamic loading regime for single crystal and polycrystalline configurations.102

The remainder of this manuscript is structured as follows: Section 2 provides the crystal103

plasticity constitutive relations employed in the forward simulation of the dynamic response104

of β-HMX at the mesoscale, as well as the detailed flow rule and evolution equations. Sec-105

tion 3 describes the basic formulation of GSA, including the surrogate model employed to106

accelerate sensitivity computation. Section 4 presents the parameter calibration and model107

verification for β-HMX single crystal. Numerical examples that utilize the GSA framework108

to quantify the sensitivity of elastic properties and plastic mechanisms for both single crystal109

and polycrystalline configurations are discussed in Section 5. Section 6 provides the summary110

and conclusions.111

2 Constitutive Model of β-HMX112

The elasto-plastic response of HMX crystals is modeled using the Crystal Plasticity Finite113

Element (CPFE) approach, considering that crystallographic slip is an important deformation114

mechanism in the plastic stage under the moderate impact load regime. The constitutive115

model employed in this study describes the isothermal and large plastic deformation of the116

HMX polycrystal. The large deformation kinematic formulation is based on the framework117

of Marin [33]. A brief overview of this framework is provided below.118

2.1 CPFE formulation119

Consider the body of the polycrystalline solid in its current configuration denoted as B. The120

initial configuration of the body is denoted as B0. The motion from B0 to B follows the map121

x = φ(X, t), where x and X represent positions in the current and initial configurations,122

and t is time. The deformation gradient, F = ∂x/∂X, is decomposed using the classical123

multiplicative split:124

F = F e · F p = V e ·Re · F p (1)

where F e is the elastic part of the deformation gradient, F p represents the plastic deformation125

which is modeled by dislocation evolution and shear stress induced slip in the crystallographic126

slip systems. Polar decomposition of F e generates Re and V e, where Re is the orthogo-127

nal tensor defining the rotation and reorientation of the grains, V e is the left stretch tensor128

representing the pure elastic stretch of the lattice.129

Two intermediate configurations, B̄ and B̃, are introduced. In what follows, all quantities130

with tilde and over bar respectively indicate representation in the B̃ and B̄ configurations.131

Plastic update is performed in the intermediate and stress free configuration B̃, which is132

obtained through unloading the elastic stretch, (V e)−1, from current configuration B. The133

use of two configurations provides a better setting for elastic-viscoplastic behavior, in contrast134

with a single intermediate configuration approach typically employed for rigid-viscoplastic135
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Figure 1: Schematic example of polycrystal β-HMX. xG, yG and zG represent the global
coordinates, while xL, yL and zL represent the local coordinates. yL axis is chosen as the
unique axis (parallel to b) in the monoclinic lattice structure with α = γ = 90◦, β 6= 90◦.
The transformation between local coordinates and global coordinates is through Euler angles
(Kocks convention).

behavior. The above finite deformation crystal plasticity model is specialized to the case of136

small elastic strains:137

V e = 1 + εe, V̇ e ≈ ε̇e, (V e)−1 ≈ 1− εe (2)

where εe is the elastic strain tensor.138

The stress-strain relationship is expressed as τ = C̃e : εe, where τ = (detF )σ is the139

Kirchhoff stress, σ is the Cauchy stress, and C̃e is the elasticity tensor. For the plasticity140

behavior, the resolved shear stress (RSS) on the αth slip system, τα, is defined by the Schmid’s141

law:142

τα = S̃ : sym(C̃e · Z̃α) ≈ τ : sym(Z̃α) = τ : Z̃α (3)

where S̃ is the 2nd Piola-Kirchhoff stress, and C̃e = V eTV e is the right Cauchy-Green tensor.143

Z̃α = s̃α ⊗ m̃α is the Schmid tensor in the αth slip system. s̃α and m̃α are the unit vectors144

along the slip direction and normal to the slip plane, respectively.145

2.2 Monoclinic lattice and elasticity146

The HMX single crystals are aggregated to form a polycrystalline mesostructure with ran-147

dom orientations. The mesoscale geometry of polycrystal β-HMX is schematically illustrated148

in Fig. 1a, where each polygonal grain represents a single crystal with a prescribed crystal149

orientation as shown in Fig. 1b.150

β-HMX crystals exhibit low symmetry with a monoclinic structure (Fig. 1c). In this151

manuscript, yL axis is chosen as the unique axis (parallel to b axis), and xL axis is paral-152

lel to a axis, while zL axis deviates from the c axis [46]. For β-HMX crystal, the lattice can be153

represented using either of two unit cells, P21/n and P21/c, with two molecules per unit cell.154

In the current manuscript, all coefficients are given in P21/c space group. The transformation155

relationship between the two space groups are provided in Ref. [35].156
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For crystals of low symmetry, such as the monoclinic lattice, deviatoric and hydrostatic157

components of the response are coupled. Furthermore, at high rate loading conditions, tem-158

perature and pressure dependence of the elastic moduli tensor may be prominent [70]. Under159

moderate impact loading conditions considered in this study, volume change is smaller com-160

pared to the plastic deformation, and pressure/temperature variation is relatively small. Thir-161

teen independent coefficients are necessary to fully describe the anisotropic elastic properties162

of the monoclinic lattice. The elasticity tensor C̃e for the lattice is expressed in the matrix163

form as:164

[C̃e] =



C11 C12 C13 0 C15 0

C12 C22 C23 0 C25 0

C13 C23 C33 0 C35 0

0 0 0 C44 0 C46

C15 C25 C35 0 C55 0

0 0 0 C46 0 C66


(4)

The elements of the tensor are expressed in the Voigt notation.165

For computational convenience, the above elasticity tensor is decomposed to deviatoric and166

volumetric parts. The deviatoric and volumetric parts of the constitutive law becomes [33]:167

devτ = C̃ed : devεe + H̃etr(εe)

pτ = (H̃e)T : devεe + M̃ etr(εe)
(5)

where τ = devτ +pτ Ĩ, Ĩ is the second order identity, C̃ed is the deviatoric part of the elasticity168

tensor, H̃e is the second order deviatoric-isochoric elastic coupling tensor, and M̃ e is the elastic169

volumetric coefficient. Following Ref. [33], vector representations of the deviatoric stress and170

strain are expressed using five independent components. The corresponding matrix forms of171

C̃ed, H̃e and M̃ e derived with respect to the crystal axes of the monoclinic lattice are shown172

in the appendix.173

2.3 Flow rule and evolution laws174

The form of the kinematic equation includes both the thermal activation and phonon drag175

mechanisms of dislocation slip. This is due to the fact that the velocity of a dislocation that176

moves through an array of obstacles such as the internal crystal boundaries [2] is determined177

by the time required to bypass the obstacles and the time required to move from one obstacle178

to another [20, 26, 30]. When the dislocation motion is relatively slow (1e-6 m/s - 1 m/s), the179

dislocation motion is thermally activated, and local obstacles of various types and the Peierls180

lattice barrier control glide resistance. At faster speeds (>1 m/s), the dislocation motion is181

drag-dependent, and only weakly depends on obstacles [26]. Hence, the slip rate in slip system182

α is expressed as:183

γ̇α =
( 1

γ̇αw
+

1

γ̇αr

)−1
(6)
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where γ̇αw and γ̇αr respectively represent the contributions from thermal activation and phonon184

drag.185

The thermally activated slip evolution is expressed as:186

γ̇αw =


( γ̇αwo√

ρn

)[
exp

(
− ∆Gα(τα)

κθ

)
− exp

(
− ∆Gα(−τα)

κθ

)]
+ h(τα), if |τα| ≤ gα( γ̇αwo√

ρn

)
sign(τα)

[
1− exp

(
− 2cGµ

α

κθ

)]
+ h(τα), if |τα| > gα

(7)

where γ̇αwo is the reference shear strain rate, κ is a constant and θ is temperature. ρn is a187

dimensionless dislocation density measure normalized by the reference dislocation density ρref188

(ρn = ρ/ρref). ∆Gα(τα) is given by:189

∆Gα(τα) = cGµ
α
[
1−

(τα
gα

)p]q
(8)

where cG, p, q are constants, µα is the shear modulus resolved in the αth slip system [22]:190

µα = Zα
0 : Ce : Zα

0 ; Zα
0 = sα0 ⊗mα

0 (9)

gα is the slip strength of the slip system α, and takes the form:191

gα = rα(go + s
√
ρ) (10)

where, s and go are model parameters, and rα is the ratio of the slip system strength gα and192

the reference slip system strength g(010)[100] (r(010)[100] = 1).193

The transition from thermal activation to phonon drag is controlled by the penalty function:194

195

h(τα) = sign(τα)(
τα

gα
)ζ (11)

where ζ is a parameter set to be a large number. The penalty function h(τα) ensures that the196

phonon drag component of slip is predominant in the presence of overstress (i.e. τα > gα),197

and it smoothly transitions between the two mechanisms of slip. Figure 2 illustrates the198

role of h on the shifting between the dominant slip mechanism as a function of RSS. At low199

amplitude of RSS compared with the slip system strength, thermal activation is the dominant200

slip mechanism, whereas at higher amplitudes of RSS, phonon drag is dominant. In Fig. 2, the201

dislocation density and temperature are taken to be constant (ρ=0.0307 micro-m−2 and θ=297202

K). The other parameters are set to values indicated in the verification studies below. The203

smoothness of the transition from thermal activation-dominated to phonon drag-dominated204

slip is governed by the power constant ζ. For relatively large values of ζ, the behavior is very205

similar to the unregularized behavior, whereas an appropriate choice for ζ provides a smoother206

transition, allowing better stabilization in the numerical implementation of the model.207

The drag operates as the dislocation bows between obstacles before it cuts or bypasses208
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Figure 2: Transition between the dominant slip mechanisms using the power-law function

h(τα). Dislocation density is of 0.0307 micro-m−2 in the illustration. The lines with “× × ×”,
“◦◦◦”, and “ ” represent the total shear strain rate with ζ equal to 20, 50 and 150,
respectively.

them. For the glide of dislocations between sets of obstacles, the slip rate is:209

γ̇αr = γ̇roρn

[
1− exp

(
− τα

Dr

)]
where Dr = Dro

θ

θ0
(12)

where γ̇ro is the reference shear strain rate, Dro is the reference drag stress, and θ0 is the210

reference temperature.211

The evolution of slip strength is controlled by the dislocation density evolution which,212

under dynamic loading, evolves through generation and annihilation mechanisms:213

dρ

dγ
=
dρ+

dγ
+
dρ−

dγ
(13)

The dislocation generation term [36, 42] is expressed as dρ+/dγ = n1
√
ρ. The dynamic214

recovery term [36] is described by the evolution model dρ−/dγ = −n2γ̇
− 1

n3 ρ, where n1, n2 and215

n3 are material parameters, and the net slip system shearing rate is γ̇ =
∑N

α=1 |γ̇α|.216

Under the dynamic loading conditions considered in this study, the dissipation induced217

by the viscoplastic slip results in localized heating through the adiabatic assumption. The218

adiabatic temperature evolution is expressed as:219

cV θ̇ = η

N∑
α=1

ταγ̇α (14)

where cV is the specific heat, and η is the Taylor-Quinney parameter.220

It is important to note that earlier works have attributed mechanical deformation in HMX221

primarily to twinning [2, 31] facilitated by the relatively large size of the molecular crystal222
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(compared to smaller crystals, where twinning is not as prevalent [28]). More recently, through223

microhardness indentation experiments, Gallagher et al. [21] observed that slip also plays an224

important role in the deformation of HMX particles. From the standpoint of crystal plasticity225

modeling, relatively scarce information is available to fully describe mechanical deformation of226

HMX particles using twinning alone. Of note is the work by [75], who modeled twinning on the227

(101)[101̄] as an additional slip system idealized using the same flow and hardening evolution228

laws as for slip. To the best of the authors’ knowledge, the other crystal plasticity modeling229

studies (e.g., [3, 4, 24, 77, 5, 25, 67, 68, 70, 71]) focused on describing high rate deformation230

in HMX using slip alone. In view of the potential importance of twinning in describing the me-231

chanical response of HMX, additional development of experimentally-validated CPFE models232

that include deformation twinning is needed and will be subject of future studies.233

3 Global Sensitivity Analysis234

Global Sensitivity Analysis (GSA) measures the sensitivity of parameters induced in the de-235

scription of the behavior over a specific parameter subspace. The primary idea of GSA is to236

apportion the uncertainty or variance in the simulation output into different sources of uncer-237

tainty or variance of model inputs (i.e., model parameters). The contributions from different238

input parameters are quantified by sensitivity indices (Sobol’s indices are used in this study)239

in the sense of self-contribution and interactions with the other input parameters.240

3.1 Variance decomposition241

Consider a target function y = f(u), which in the current case an output of the simulations,242

is decomposed as [61]:243

f(u) = f(u1, ..., ud) = f0 + [
d∑
i=1

φi(u
i) +

d−1∑
i1=1

d∑
i2=i1+1

φi1,i2(ui1 , ui2) + . . .+ φ1,2,...,d(u
1, ..., ud)]

(15)

where u is the vector of selected input parameters:

f0 =

∫
f(u)

d∏
i=1

[pi(u
i)dui] = E(y)

φi(u
i) =

∫
f(u)

∏
j 6=i

[pj(u
j)duj ]− f0 = Eu−i(y|ui)− f0

φi1,i2(ui1 , ui2) =

∫
f(u)

∏
j 6=i1,i2

[pj(u
j)duj ]− φi1(ui1)− φi2(ui2)− f0

(16)

(17)

(18)

with pi(u
i) is the Probably Distribution Function (PDF) of the ith input parameter ui. The244

constant f0 is the expectation of the target function. The notation u−i represents all possible245

uj with j 6= i.
∫
f(u)

∏
j 6=i[pj(u

j)duj ] is the expectation of y given ui, i.e., Eu−i(y|ui) by246
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definition. φi(u
i) represents the contribution of ui to y only from itself, while φi1,i2(ui1 , ui2)247

represents the contribution from the interaction between ui1 and ui2 . The variance of y is248

obtained:249

Var(y) =

∫
[f(u1, ..., ud)− f0]2

d∏
i=1

[pi(u
i)dui] (19)

The parameters are taken to be independent random variables, which ensures the unique-250

ness of the decompositions stated above [61]. While it is possible to account for correlations251

(see, for instance, Li et al. [32], who introduced a new unified global sensitivity analysis frame-252

work and defined three sensitivity indices to fully describe the parameter sensitivity for systems253

with correlated inputs), the parameter correlation is not considered in this manuscript.254

3.2 Sensitivity indices255

Sensitivity index is a quantitative measure of parameter sensitivity/importance to the model256

output variance. The First Order Index (FOI) quantifies the contribution to output variance257

from the parameter itself, while Total Effect Index (TEI) also includes the interactions between258

the parameter and the other parameters. Substituting Eq. 19 into Eq. 15:259

1 =
d∑
i=1

Si +
d−1∑
i1=1

d∑
i2=i1+1

Si1i2 + ...+ S1,2,...,d (20)

where the first order sensitivity index Si is defined as:260

Si =
Var(φi(u

i))

Var(y)
=

Varui(Eu−i(y|ui))
Var(y)

(21)

Varui(Eu−i(y|ui)) is the variance of the expectation of y for given ui.261

The total effect index, STi , is expressed as:262

STi = 1− Varu−i(Eui(y|u−i))
Var(y)

(22)

where Eui(y|u−i) is the expectation of y for given (u1, ..., ui−1, ui+1, ..., ud). The total effect263

index STi is the sum of the first order index and the corresponding higher order terms [27]:264

STi = Si +
d∑
j

Sij +
d−1∑
j1=1

d∑
j2=j1+1

Sij1j2 + ...+ S1,2,...,d (23)

where Sij represents the interaction between ui and uj , Sij1j2 represents the interaction between265

ui, uj1 and uj2 , and S1,2,...,d is the interactions between all input parameters. The interaction266

terms in the TEI is non-zero despite the fact that the parameter distributions are taken to be267

uncorrelated [32].268

In the view of multiple potential failure mechanisms, GSA provides the ability to under-269
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stand the dominant mechanisms behind the complex input-output relationships over the input270

space, and eliminates the trivial influence from insensitive parameters.271

3.3 Gaussian process model272

The evaluation of FOI and TEI requires a substantial number of forward simulations. Un-273

fortunately, mesoscale simulations of energetic materials using CPFE are computationally274

expensive. In order to achieve computational efficiency needed to compute the sensitivity in-275

dices, we employed Gaussian Process (GP) modeling [50] as surrogate to mesoscale simulation276

of β-HMX crystals under dynamic loading.277

A Gaussian Process model is a variant of a radial basis function that is built on Gaus-278

sian kernels. The GP model is trained to approximate the response surface of interest using279

an inexpensive function approximation, which must otherwise be generated by a large set of280

mesoscale simulations. The approximation function is expressed as a Gaussian distribution281

conditioned upon a set of training points that are generated using a relatively small set of282

mesoscale simulations. In the current study, GP models with squared exponential correlation283

function are employed, and the trend of the models is taken to be up to second order poly-284

nomial. It is possible to achieve higher order polynomial trends by increasing the number of285

training samples. The process variance and character parameter are determined through the286

maximum likelihood estimation.287

The stratified sampling method is employed to sample the parameter subspaces to ensure288

that (1) information from the full domain is captured and (2) the total number of forward289

simulations, as the training data set for GP model, is as small as possible. The primary idea of290

stratified sampling method is to partition the parameter domain to multiple non-overlapping291

subspaces and to draw at least one sample point in each subspace [43].292

The numerical computation of sensitivity indices is performed with the GP model as sur-293

rogate simulator through the Monte-Carlo based procedure [54]. The general steps of the294

computation procedure of Si (STi ) is summarized as:295

1. Generate one sample ui (u−i) from given distribution296

2. Generate m1 samples of u−i (ui)297

3. Use GP model to calculate m1 samples of y298

4. Go back to Step 1 for m2 times299

5. Calculate corresponding variance and expectation300

6. Calculate sensitivity index Si (STi )301

4 Model Verification302

To ensure that the forward model for the energetic material captures the dynamic response with303

sufficient accuracy, we calibrated the model parameters to values available in the literature304

and compared the model predictions with those provided in Ref. [5, 36, 37], as well as the305

experimental results by Dick et al. [16]. The current constitutive model of β-HMX has been306
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verified to assess the effects of (1) specializing the formulation to small elastic strains, and307

(2) the use of the additional power-law function h(τα). The verified model predictions serve308

as the starting point for the sensitivity analyses.309

4.1 Parameter calibration310

The thirteen constants of the anisotropic tensor of elastic moduli of the monoclinic lattice311

are set to those calculated by Sewell et al. [58] through MD simulations. The density and312

specific heat of β-HMX crystals are set to 1.9 g/cm3 and 1 kJ/(kg·K), respectively. The lattice313

structure of β-HMX is described by four cell parameters: a, b, c and β. These parameters are314

typically pressure dependent [13]. In view of moderate load amplitudes, the lattice parameter315

are taken as constants (a=6.54�A, b=11.05�A, c=8.70�A, and β=124.3°).316

The CPFE model incorporates ten slip systems [4] for the monoclinic lattice structure of β-317

HMX in the P21/c space group as summarized in Table 1. Slip systems and the corresponding318

strength ratios (rα) are summarized in Table 1.319

Table 1: Slip strength ratios.

Slip system (010)[100] (011)[100] (011̄)[1̄00] (1̄02)[010] (001)[100]

Ratio rα 1 0.963 0.963 0.933 1.68

Slip system (1̄02)[201] (011)[01̄1] (01̄1)[01̄1̄] (1̄1̄1)[1̄01̄] (11̄1̄)[101]

Ratio rα 0.376 0.931 0.931 0.701 0.701

Table 2: Flow rule and hardening rule parameters.

Parameter γ̇wo cG g0 s p q γ̇ro Dro

Value 1 11.47 103 0.1666 1 1 2.5 1160

Unit micro-s−1 K/MPa MPa MPa· micro-m micro-s−1 MPa

Parameter n1 n2 n3 cV η θ0 ρ0 ρref
Value 37.99 62 4.98 1 0.9 293 0.0307 0.452

Unit micro-m−1 kJ/(kg ·K) K micro-m−2 micro-m−2

Table 2 presents the values of the parameters associated with slip and CRSS evolution in320

the crystal plasticity model. The values of the model parameters are set to those proposed321

in Ref. [5]. The parameter n2 for dynamic recovery is not provided in the aforementioned322

reference. Experimental data for HMX necessary to calibrate n2 is not available. We estimated323

the value of n2 by comparing the hardening rate of PBX 9501, whose main component (95%324

wt) is β-HMX. For PBX 9501 that was compressed at the room temperature (25°C) at a325

constant strain rate of 2000 s−1 [23], the hardening rate (∂σ/∂γ) as a function of stress at a326

constant slip rate 2000 s−1 is compared with the model predictions using n2=62 in Fig. 3.327

Figure 4 shows temperature dependence of the constitutive behavior of the calibrated CPFE328

model compared with PBX 9501 and a BCC crystal, which exhibit qualitatively similar tem-329

perature dependence of yielding. As observed in Fig. 4b, the stress-strain curves for Vanadium330
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Figure 3: Hardening rate-stress curve at constant strain rate 2000 s−1. The hardening
rate is estimated by the finite difference method, where the stress and strain data are
extracted from experimental measurements by Gray et al. [23] at room temperature.

at different temperatures reported in Ref. [65] show that higher temperatures reduce the yield331

strength of the material. A similar trend, in Fig. 4c, has been observed for PBX 9501 as332

measured by Gray et al. [23]. The constitutive law employed in the current study also exhibits333

a reduction in the yield strength with temperature as shown in Fig. 4a.334

4.2 Verification study335

The capabilities of the crystal plasticity model as well as its implementation have been verified336

by comparing its predictions to a similar model and experimental observations described in337

Ref. [16]. The assessment of the current model was performed in the context of the dynamic338

behavior of single crystal β-HMX specimens subjected to gas gun shots.339

The setup of this verification study is shown in Fig. 5. An initial velocity is applied on the340

impactor (2024 Al). The dynamic wave passes to HMX specimen through the anvil (X-cut341

quartz anvil for impact velocity ∼300 m/s, and Kel-F 1 anvil for impact velocity >500 m/s).342

PMMA was chosen as the window material due to the fact that its shock impedance is close to343

but slightly lower than that of HMX. The slight impedance mismatch results in a rarefaction344

wave back to the HMX specimen after the incident wave hits the material interface. The345

specimen and load configurations of the six experiments are listed in Table 3 where sample type346

represents the loading direction in P21/n space group. The thicknesses of the HMX specimens347

varies from 1.23 mm to 4.66 mm. Initial velocities of the impactor are approximately 300 m/s348

except for “Shot 1182” which was approximately 520 m/s.349

Menikoff et al. [40] used linear Hugoniot with Mie-Gruneisen Equation Of State (EOS) for350

the impactor and anvils, and the shock state in the anvil is used to set the initial conditions that351

drive the simulations. In the current study, explicit dynamic simulations have been performed352

without detailed shock analysis. The loading is applied as prescribed constant velocity on353

1(Kel-F is the 3M Company brand name for polytrifluorchlorethylene)
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Figure 4: Stress-strain curves at different temperatures for (a) HMX in (011) direction at the
constant strain rate of 2000 s−1 predicted by the calibrated CPFE model, (b) experimentally
observed behavior of Vanadium (experimental data from [65]) at the strain rate of 2500 s−1

and (c) experimentally observed behavior of PBX 9501 (experimental data from [23]) at the
strain rate of 2000 s−1.
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Figure 5: Schematic representation of experimental setting.

the left edge of the specimen. The amplitude of the applied velocity is determined using the354

measured impactor velocity through the impedance match technique, in which linear Hugoniot355

relationships are employed for the impactor, anvils and HMX [40, 9]. The PMMA window356

near the right edge of the specimen is modeled using the nonlinear viscoelastic constitutive357

law developed by Schuler and Nunziato [55].358

In the current verification study, a quasi-one-dimensional model is employed. Dislocation359

density field is taken to be uniform prior to the onset of the dynamic load. The FE model360

contains a line of 3D hexahedral element with a total length 8.6 mm. This length ensures361

that there is no wave reflection during the simulation duration (1.6 micro-s). The viscoelastic362

PMMA window is bonded to the HMX specimen. Periodic boundary conditions are applied363

at the top/bottom and front/back boundaries. Barton et al. [5] observed a discrepancy be-364

tween the times of arrival in the predictions and experiments due to the dependence of elastic365

parameters to pressure and temperature and reported the prediction results with a time shift.366

In the current simulations a time shift of 0.08 micro-s is used.367

Verification data are collected from three shots along (110)P21/n direction and three shots368
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Table 3: Specimen and load configurations.

Shot Sample Thickness Impactor
no. type (mm) Velocity (m/s)

1180 110 1.23 318.5

1166 110 3.18 306.8

1182 110 3.57 520.9

1181 011 1.39 316.0

1068 011 3.00 314.0

1168 011 4.66 313.2
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Figure 6: Model verification with respect to loading in (a) the (110)P21/n direction; and
(b) the (011)P21/n direction.

along (011)P21/n direction. The predictions of the current model, predictions in Ref. [5] and369

experimental measurements are compared in Fig. 6. Overall, a reasonable agreement between370

the predictions and experimental data particularly for the impactor velocity of 300 m/s is371

observed. This indicates that the proposed model adequately captures viscoplastic response372

mechanisms. The experimentally observed peaks of the plastic waves (particle velocity at the373

HMX-PMMA interface) are captured by the current model in all shots (< 5% error) with the374

impactor velocity around 300 m/s. A larger discrepancy has been observed in shot 1182. A375

possible reason for this discrepancy is that the higher initial velocity of the impactor (520.9376

m/s) in this shot results in the formation of a stronger shock. Capturing the propagation of377

the stronger shock requires incorporation of the Equations-of-State (EOS) for the materials378

into their constitutive models.379

5 Sensitivity Analyses380

Employing the verification study and the associated model parameters as baseline, we per-381

formed sensitivity analyses to understand the relative roles of the material parameters and382
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viscoplastic mechanisms on the response of β-HMX subjected to impact loading. The analyses383

are performed in the context of impact response of a single crystal, as well as polycrystalline384

mesostructures.385

5.1 Parameters subspace386

The sensitivity analyses have been performed to understand the behavior of a range of param-387

eters that define the elastic and plastic behavior of the energetic crystals. In the subsequent388

analyses, we restrict the parameter subspaces to a range centered around the set of parameters389

calibrated for the numerical verification study. The parameter ranges are selected such that390

the parameter subspace reasonably spans the experimental observations and computation-391

ally feasible, i.e., surrogate models can be constructed with a reasonable number of training392

simulations.393

5.1.1 Elastic coefficients ranges394

Ranges of the elasticity coefficients are estimated through the available experimental measure-395

ments and molecular simulations. Zaug [76] determined thirteen elastic constants via Impulsive396

Stimulated Light Scattering (ISLS) after the ultrasonic sound speed measurements in single397

crystal β-HMX at various temperatures. Stevens and Eckhardt [62] measured the complete398

elasticity tensor for crystalline β-HMX by scattering from a variety of acoustic phonons. Sun399

et al. [63] used the Impulsive Stimulated Thermal Scattering (ISTS) method to resolve the400

thirteen elastic constants from acoustic velocity measurements using samples cut parallel to401

three different crystal planes. Sewell et al. [57] employed two primary simulation cells with 48402

and 96 molecular respectively to calculate the thirteen elasticity constants. Sewell et al. [58]403

also used atomistic simulations to calculate the isothermal elastic properties of HMX crystal.404

Cui et al. [13] investigated the mechanical properties (elastic coefficients, Young’s modulus,405

shear modulus and others) of β-HMX at different temperature and pressure by performing406

isothermal-isobaric molecular dynamics simulations.407

In Zaug’s experiments, five (C11, C33, C55, C15, C35) of the thirteen coefficients were well408

determined while others were not. C33, C55 and C15 have significant discrepancies with the409

molecular dynamics predictions [58]. Among the remaining coefficients, C22 and C46 are within410

a reasonably tight range. Hence, four coefficients (C11, C35, C22, C46) are taken as constants411

and excluded from sensitivity studies. C33, C44, C55, C66, C12, C13, C23, C15 and C25 are412

regarded as variables whose ranges are selected to span the values available in the literature413

and summarized in Table 4.414

5.1.2 Plastic deformation properties415

Compared with the elastic constants, identification of appropriate parameter subspaces for416

plastic behavior is more challenging. This is due to the fact that different models available417

in the literature employ different internal state variables and evolution forms to describe the418

slip and strength evolution, and that relatively small number of studies focused on accurate419
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Table 4: Parameter ranges of elasticity coefficients (unit: GPa).

Parameter C33 C44 C55 C66 C12 C13 C23 C15 C25

Zaug [76] 17.6 2.9 6.6 3.8 4.0 13.0 6.6 0.6 -1.5

Sewell [57] 17.8 9.1 9.2 9.8 5.9 8.4 8.2 -1.1 3.2

Sewell [58] 23.4 9.2 11.1 10.1 9.6 13.2 13.0 -0.1 4.7

Stevens [62] 12.44 4.77 4.77 4.46 6.37 10.5 6.42 -1.1 0.83

Sun [63] 18.24 9.92 7.69 10.67 9.65 9.75 12.93 -0.61 4.89

Cui [13] 13.2 6.41 4.04 4.68 3.75 4.66 5.07 -0.15 -2.71

Upper boundary 24.0 10.0 12.0 11.0 10.0 18.0 13.0 1.0 5.0

Lower boundary 11.0 2.0 4.0 3.0 3.0 4.0 5.0 −5.0 −3.0

characterization of these parameters. The current crystal plasticity model consists of 16 pa-420

rameters to describe the slip evolution by thermal activation (γ̇αwo, cG, p, q, ζ), slip evolution421

by phonon drag (γ̇αro, Dro, θo), hardening evolution (go, s), adiabatic temperature evolution422

(cV , η) and dislocation evolution (n1, n2, n3, ρ0). In what follows, we focus on the investiga-423

tion of the phonon drag, thermal activation and dislocation evolution mechanisms. ζ controls424

the smoothness of the transition of dominant slip mechanism. It is employed for convergence425

control in this study and set to ζ = 150. The reference temperature θo is set as constant (i.e.,426

the room temperature). p and q, which influence low-rate hardening behavior, are also taken427

as constants (set to unity). The remaining 8 parameters (γ̇αwo, cG, γ̇αro, Dro, ρo, n1, n2, n3) are428

considered as variables in the sensitivity analysis studies below. In view of limited information429

available, we set the range for each parameter to be [50%µ, 150%µ], where µ is the calibrated430

values shown in Table 2, with the exception of cG and ρ0. The upper limit of cG is slightly431

reduced since high values require very significant time step size reduction for convergence in432

CPFE simulations. The upper and lower bounds for the parameters are summarized in Table 5.433

Table 5: Ranges for the plastic parameters.

Parameter γ̇wo cG γ̇ro Dro ρ0 n1 n2 n3
Unit micro-s−1 K/MPa micro-s−1 MPa micro-m−2 micro-m−1

Upper bound 1.5 12.5 3.75 1740 0.046 56.99 93 7.47

Lower bound 0.5 5.735 1.25 580 0.0153 18.99 31 2.49

5.2 Single crystal sensitivity analysis434

The response of single crystal β-HMX subjected to impact loading described in Section 4 is435

employed to investigate the parametric sensitivities. In the first case, the anisotropic elastic436

properties in β-HMX single crystal are investigated to understand the role that crystal elasticity437

plays in the material dynamic behavior. In the second case, the relative roles of the viscoplastic438

deformation mechanisms are investigated by considering the experimental setup for shot 1166439

shown in Table 3. In both cases, sensitivities are assessed based on the maximum rise in440

temperature within the specimen.441
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Figure 7: Summary of (a) sensitivity indices and (b) convergence for elastic coefficients in
single crystal specimen.

5.2.1 Elasticity coefficients442

Approximately 3,000 forward simulations were performed with parameters randomly sampled443

from parameter ranges shown in Table 4 assuming uniform distribution for each parameter.444

Approximately 272 million predictions were then generated using the surrogate model to collect445

information of the response surface over the entire parameter space. In this study, only the446

elastic parameters are considered as variables, whereas all plastic parameters are set to values447

in Table 2.448

First order and total effect sensitivity indices computed for elastic coefficients are shown449

in Fig. 7a. The figure indicates C44 (or C2323 in expended notation) is the most sensitive450

parameter in terms of the maximum temperature rise. The temperature rise is due to the451

plastic processes (Eq. 14), and thermoelastic heating is neglected in the analyses. C55, C15452

and C25 have negligible influence on the plasticity and peak temperature under the impact load453

in (110)P21/n direction. The convergence for each index as a function of number of prediction454

points is shown in Fig. 7b.455

Figure 8 demonstrates the sensitivities of the nine elastic constants (displayed as probability456

distributions) computed using the One-at-A-Time (OAT) method with the same surrogate457

model in GSA. In the OAT method, the sensitivity of a single parameter is computed by458

sampling that parameter from within its range, while keeping all other parameters fixed at459

the mean. OAT therefore provides “local” variability of the response as a function of that460

parameter. In contrast with GSA which identifies C13 as the third sensitive parameter based461

on both FOI and TEI, varying C13 alone generates the largest temperature variation (≈14462

K). This discrepancy points to the fact that characterization of the variation in the response463

surfaces locally (such as captured by the OAT method) provides an incomplete description and464

assessment of sensitivity. Separately varying the parameters C25, and C55 does not produce465
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significant temperature variation (<3 K), which is consistent with the results shown in Fig. 7a.466
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Figure 8: Probability distributions for peak temperature resulting from the OAT analysis of
individual elastic constants for single crystal cases.

Interaction between C44 and C23, the two most sensitive parameters identified by GSA,467

are further investigated by plotting the variation of peak temperature over the C44-C23 plane,468

as shown in Fig. 9a. Within the given parameter range, the temperature distribution with469

respect to C23 is convex for a fixed C44, whereas the variation with C44 is linear for a fixed C23470

value. The fairly uniform variation of the temperature field indicates only a mild interaction471

between the two most sensitive elastic constants. The peak of this surface occurs near (C44,472

C23) = (2.0, 10.0) with maximum temperature around 343 K.473
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Figure 9: Variation of peak temperature over (a) C44-C23 plane and (b) n1-n2 plane for single
crystal specimen.

5.2.2 Plastic deformation mechanisms474

Approximately 3,500 mesoscale simulations were performed as the training set of the GP model475

that has the target function of maximum temperature rise under the applied impact load. 242476

million predictions were then generated by the surrogate to study the variation of the target477

function and compute the sensitivity indices. In this study, only the plastic parameters are478
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considered as variables, whereas elastic constants are set to values calculated by Sewell et al.479

[58].480

Figure 10a shows the sensitivity indices for all eight plastic parameters. The convergence481

of the sensitivity values as a function of the number of prediction points is shown in Fig. 10b.482
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Figure 10: Summary of (a) sensitivity indices and (b) convergence for plastic parameters in
single crystal specimen.

The dislocation annihilation coefficient n2 and the dislocation generation coefficient n1483

are identified as the most influential parameters. The significance of dislocation evolution484

parameters indicates that the material impurities or defects govern the plastic deformation485

in terms of temperature rise regardless of which of the slip mechanism is predominant. The486

parameters, cG and γ̇wo that control the thermal activation mechanism, have little effect, which487

indicates that under given impact velocity (≈300 m/s), thermal activation does not contribute488

significantly to the plastic deformation compared with the phonon drag mechanism, and this489

is consistent with Ref. [26]. Furthermore, the initial density of dislocation prior to the onset of490

the impact loading appears to have insignificant effect on the plastic behavior of the crystal. It491

is important to note that the void collapse mechanism under shock loading was observed to be492

sensitive to initial dislocation density in Ref. [5]. Void collapse behavior therefore appears to493

be substantially different than the shear dominated viscoplastic process probed in this study494

The peak temperature distribution for each parameter obtained by the OAT method is495

plotted in Fig. 11. Near the calibrated parameter set, varying Dr0 generates the largest496

temperature variation (of approximately 200 K). However, Dr0 is identified as the fourth497

sensitive parameter using the TEI and the third sensitive parameter using the FOI. The two498

most sensitive parameters identified by TEI, n1 and n2, generates small temperature variations499

(≈15 K and 70 K) compared with Dro in the OAT analysis. These discrepancies show that500

the plastic processes are sensitive to the change and interaction of material parameters, which501

makes the GSA meaningful as it accounts for the parameter variance and relation. Varying502
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Figure 11: Probability distribution for peak temperature resulting from the OAT analysis of
individual plastic parameters for single crystal specimen.

the parameter γ̇w0 does not produce significant temperature rise (≈15 K) consistent with GSA503

results. As cG directly amplifies or reduces the activation energy, it also offsets the ratio τα/gα504

at which the transition from thermal activation mechanism to phonon drag mechanism occurs.505

The variation of peak temperature over the n1-n2 plane is plotted in Figure 9b. The506

maximum temperature occurs near the (n1, n2) = (20, 100) corner, which indicates that lower507

n1 (i.e., less dislocation generation) and higher n2 (i.e., more dislocation annihilation) generate508

more severe plastic deformation whose work is represented by temperature rise up to 800 K509

subjected to the given load. Compared with the mild interaction observed in Figure 9a, the510

shape of temperature variation as a function of the two parameters also indicate that there511

is a strong interaction effect in this case. This is also apparent from the relatively large512

discrepancies between the first order and total effect indices shown in Fig. 10a.513

5.3 Polycrystalline sensitivity analysis514

Parameter sensitivity analysis within a polycrystalline mesostructure is also of significant in-515

terest, as such an analysis explains the behavior at the scale of a particle. In this section, we516

investigate the sensitivity of elasticity and plasticity within polycrystalline HMX subjected to517

impact loading.518

Figure 12 shows the morphology, loading and boundary conditions of the mesostructure519

considered in this study. The mesh of the mesostructure consists of 33,530 wedge elements to520

capture the localized stress evolution and heat generation. The size of the numerical specimen521

is 3 mm × 1 mm that is made of 91 single crystals with random orientations sampled from522

uniform random distribution. The impact loading is applied from the left edge of the specimen,523

where the edge velocity is linearly increased from rest to 250 m/s in 10 ns and kept constant524

thereafter. The total duration of each mesoscale simulation is 1 micro-s, with time step size525

of 1e-6 micro-s. The geometry is modeled as a quasi 2D domain with three dimensional526

discretization constrained in the third (out of plane) direction with a single set of elements527

along the thickness direction.528
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Figure 12: Polycrystal specimen geometry. For the first normal distribution of particle size,
N(µ1, σ1), the weight w=0.2, µ1=61.8 micro-m, σ1=13.9 micro-m. For the second normal dis-
tribution N(µ2, σ2), µ2=225.7 micro-m, σ2=44.9 micro-m.

The size of the grains are sampled from a bimodal distribution, which is constructed accord-529

ing to the following available experimental data and numerical investigations [25, 49, 60, 75].530

Previous studies in energetic crystals point to a strong crystal size effect on the hot spot forma-531

tion and initiation sensitivity, where the temperature rise is correlated with the square root of532

the crystal diameter [1, 2]. The current study does not consider a size-dependent constitutive533

behavior. The Euler angles (Kocks convention) defining the orientation of a crystal is assumed534

to be independent of each other, and subjected to a uniform random distribution within the535

given range (0 < ψ1 < 2π, 0 < φ < π and 0 < ψ2 < 2π). The normalized histogram of the536

Euler angles of all crystals of the polycrystal specimen is shown in Fig. 13.537
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Figure 13: Crystal orientation histogram for the specimen in Fig. 12. The x axis is the nor-
malized angle range (0 < ψ1/(2π) < 1, 0 < φ/π < 1, 0 < ψ2/(2π) < 1).

Figure 14 illustrates the stress contours as the stress wave progresses through the poly-538

crystal specimen generated using the model parameters stated in Section 4. Local stress539

concentrations are apparent particularly along grain boundaries and triple junctions.540

The dislocation density generation and annihilation continuously drive local increase or541

decrease of the material strength, slip and plastic work in a complex fashion. Evolution of542

dislocation density distribution over the specimen is shown in Fig. 15. The misorientation543

between adjacent grains leads to the concentration of dislocations along grain boundaries and544

within particles.545
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Figure 14: Von Mises stress contours at (a) t =0.25 micro-s, (b) t =0.5 micro-s, (c) t =0.75
micro-s, and (d) t =1.0 micro-s.
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Figure 15: Dislocation density contours at (a) t =0.25 micro-s, (b) t =0.5 micro-s, (c) t =0.75
micro-s, and (d) t =1.0 micro-s.

Similar to the previous study, the primary response function of interest is the peak tem-546

perature within the domain, which represents the most critical dissipative state across the547

mesostructure. In what follows, the mesostructural morphology is fixed and we focus on the548

analysis of the effects of elastic and plastic properties of the polycrystal.549

5.3.1 Elasticity coefficients550

Approximately 2,000 forward mesoscale simulations are performed with randomly sampled551

parameters to serve as training data set for the GP model, and 140 million predictions were552

made using the surrogate to compute sensitivity indices.553

Figure 16a shows the sensitivity indices for the elastic parameters along with sensitivity554

convergence plot as a function of sample size. The plot clearly indicates that C33 is the most555

sensitive parameter under given impact loading. C33 is the lone volumetric component among556

these nine coefficients, and the corresponding high sensitivity is due to the confinement effect557

induced by the boundary condition employed in the lateral direction.558

OAT variabilities of the elastic parameters are plotted in Fig. 17. C13 and C66 separately559

generate the largest temperature variations (∼11 K) even though they are far less sensitive560
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Figure 16: Summary of (a) sensitivity indices and (b) convergence for elastic parameters in
polycrystal specimen.
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Figure 17: Probability distributions for peak temperature resulting from the OAT analysis
of individual elastic constants for polycrystal specimen.

compared with C33 across the parameter subspace investigated in this study. Separately vary-561

ing the parameter C15, C25 and C44 does not produce significant temperature rise (<3 K),562

which is consistent with the corresponding low sensitivity indices in Fig. 16a. The variation of563

peak temperature over C33-C66 plane is shown in Fig. 18a. Similar to the single crystal case,564

the plot indicates a convex shape with varying C66 for fixed C33 and a linear variation with565

C33 for a fixed C66. In the present case, the curvature does vary with the value of C33, which566

indicates some interactive effects between the two most influential parameters.567

5.3.2 Plastic deformation mechanisms568

Plastic deformation within the polycrystal mesostructure includes the crystallographic slip569

within each crystal, and the interaction between the crystals. The initial dislocation density570

range is taken to be larger ([0.0307 micro-m−2, 3.07 micro-m−2]) in view of the high potential571

variability of this parameter as a function of processing conditions.572
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Figure 18: Variation of peak temperature over (a) C44-C23 plane and (b) n1-n3 plane for
polycrystal cases.
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Figure 19: Computation of the nonlocal peak temperature. The dots represent integration
points within the specimen discretization. The circles represent the searching areas with the
critical radii. The central point (marked as red in the electronic version of the manuscript) is
the position where the nonlocal average is computed.

In the current case, we have employed a nonlocal definition of the primary response function573

(i.e., peak temperature) to ensure that numerical singularities introduced due to irregular ele-574

ment shapes or artificial viscosity do not pollute the sensitivity results. The response function575

is described as the distance-weighted average maximum temperature over a circular domain.576

As shown in Fig. 19, the peak nonlocal temperature at an arbitrary position x̂ is computed as577

the weighted temperature over neighbor elements within the circular domain defined by the578

critical radius Rc. The nonlocal weight w(x, x̂) of temperature at x with respect to the center579

x̂ is expressed using the Wendland Radial Basis function:580

w(x, x̂) =


(
1− ||x−x̂||Rc

)4(
4 ||x−x̂||Rc

+ 1
)
, ||x− x̂|| <= Rc

0, ||x− x̂|| > Rc
(24)

The time evolution of the peak nonlocal temperatures (i.e., the maximum nonlocal temper-581

ature over the entire domain of the specimen) obtained using different critical radii are shown582

in the Fig. 20. The results are generated using the model parameters stated in Section 4. The583
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Figure 20: Maximum temperature-time curves with different critical radii.

element size used in the discretization of the domain is approximately 10 micro-m. The general584

trend of the time evolution of the peak nonlocal temperature does not significantly change by585

the nonlocal radius, indicating that the numerical singularities do not appear to significantly586

affect the peak temperature even when local (i.e., element-wise) peak temperature is chosen587

as the response function. The magnitude of the temperatures naturally reduce with increasing588

nonlocal radius. The sensitivity analysis below employs a nonlocal radius of 20 micro-m.589

The sensitivities were assessed based on 128 million predictions using the surrogate model590

trained with approximately 1280 FE simulations. The sensitivity indices and index convergence591

are shown in Fig. 21.592
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Figure 21: Summary of (a) sensitivity indices and (b) convergence for plastic parameters in
polycrystal specimen.

The results of the sensitivity indices are consistent with those from the single crystal anal-593

yses that the dislocation generation (n1) and annihilation (n2 or n3) along with phonon drag594

mechanisms (γ̇ro and Dro) primarily describe the plastic deformation and dissipation processes595
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that occur under the applied dynamic loading. The distribution functions computed based on596

the OAT approach (Fig. 22) also indicate that, while the overall contributions and variabilities597

differ from those computed based on the GSA, the effects of phonon drag and dislocation598

density evolution are dominant. The key dislocation density evolution parameters that de-599

scribe the generation and annihilation terms interact in a nonlinear fashion to describe the600

overall dissipative response and consequent temperature rise in the mesostructure, as shown601

in Fig. 18b. An interesting observation is that less dislocation generation (small n1) and more602

dislocation annihilation (larger n2 or n3) lead to larger plastic deformation. This is due to603

the fact that the transition to phonon drag mechanism is significantly influenced by the ratio604

τα/gα while smaller slip strength leads to earlier transition.605
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Figure 22: Probability distributions for peak temperature resulting from the OAT analysis
of the individual plasticity parameters for polycrystal specimen.

Both OAT and GSA in single crystal and polycrystal specimen indicate that the thermal606

activation mechanism has little contribution to the temperature at the current time scale and607

load amplitude, while the phonon drag mechanism, instead, has much larger slip rate and608

dominates the shear deformation.609

6 Conclusion610

This manuscript presented the investigations of sensitivity of the response of crystalline β-611

HMX with respect to anisotropic elasticity constants and crystal plasticity properties under612

given impact loading through the proposed parameter sensitivity analysis framework. The613

results show that the anisotropic elasticity coefficients in the monoclinic crystalline have a614

modest effect on the energy dissipation and temperature rise dominated by sensitivities of a615

few coefficients. Among the two primary slip mechanisms, phonon drag appears dominant616

within the load rate amplitude regimes considered in this study. The dominating and non-617

dominating coefficients, slip mechanisms or dislocation evolution kinetics are identified through618

both OAT and GSA method, and the discrepancy between results are observed. The initial619

dislocation density appears to be not particularly influential. The quantified sensitivities of620
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these mechanisms point to the main deformation mechanisms contributing to the complicated621

physical phenomena observed at mesoscale. The outcomes of the present analyses will be622

employed to suggest evolution laws that can capture the localized behavior by only including623

the physics contributing to the behavior of interest.624
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7 Appendix: Tensor of elastic moduli629

The vector representations of the deviatoric stress and strain are expressed with five indepen-630

dent components as [34]:631

devτ → {τ ′} = { 1√
2

(τ ′11 − τ ′22)
√

2

3
τ ′33

√
2τ ′12

√
2τ ′13

√
2τ ′23}T

devεe → {εe′} = { 1√
2

(εe′11 − εe′22)
√

2

3
εe′33

√
2εe′12

√
2εe′13

√
2εe′23}T

(25)

The deviatoric and hydrostatic components of the constitutive law are written in the matrix632

notation as:633

{τ ′} = [C̃ed]{εe′}+ {H̃e}tr(εe)

pτ = {H̃e}T {εe′}+ M̃ etr(εe)
(26)

where [·] indicates the matrix representation of a tensor. The contracted forms of the fourth634

order deviatoric elasticity tensor C̃ed, the deviatoric-isochoric elastic coupling tensor H̃e and635

the elastic volumetric coefficient M̃ e derived with respect to the crystal axis (indicated by the636

subscript 0) of the monoclinic lattice are:637

[Ced]0 =


C?11 C?12 0 C?14 0

C?12 C?22 0 C?24 0

0 0 C?33 0 C?35
C?14 C?24 0 C?44 0

0 0 C?35 0 C?55

 (27)
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where638

C?11 =
C11

2
− C12 +

C22

2

C?12 = −
√

3

6
(C11 − 2C13 − C22 + 2C23)

C?14 = C15 − C25

C?22 =
1

6
(C11 + 2C12 − 4C13 + C22 − 4C23 + 4C33)

C?24 = −
√

3

3
(C15 + C25 − 2C35)

C?33 = 2C44, C?35 = 2C46, C?44 = 2C55, C?55 = 2C66

(28)

639

{He}0 = [H?
1 H?

2 0 H?
4 0] (29)

where640

H?
1 =

√
2

6
(C11 + C13 − C22 − C23)

H?
2 = −

√
6

18
(C11 − 3C23 − 3C33 − 3C13 + 2C12 + C22 +

2|C13|2

C13
+

2|C23|2

C23
+
|C33|2

C33

H?
4 =

√
2

3
(C15 + C25 + C35)

(30)

641

M e
0 =

1

9
(C11 + 2C12 + 2C13 + C22 + 2C23 + C33) (31)

The tensor of elastic moduli in the intermediate configuration is obtained as:642

C̃ed = (C⊗C) : Ced0 : (C⊗C)T (32)

where C = ReC0 represents the rotation from crystal coordinates to the global coordinates,643

and (C⊗C)ijAB = CiACjB. The initial orientation C0 is prescribed as part of the crystal644

initial state in terms of the Euler angles in Kocks convention.645

References646

[1] R. W. Armstrong. Dislocation-assisted initiation of energetic materials. Central European647

Journal of Energetic Materials, 2(3):21–37, 2005.648

[2] R. W. Armstrong. Dislocation mechanics aspects of energetic material composites. Rev.649

Adv. Mater. Sci, 19:13–40, 2009.650

[3] R. A. Austin, N. R. Barton, W. M. Howard, and L. E. Fried. Modeling pore collapse and651

29



chemical reactions in shock-loaded hmx crystals. Journal of Physics: Conference Series,652

500(5):052002, 2014.653

[4] R. A. Austin, N. R. Barton, J. E. Reaugh, and L. E. Fried. Direct numerical simulation654

of shear localization and decomposition reactions in shock-loaded hmx crystal. Journal655

of Applied Physics, 117(18):185902, 2015.656

[5] N. R. Barton, N. W. Winter, and J. E. Reaugh. Defect evolution and pore collapse657

in crystalline energetic materials. Modelling and Simulation in Materials Science and658

Engineering, 17(3):035003, 2009.659

[6] A. Barua, S. Kim, Y. Horie, and M. Zhou. Ignition criterion for heterogeneous energetic660

materials based on hotspot size-temperature threshold. Journal of Applied Physics, 113661

(6):064906, 2013.662

[7] D. Bedrov, G. D. Smith, and T. D. Sewell. Temperature-dependent shear viscosity coeffi-663

cient of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (hmx): A molecular dynamics664

simulation study. The Journal of chemical physics, 112(16):7203–7208, 2000.665

[8] D. Bedrov, C. Ayyagari, G. D. Smith, T. D. Sewell, R. Menikoff, and J. M. Zaug. Molec-666

ular dynamics simulations of hmx crystal polymorphs using a flexible molecule force field.667

Journal of Computer-Aided Materials Design, 8(2-3):77–85, 2001.668

[9] R. R. Bernecker. Observations on the hugoniot for hmx. In AIP Conference Proceedings,669

370(1):141–144, 1996.670

[10] F. P. Bowden and A. D. Yoffe. Initiation and growth of explosion in liquids and solids.671

CUP Archive, 1985.672

[11] S. Chatterjee and A. S. Hadi. Sensitivity analysis in linear regression, volume 327. John673

Wiley & Sons, 2009.674

[12] C. S. Coffey and J. Sharma. Lattice softening and failure in severely deformed molecular675

crystals. Journal of Applied Physics, 89(9):4797–4802, 2001.676

[13] H. Cui, G. Ji, X. Chen, Q. Zhang, D. Wei, and F. Zhao. Phase transitions and mechanical677

properties of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine in different crystal phases678

by molecular dynamics simulation. Journal of Chemical & Engineering Data, 55(9):3121–679

3129, 2010.680

[14] H. Czerski and W. G. Proud. Relationship between the morphology of granular681

cyclotrimethylene-trinitramine and its shock sensitivity. Journal of Applied Physics, 102682

(11):113515, 2007.683

30



[15] C. Deng, X. Xue, Y. Chi, H. Li, X. Long, and C. Zhang. Nature of the enhanced self-684

heating ability of imperfect energetic crystals relative to perfect ones. The Journal of685

Physical Chemistry C, 121(22):12101–12109, 2017.686

[16] J. J. Dick, D. E. Hooks, and R. Menikoff. Elastic–plastic wave profiles in cyclotetram-687

ethylene tetranitramine crystals. Journal of Applied Physics, 96(1):374–379, 2004.688

[17] J. E. Field. Hot spot ignition mechanisms for explosives. Accounts of chemical Research,689

25(11):489–496, 1992.690

[18] J. E. Field, G. M. Swallowe, and S. N. Heavens. Ignition mechanisms of explosives during691

mechanical deformation. Proceedings of the Royal Society of London A: Mathematical,692

Physical and Engineering Sciences, 382(1782):231–244, 1982.693

[19] H. Christopher Frey and S. R. Patil. Identification and review of sensitivity analysis694

methods. Risk Analysis, 22(3):553–578, 2002.695

[20] H. J. Frost and M. F. Ashby. Motion of a dislocation acted on by a viscous drag through696

an array of discrete obstacles. Journal of Applied Physics, 42(13):5273–5279, 1971.697

[21] H. G. Gallagher, J. C. Miller, D. B. Sheen, J. N. Sherwood, and R. M. Vrcelj. Mechanical698

properties of β-hmx. Chemistry Central Journal, 9(1):22, 2015.699

[22] Y. F. Gao and Z. Suo. The orientation of the self-assembled monolayer stripes on a700

crystalline substrate. Journal of the Mechanics and Physics of Solids, 51(1):147–167,701

2003.702

[23] G. T. Gray, W. R. Blumenthal, D. J. Idar, and C. M. Cady. Influence of temperature on703

the high-strain-rate mechanical behavior of pbx 9501. volume 429, pages 583–586, 1998.704

[24] N. Grilli and M. Koslowski. The effect of crystal orientation on shock loading of single705

crystal energetic materials. Computational Materials Science, 155:235–245, 2018.706

[25] D. B. Hardin, J. J. Rimoli, and M. Zhou. Analysis of thermomechanical response of707

polycrystalline hmx under impact loading through mesoscale simulations. AIP Advances,708

4(9):097136, 2014.709

[26] M. Hiratani and E. M. Nadgorny. Combined model of dislocation motion with thermally710

activated and drag-dependent stages. Acta Materialia, 49(20):4337–4346, 2001.711

[27] T. Homma and A. Saltelli. Importance measures in global sensitivity analysis of nonlinear712

models. Reliability Engineering & System Safety, 52(1):1–17, 1996.713

[28] D. E. Hooks, K. J. Ramos, and A. R. Martinez. Elastic-plastic shock wave profiles in714

oriented single crystals of cyclotrimethylene trinitramine (rdx) at 2.25 gpa. Journal of715

Applied Physics, 100(2):024908, 2006.716

31



[29] R. Hu, C. Prakash, V. Tomar, M. Harr, and I. E. Gunduzand C. Oskay. Experimentally-717

validated mesoscale modeling of the coupled mechanical–thermal response of ap–htpb718

energetic material under dynamic loading. International Journal of Fracture, 203(1-2):719

277–298, 2017.720

[30] M. Khan, A. Pal, and C. R. Picu. Dislocation mobility and critical stresses at finite721

temperatures in molecular crystal cyclotetramethylene tetranitramine (β-hmx). Modelling722

and Simulation in Materials Science and Engineering, 26(8):085009, 2018.723

[31] K. Y. Lee, R. Gilardi, K. H. Liebenberg, R. W. Armstrong, and J. J. Gilman. Structure724

and properties of energetic materials. Research Society, Pittsburgh, PA, 296:237, 1993.725

[32] G. Li, H. Rabitz, P. E. Yelvington, O. O. Oluwole, F. Bacon, C. E. Kolb, and J. Schoen-726

dorf. Global sensitivity analysis for systems with independent and/or correlated inputs.727

The Journal of Physical Chemistry A, 114(19):6022–6032, 2010.728

[33] E. B. Marin. On the formulation of a crystal plasticity model. Technical report, Sandia729

National Laboratories, 2006.730

[34] E. B. Marin and P. R. Dawson. On modelling the elasto-viscoplastic response of metals731

using polycrystal plasticity. Computer Methods in Applied Mechanics and Engineering,732

165(1-4):1–21, 1998.733

[35] S. Matthies and H. R. Wenk. Transformations for monoclinic crystal symmetry in texture734

analysis. Journal of Applied Crystallography, 42(4):564–571, 2009.735

[36] H. Mecking and U. F. Kocks. Kinetics of flow and strain-hardening. Acta Metallurgica,736

29(11):1865–1875, 1981.737

[37] H. Mecking, U. F. Kocks, and H. Fischer. Hardening, recovery, and creep in fcc mono-738

and polycrystals. In Presented at the 4th Intern. Conf. on Strength of Metals and Alloys,739

Nancy, 30 Aug.-3 Sep. 1976, 1976.740

[38] R. Menikoff and E. Kober. Compaction waves in granular hmx. In AIP Conference741

Proceedings, volume 505, pages 397–400. AIP, 2000.742

[39] R. Menikoff and T. D. Sewell. Constituent properties of hmx needed for mesoscale simu-743

lations. Combustion Theory and Modelling, 6(1):103–125, 2002.744

[40] R. Menikoff, J. J. Dick, and D. E.Hooks. Analysis of wave profiles for single-crystal745

cyclotetramethylene tetranitramine. Journal of Applied Physics, 97(2):023529, 2005.746

[41] M. D. Morris. Factorial sampling plans for preliminary computational experiments. Tech-747

nometrics, 33(2):161–174, 1991.748

32



[42] E. Nes. Modelling of work hardening and stress saturation in fcc metals. Progress in749

Materials Science, 41(3):129–193, 1997.750

[43] J. Neyman. On the two different aspects of the representative method: the method of751

stratified sampling and the method of purposive selection. Journal of the Royal Statistical752

Society, 97(4):558–625, 1934.753

[44] S. J. P. Palmer and J. E. Field. The deformation and fracture of β-hmx. Proc. R. Soc.754

Lond. A, 383(1785):399–407, 1982.755

[45] G. J. Piermarini, S. Block, and P. J. Miller. Effects of pressure and temperature on756

the thermal decomposition rate and reaction mechanism of. beta.-octahydro-1, 3, 5, 7-757

tetranitro-1, 3, 5, 7-tetrazocine. Journal of Physical Chemistry, 91(14):3872–3878, 1987.758

[46] ICSU Scientific Freedom Policy. International tables for crystallography volume a: Space-759

group symmetry. 2013.760

[47] C. Prakash, I. E. Gunduz, C. Oskay, and V. Tomar. Effect of interface chemistry and761

strain rate on particle-matrix delamination in an energetic material. Engineering Fracture762

Mechanics, 191:46–64, 2018.763

[48] H. Rabitz, M. Kramer, and D. Dacol. Sensitivity analysis in chemical kinetics. Annual764

Review of Physical Chemistry, 34(1):419–461, 1983.765

[49] P. J. Rae, H. T. Goldrein, S. J. P. Palmer, J. E. Field, and A. L. Lewis. Quasi–static766

studies of the deformation and failure of β–hmx based polymer bonded explosives. In767

Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering768

Sciences, volume 458, pages 743–762. The Royal Society, 2002.769

[50] C. E. Rasmussen. Gaussian processes in machine learning. In Advanced Lectures on770

Machine Learning, pages 63–71. Springer, 2004.771

[51] E. Rohan and B. Miara. Homogenization and shape sensitivity of microstructures for772

design of piezoelectric bio-materials. Mechanics of Advanced Materials and Structures, 13773

(6):473–485, 2006.774

[52] A. Saltelli and P. Annoni. How to avoid a perfunctory sensitivity analysis. Environmental775

Modelling & Software, 25(12):1508–1517, 2010.776

[53] A. Saltelli, K. Chan, and E. M. Scott. Sensitivity analysis, volume 1. Wiley New York,777

2000.778

[54] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana,779

and S. Tarantola. Global sensitivity analysis: the primer. John Wiley & Sons, 2008.780

33



[55] K. W. Schuler and J. W. Nunziato. The dynamic mechanical behavior of polymethyl781

methacrylate. Rheologica Acta, 13(2):265–273, 1974.782
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