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Abstract

Identification and inverse problem techniques play an important role in the characterization and
modeling of geotechnical systems. These techniques have been used in estimation of system pa-
rameters, model development and calibration, as well as simulation of earthquake ground motions.
The recent availability of high quality seismic records of sites equipped with downhole accelerom-
eter arrays led to a burgeoning of identification and inverse problem studies involving geotechnical
systems. This paper presents a survey of system identification techniques and analyses of full- and
small-scale soil systems, with an emphasis on geotechnical earthquake engineering problems.

1 Introduction
Geotechnical structures and soil deposits exhibit a broad range of response patterns when subjected
to dynamic excitations. The response of these systems depends on soil stiffness properties, degree
of saturation and pore water pressure, stratigraphy, topography, and other factors. The usual forward
boundary-value-problem analysis requires the availability of an analytical or a computational model of
the system and a full set of associated parameters. This model and parameters are then used to predict
the system response to external loading conditions.

Soil-sample experiments (e.g., triaxial tests) have been widely used to evaluate parameters and
calibrate models of geotechnical systems. Because of limitations in reproducing the complex in-situ
stress and pore fluid conditions, the consensus is that these tests may not fully reflect reality. Seis-
mic records and experimental results of full- and small-scale tests are a unique source of information
which complement knowledge derived from soil-sample testing. However, thorough monitoring of the
seismic excitation and associated response of massive geotechnical systems is a significant technical
challenge. Historically, only a limited number of sensors have been used to monitor these systems.

System identification and inverse problem analyses play an important role in development, valida-
tion and calibration of soil models, as well as estimation of in-situ properties and parameters, using
experimental and observational earthquake data. The literature pertaining to geotechnical-system iden-
tification using seismic records is rather scarce, compared for instance to structural identifications. This
limited activity reflects the problem complexity and a historical lack of data sets suited to inverse prob-
lem analyses in geotechnical earthquake engineering. The recent availability of relatively high quality
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downhole array seismic records of sites in the USA, Mexico, Japan and Taiwan led to a burgeoning of
research efforts addressing the identification of site dynamic response characteristics. Elgamal et al.
[24] and Zeghal and Elgamal [105] presented a comprehensive list of sites equipped with downhole
array instrumentation along with an overview of associated identification studies. Previously, Glaser
[40] summarized a number of identification techniques used to estimate soil properties from strong
motion recordings. In contrast, a relatively significant number of review articles were published in the
field of structural engineering [9, 37, 45, 48, 50, 55, 86]. Extensive research and analyses on relevant
system identification topics have been conducted in other fields of engineering and sciences such as
electrical engineering, automation, geophysics, and other closely related areas. This is reflected in a
substantial number of overview papers, some of which focused on specific topics, such as Bayesian
analyses [77], non-parametric identification techniques [97] and system identification of distributed
parameter systems [62, 82, 96]. A number of published books, monographs and conference proceed-
ings [5, 10, 14, 34, 51, 52, 61, 67, 71, 78, 92, 94] also covered these topics, along with other system
identification subjects.

This paper presents a review of system identification techniques and analyses of full- and small-
scale geotechnical earthquake engineering systems. The surveyed studies were categorized based on
the characteristics of involved models (Fig. 1). The following sections provide an assessment of: (1) re-
sponse characterization and pattern recognition studies, (2) time series analyses, and (3) identifications
involving constitutive (stress-strain) modeling.

2 Characterization and Pattern Recognition of System Response
Pattern recognition analyses generally consist of identifications aimed at characterizing and assessing
the nature of system response and loading conditions. Simple operations are performed on measured
output (response) and possibly input (excitation) in order to gain insight into the system properties
and response mechanisms without recourse to explicit modeling of the involved physical phenomena.
These operations are diverse and range from simple spectral ratio analyses to stress-strain imaging for
statically determinate systems (Fig. 1). Information derived from system characterization studies have
been used in modeling and parameterization of the involved phenomena.

2.1 Transfer function and spectral analyses
Transfer functions, or ratios of the Fourier amplitude spectra of input and output acceleration pairs,
have been widely employed to estimate natural frequencies of vibrations and associated (shear and
normal) wave propagation velocities of sites, earth dams, and other systems [3, 12, 23, 39, 49, 89,
99]. Spectral ratios are adequate in analyses of system response to non-destructive forced-vibrations,
as well as low and moderate amplitude earthquakes, in which stiffness reductions are insignificant.
Slight modifications are required to analyze large amplitude motions accompanied by nonlinearities
and softening of soil materials. For instance, transfer functions may be computed for successive or
overlapping time windows which have relatively little variations in acceleration amplitude. Chang
et al. [17] used such a technique to estimate shear wave velocities of the Lotung (Taiwan) site using
acceleration time-histories of the Large Scale Seismic Test (LSST) downhole array [93]. For any
two-strata system of soil comprised between a surface and two consecutive downhole accelerometers
(Fig. 2), the average fundamental frequency, fA, of the upper soil layer A and the system composite
fundamental frequency, f , were estimated using transfer functions. The fundamental frequency, fB, of
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Figure 2: Schematic of a 2-layer soil profile used in transfer function analyses.

the underlying layer B was then computed using the following implicit wave propagation equation [66]:

tan
[(

π

2
f
fA

)(
π

2
f
fB

)]
=

ρB

ρA

HB

HA

fB

fA
(1)

in which ρA and ρB are respectively mass densities of layers A and B, and HA and HB are layer
thicknesses (Fig. 2). The associated shear wave velocities were evaluated using: VA = 4HA fA and
VB = 4HB fB. These velocities and the equivalent linear program Shake were subsequently used to
estimate the shear modulus reduction curves of soil strata at Lotung site (Fig. 3). Wen [98] also used
this spectral ratio method to study the Lotung LSST data and concluded that the response of this site
was marked by strong nonlinearities during earthquakes with peak ground accelerations larger than
approximately 0.15 g. Zorapapel and Vucetic [114] employed transfer functions of the 1987 Wildlife
Refuge seismic records to assess the relationship between lengthening of site fundamental period, am-
plification factors and excess pore pressure build-up. Ghayamghamian and Motosaka [39] employed
a time-window analysis to assess the decrease in fundamental resonant frequency, f , with increase in
acceleration amplitudes at Chiba (Japan) site. Normalized shear modulus reduction curves of surfacial
soil strata were obtained using; (G/Go) = ( f/ fo)

2, in which fo is low-amplitude shaking resonant
frequency. Finite differentiation schemes [104] were employed to estimate the associated strains. The
transfer function analysis based on downhole acceleration data may lead to erroneous results due to
wave reflections at the ground surface and layer interfaces. A study by Safak [84] to assess the ade-
quacy of transfer functions concluded that the cross-spectral ratios approach provides probabilistically
more reliable estimates than the simple transfer function technique. Safak suggests that spectral ratios
should not be used to determine site amplification from downhole accelerations.

A cross-spectral analysis was used by Elgamal, Zeghal and co-workers [30] to identify the modal
configurations of level sites equipped with dense vertical (downhole) arrays such as Lotung. The
amplitude of cross-spectrum energy function, si j( f ), of two downhole array acceleration records ai
and a j (as shown in Fig. 2), peaks at resonant and input frequencies. A peak represents resonance if
the corresponding phase angle approaches 0o or 180o. The amplitude of the kth modal configuration
φk (of frequency fk) at the ith instrument station (at a depth zi) may then be computed using:

φk(zi) =±
√

sii( fk) (2)

in which sii is auto-spectral density function amplitude of ai.
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Figure 3: Shear modulus reduction curves of Lotung site evaluated using transfer function analyses
(by Chang et al. [17]).
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Figure 4: Displacement and lateral normal strain field of a pile-soil system as identified using spectral
interpolations by Zeghal et al. [109].

2.2 Spectral interpolations and visualization
As mentioned above, a limited number of sensors is commonly used to monitor the response of dis-
tributed parameter geotechnical systems. The information provided by these sensors is often patchy
and interpolations are necessary to assess the totality of a system response. Zeghal, Oskay and cowork-
ers [111, 109] used global interpolations to reconstitute the displacement and deformation fields of
centrifuge models of soil systems:

u(x, t) =
n

∑
i=1

αi(t)φi(x, t) (3)

in which u(x, t) is displacement as a function of space, x, and time, t, coordinates, φi are a set of inter-
polation (shape) functions that satisfy the system kinematic boundary conditions, αi are generalized
coordinates, and n is number of used functions. The modal configurations of the linearized vibrations
were used as shape functions, and were adaptively varied in time to reflect any changes in system stiff-
ness properties. These changes were assessed using cross-correlations of recorded accelerations, and
the generalized coordinates αi were identified using least squares optimizations of discrepancies be-
tween recorded and computed (Eq. 3) motions. Figure 4 displays the optimal displacement and lateral
normal strain fields of a water saturated soil-pile system at a selected time instant, as evaluated using
measured soil accelerations and displacements, as well as pile bending strains. Visual animation of
the response of this system revealed salient complex multi-dimensional mechanisms, especially after
the onset of liquefaction within the uppermost strata. Zeghal and Abdel-Ghaffar [103] used a similar
technique to reconstitute the motion of Long Valley (California) earth dam.
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Figure 5: Shear wave velocity profile of an Imperial Valley site identified by Luco and Wong [64]
using forced-vibration tests of a foundation.

2.3 Spectral analysis of forced-vibration tests
Non-destructive forced-vibration tests have been used to characterize the low strain in-situ dynamic
properties of soil systems [2, 25]. In this regard, spectral analysis of surface waves (SASW) method
has gained wide acceptance in evaluation of site stiffness and damping parameters. SASW involves
separate testing and identification phases. In testing phase, surface waves are generated by applying
vertical excitations of various frequencies on the surface of a site. The generated waves are monitored
using a number of motion transducers positioned on the surface away from the source of excitation.
In identification phase, stiffness and possibly damping properties of underlying soils are evaluated
by minimizing discrepancies between computed and experimental wave dispersion curves. SASW
technique was pioneered by Stokoe and coworkers [69, 90] and developed further by Stokoe and
others [70, 83, 101].

Forced-vibration tests of foundations were employed by Luco and Wong [64, 65] to identify low-
strain stiffness and damping properties of underlying soil strata. The identifications were based on a
minimization of differences between theoretical impedance functions [4] and those directly computed
using forced-vibration results. Figure 5 exhibits the shear wave velocities of an Imperial Valley (Cal-
ifornia) site as identified using such a foundation test data, along with velocities estimated using the
SASW technique. The effects of vibration frequency range, incomplete set of impedance functions
and presence of errors on the identification procedure were also studied. de Barros and Luco [22] ap-
plied a similar approach to identify impedance functions and soil properties of the surfacial layers of
the Hualien (Taiwan) LSST site, and argued that the observed contrast in shear wave velocity between
top and underlying layers may not be as sharp as geophysical test measurements suggested.
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2.4 Correlation analyses
Average seismic wave velocities of level sites were also assessed using correlation analyses of down-
hole acceleration records [11]. The cross-correlation function of accelerations recorded at 2 stations
i and j (Fig. 2) reaches a major peak at a delay, td , which corresponds to the travel time for seismic
waves to propagate between these two stations. An average velocity of wave propagation may then
be computed using v = di j/td , in which di j is the distance between stations i and j. Elgamal, Zeghal
and coworkers [29] used this approach to obtain free-field shear wave velocity profiles at the Lotung
site. An averaging scheme over a number of low amplitude events was used to maximize the accuracy
of estimated correlations [11]. Two major peaks were observed in the cross-correlation functions of
any pair of surface and downhole accelerations, hinting the presence of incident and reflected compo-
nents in recorded motions (Fig. 6). Shear wave velocity profiles of Hualien LSST site were identified
using this technique by Gunturi et al. [44]. Different velocities were estimated for North-South and
East-West directions, revealing evidence of stiffness anisotropy.

Wave velocities identified using cross-correlation of entire time-histories of strong-motion acceler-
ations reflect rather an average over the range of induced strains. Correlation analyses were therefore
conducted for successive time-windows which have only minor variations in motion amplitude, to as-
sess the effect of soil softening on wave velocities. Davis [20] proposed an alternative approach to
address the impact of stiffness reductions and degradations. The time step of acceleration records was
compressed adaptively so that to maximize the correlation function peaks. This time compression was
then used to evaluate shear wave velocity variations with time, v = v(t). Specifically, wave velocities
were obtained as the ratio v(t) = d/(td + tc(t)), in which tc(t) is time compression. Such estimates
of wave velocities were used to identify stiffness degradation at Port Island (Japan) site during the
Kobe earthquake. Cross-correlation analyses are most appropriate for coherent earthquake motions
with rich frequency content. When accelerations have a narrow bandwidth, correlation functions may
fail to display clearly distinct peaks. Kawakami and Haddadi [54] identified the travel velocities of
incident and reflected waves between downhole array stations using a modified correlation function
which improves peak separation. This function was selected to be the inverse Fourier transform of:

Y (ωi) = N∆t


H(ωi)

1+ |H(ωi)|2
N−1

∑
n=0

1
1+ |H(ωn)|2

 , i = 1,2, . . . ,N (4)

in which ωi = 2πi/(N∆t) is discrete frequency variable (i refers to the ith sample, N is total num-
ber of samples, and ∆t is time step), and H(ωi) is transfer function of input and output measurement
pairs (note that the inverse Fourier transform of H(ωi) corresponds to the usual cross-correlation func-
tion [73]). This modified cross-correlation was employed to analyze acceleration records of the Chiba,
Port Island and TTRL sites in Japan, and was shown that to be effective in detecting arrival times of
incident and reflected waves as well as identifying site amplification and nonlinearities (Fig. 7).

2.5 Stress-strain imaging
One of the pioneering investigations in geotechnical system identification using earthquake records
was by Abdel-Ghaffar and Scott [1]. An identification procedure was developed to assess the dynamic
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Figure 6: Cross-correlation functions of Lotung free-field accelerations (by Elgamal et al. [29]).
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Figure 7: Modified cross-correlation functions of Chiba site for three different earthquakes (as evalu-
ated by Kawakami and Haddadi [54]).
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response of earth dams using recordings of crest and toe accelerations. The developed technique was
used to analyze the response of Santa Felicia (California) earth dam during the 1976 San Fernando
Earthquake. Absolute accelerations at the crest and relative displacements between the crest and toe
were used, along with one- and two-dimensional shear beam models (having increasing and constant
shear modulus with depth, respectively), to construct loops of the dam hysteretic response. For each
hysteresis loop (Fig 8), the shear moduli for 1-D and 2-D shear beam models were then estimated
using the following equations:

G1-D = ρ
Ψ̃(y)
Ψ(y)

(vso

ω

)2
(

ρgh
2

)1/3 (ẍ+ z̈) max
xmax

(5)

G2-D = ρ

(vs

ω

)2 (ẍ+ z̈) max
x max

(6)

in which vso and vs are respectively shear wave velocity parameters for the 1-D and 2-D models (as
obtained using earthquake responses or field testing), ω is natural frequency of the fundamental mode
of vibration evaluated using a spectral analysis, (ẍ+ z̈) max and x max are respectively maximum crest
acceleration and relative crest-toe displacement, Ψ̃ and Ψ are respectively shear stress and strain modal
distribution and participation factors (of the employed 1-D shear beam models), h is height of dam,
ρ is mass density of dam material, and g is gravitational acceleration. The associated damping ratios
were evaluated based on estimates of energy dissipated within each hysteresis loop. Lin and Chao
[60] conducted a number of nonlinear numerical simulations to assess the capabilities of the technique
proposed by Abdel-Ghaffar and Scott, and suggested guidelines to obtain improved estimates of shear
moduli and damping factors. The proposed approach was used to analyze earthquake recordings of
Santa Felicia and Shin-San (Taiwan) dams.

Level sites and infinite slopes are statically determinate systems when subjected to 1-dimensional
vertical wave propagation. Consequently, Zeghal, Elgamal, and co-workers [27, 29, 104, 107] pro-
posed a non-parametric identification technique (referred to as stress-strain imaging) to identify shear
stress-strain histories directly from downhole and surface acceleration records of such systems. Lat-
eral shear stresses were evaluated through a simple integration of the equation of motion with respect
to depth coordinate:

τ(z, t) =
∫ z

0
ρü(ζ, t)dζ (7)

in which τ(z, t) is shear stress at depth z and time instant t, ρ is mass density and ü(ζ, t) is absolute
lateral acceleration at level ζ and time instant t. Discrete estimates of these stresses were computed
at the location of accelerometers and halfway in between using numerical integration techniques. The
corresponding shear strains were obtained using the finite difference counterpart of:

γ(z, t) =
∂u(z, t)

∂z
(8)

This technique was used to analyze the seismic response of Lotung [107], Treasure Island [29],
Wildlife Refuge [107], and Port Island sites [27] as well as a number of centrifuge test models [28,
108]. The conducted analyses revealed valuable information on the mechanisms of site amplification
and liquefaction, as well as on the characteristics of soil stress-strain response. Figure 9 exhibits the
shear stress-strain time history of Wildlife Refuge (California) site during the 1987 Superstition Hills
earthquake which was identified directly from accelerations recorded at 7.5 m depth and on ground
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Figure 8: Acceleration-relative displacement hysteresis loops of Santa Felicia dam during San Fer-
nando earthquake (by Abdel-Ghaffar and Scott [1]).
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Figure 9: Shear stress-strain history of Wildlife Refuge site during the 1987 Superstition Hills earth-
quake( Zeghal et al. [107]).

surface. This time history revealed significant stiffness degradation associated with pore water pres-
sure buildup, and a dilative response at large shear strains. These findings were consistent with the
outcome of similar identifications conducted using experimental data of centrifuge models of level
sites and infinite slopes [27, 108].

Ghayamghamian and Kawakami [38], and Taboada U. et al. [91] applied this technique to analyze
earthquake acceleration records of downhole array sites in Japan, and Mexico, respectively. In a recent
publication, Zeghal and Abdel-Ghaffar [103] applied the same approach to obtain approximate shear
stress-strain estimates of Long Valley earth dam. Davis and Berrill [21] presented a slight modification
to Zeghal and Elgamal’s stress-strain imaging technique. The shear stress and strain fields were deter-
mined using a set of trigonometric interpolation functions instead of finite difference approximations.
This method was applied to downhole array recordings of Port Island site.

3 Time Series Analysis
Realistic estimates of site specific accelerations are indispensable in seismic hazard and structural risk
evaluations. Time series models have been used in simulating ground accelerations and identifying
their stochastic characteristics. In these models, ground motions are idealized using random processes
and calibrated by target (real) earthquake data. The calibrated models are then employed to generate
synthetic accelerations having similar characteristics as target motions in terms of frequency content,
variance and other characteristics.

Time series of various types have been used in ground motion simulations, including autoregres-
sive (AR) and autoregressive-moving-average (ARMA) models, as well as non-linear Wiener time
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series [76]. Some of the ARMA models have been derived on the basis of equivalent linear idealiza-
tions of underlying physical phenomena. The time series analysis based on downhole array recordings
suffer from interference effects associated with wave reflections at the ground surface as discussed for
transfer function approach above (Section 2.1). This review paper presents a number of representative
publications and recent studies.

3.1 Stochastic ground motion modeling
Stationary random processes are widely represented using the difference equation:

y[t] =
n

∑
i=1

aiy[t− i]+
m

∑
j=0

b jx[t− j] (9)

in which y[t] is process output at time t (where [·] indicates a discrete process), x[t] is input time series
(which may be considered to be white noise), ai are autoregressive (AR) coefficients, bi are moving
average (MA) coefficients, and n and m are AR and MA orders, respectively. When the MA order is
zero (m = 0), Eq. 9 represents an AR model which is based solely on time-history of the measured
response y[t]. In general, Eq. 9 represents an autoregressive moving average (ARMA) model (m > 0
and n > 0) where the effects of input history x[t] are added to the AR process. Identification of such
models require techniques to evaluate both AR and MA coefficients. Some of these techniques were
outlined by Box and Jenkins [13].

Ground accelerations are generally non-stationary with time-varying amplitude and possibly fre-
quency contents. Various techniques have been used to address non-stationarity in time series analysis.
The simplest approach consists of dividing the acceleration records into successive pseudo-stationary
pieces, and model parameters are independently identified for each piece. This approach was used
by Jurkevics and Ulrych [53] to analyze the Orion Boulevard (California) acceleration records during
the 1971 San Fernando earthquake (Fig. 10). An AR model was selected and the associated parame-
ters were identified by maximizing the data entropy. Popescu and Demetriu [80] developed AR and
ARMA models of a 1977 Romanian earthquake by applying a similar segmentation technique.

Earthquake accelerations may also be transformed into stationary signals through a time-dependent
amplitude scaling, which is inversely proportional to the variance (i.e., modulation of the signals using
an envelope function) [53]. Such an approach was used by Polhemus and Cakmak [79] to analyze
the San Fernando earthquake accelerations of Orion Boulevard (Fig. 11). A polynomial function was
employed to describe the variation of the acceleration variance with time, and an ARMA model was
subsequently fitted to the transformed stationary series. Ólafsson and Sigbjornsson [74] used a similar
envelope function approach to obtain an ARMA model for Icelandic earthquakes based on a set of 54
acceleration records. Ellis and Cakmak [32] extended this approach to the simultaneous modeling of
multiple event earthquakes.

Time series models with time-varying parameters enable modeling of non-stationary ground mo-
tion, without recourse to transformations to stationary signals. Jurkevics and Ulrych [53], and Gersch
and Kitagawa [36] used time varying AR models to analyze acceleration records of San Fernando
earthquake. Conte et al. [19] extended this approach to ARMA models and analyzed earthquake
ground motions of Lotung and El Centro (California) sites. An iterative Kalman filtering was used
to evaluate the associated parameters. Skjærbæk et al. [88] compared time varying ARMA models of
1979 Imperial Valley earthquake with those based on an envelope function approach [79], and con-
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Figure 10: Acceleration response spectra of a series of simulated ground accelerations at Orion Boule-
vard, California (by Jurkevics and Ulrych [53]).

cluded that these techniques have comparable capabilities in addressing amplitude non-stationarity of
earthquake motions.

The fundamental problem of selecting the order of time series models was partially addressed by
Chang et al. [18]. Time series of orders 2,1 (i.e., n= 2 and m= 1) and 4,1 were argued to be effective in
modeling California ground accelerations. This study also concluded that the time-dependent variance
was the main contributor to non-stationarity of these accelerations.

3.2 Time series modeling using downhole array records
Surface and downhole accelerations of sites may be used as input-output pairs in time series models
(x and y respectively, in Eq. 9). Glaser [41] analyzed site amplification and liquefaction at Wildlife
Refuge site during Elmore Ranch and Superstition Hills earthquakes using surface and 7.5 m depth
accelerations records. The site was idealized using a multi-degree-of-freedom system and modeled
using time-dependent ARMA models. The associated parameters were estimated using a recursive
Kalman filter algorithm, and linked to modal frequencies, critical damping and power participation
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Figure 11: Recorded acceleration history (top) at Orion Boulevard during the San Fernando earthquake
and corresponding time series simulation (bottom, as evaluated by Polhemus and Cakmak [79]).
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Figure 12: Instantaneous spectrum analysis for San Fernando earthquake and two simulated accelero-
grams [36].

factors (Fig. 13). Baise, Glaser and co-workers [6, 7] utilized time dependent ARMA models to assess
the impact of soil nonlinearities on site response at Chiba, Garner Valley (California), Lotung, and Port
Island. Consistency of the estimated models was investigated by predicting site response to recorded
earthquakes other than the ones used in identification of time series parameters.

4 Identifications Involving Constitutive Modeling
Constitutive soil models have reached high levels of refinement and sophistication [113] in view of
drastic improvements in computational tools and testing technologies over the last decades. The pre-
dictive capabilities of these models remain questionable as long as they have not been calibrated using
real earthquake or other strong-motion excitations of full-scale soil systems. However, only limited
system identification research has be undertaken in this regard. Non-parametric as well as parametric
models have been used in identification analyses of soil constitutive models.

4.1 Nonparametric modeling
Non-parametric models are commonly black-box representations aimed at idealizing system behavior
based on observed response and possibly input excitations. Some non-parametric models have infinite
dimensions and introduce only minor constraints to the input-output relationship. Such non-parametric
models are generally capable of reproducing experimental or observational response data with a good
quality of fitness. However, the internal structure of these models is commonly algorithmic and may
not reflect the involved physical phenomena.

Artificial neural networks have been used by a number of researchers to idealize soil stress-strain
relationships. Ellis et al. [33] used a sequential neural network to model the constitutive behavior of
sandy materials. This model was identified using a series of triaxial compression experiments, and
has the ability to simulate unload-reload cycles and accounts for the impact of grain size distributions.
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Figure 13: Stationary spectral estimates with computed natural frequency, damping ratio and partici-
pation factor for Wildlife site during Superstition Hills earthquake [41].

Sidarta and Ghaboussi [87] modeled the soil constitutive behavior when subjected to non-uniform
stress conditions. The proposed neural network model was calibrated using finite element simulations
of triaxial compression tests. The calibrated model was thereafter used to predict soil response to a
series of actual triaxial experiments with end friction (non-uniform stress conditions). Zhu et al. [112]
developed a recursive neural network model to predict shear behavior of granular soils. This model
is capable of simulating the dilation and contraction of dense and loose soil samples, respectively.
Basheer, Najjar, and coworkers [8, 68] used static and recurrent artificial neural networks to model
the constitutive response of fine grained soils to cyclic loads and argued that recurrent artificial neural
networks were more effective than static ones. Goh [42, 43] investigated the capabilities of artificial
neural networks in the assessment of site liquefaction potential based on cone penetration test (CPT)
data. A series of CPT measurements from worldwide sites were employed to train and test artificial
neural network models, which successfully predicted the liquefaction response.

4.2 Parametric modeling
Parametric models commonly present phenomenological descriptions of the involved response mech-
anisms. The main advantage of employing parametric models is that the associated parameters often
have physical significance and characterize properties of the physical system (e.g. shear modulus as a
function of strain amplitude, G = G(γ), damping, and others). The objective of the parametric model
identification is to calibrate a selected model by estimating a set of parameters that provides an opti-
mal match between recorded and computed responses. The estimated parameters commonly include
moduli and damping factors, inelastic state variables, among others. When properly calibrated, a para-
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metric constitutive model is often expected to predict the soil response over a range of conditions. The
number of parameters that can be identified and the reliability of the identified parameters is directly
related to the availability of experimental data over the range of response domain of interest. Identifi-
cation studies based on insufficient experimental data may lead to inaccuracies in the identified model
parameters, as well as ill-posedness of the inverse problem as further discussed below. A number of
identification techniques were used by researchers to calibrate parametric soil models, ranging from
simple qualitative comparisons to sophisticated Bayesian approaches (e.g., [31, 95, 102]).

4.2.1 Statically determinate systems

The identification problem of distributed parameter systems commonly involves solution of the equa-
tions of motion and constitutive relations. The problem may be simplified substantially when a system
is statically determinate. The equations of motion of these systems suffice to directly identify the
associated stresses and strains from acceleration records (as discussed above for level sites). Such
stress-strain estimates may then be employed as input-output (strain-stress) pairs in constitutive model
calibrations.

Elgamal, Zeghal and coworkers identified the evolution of stiffness and damping parameters of
a number of level sites [29, 106] and landfills [26] by minimizing the discrepancies between stress
histories obtained through stress-strain imaging technique, and those predicted by equivalent linear
visco-elastic models. Successive overlapping short time windows were used to account for nonlinear-
ities. This method was used to study the impact of site amplification and liquefaction on soil stiffness
properties. Later, Gunturi et al. [44] applied this technique to analyze the Hualien site. This study
revealed a significant anisotropy in the soil stiffness properties, in agreement with the correlation anal-
yses mentioned above. In a recent publication, Carvajal et. al. [16] analyzed earthquake recordings
from Central de Abasto Oficinas (Mexico) downhole array with linear visco-elastic models. The effects
of frequency contents of earthquake excitations on identified stiffness and viscous damping parameters
were investigated.

The dynamic response of statically determinate systems may also be identified using a boundary
value problem formulation restricted to the zone equipped with accelerometers. Such sub-system
analyses are possible since a limited number of motion records is sufficient to fully define the boundary
conditions (of the sub-system). For level sites equipped with downhole arrays, identification analyses
may be therefore restricted to instrumented upper soil strata. The boundary input motion required for
such analyses is provided by measured accelerations at the base of these strata. Loh and Yeh [63]
analyzed the seismic response of the top 47 m layer of Lotung site using an equivalent linear soil
constitutive model. The stiffness and damping coefficients were obtained for successive 4-second time
intervals using a recursive least squares method. Loh and Yeh [63] also used a bilinear hysteretic model
along with an extended Kalman filter to analyze soil nonlinear response at Lotung. This bilinear model
was found to be more effective than an equivalent linear one in idealization of soil behavior at this site.

4.2.2 Bayesian Approach

Soil-structures and natural deposits are generally massive systems which have distributed parameters
and state. Earthquake records of such systems commonly do not provide sufficient information to
fully develop a model of the system response and identify a unique set of model parameters. Bayesian
identification techniques have been used to mathematically regularize the problem and eliminate or
partially reduce its indeterminacy.
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Udwadia et al. [95] investigated the determinacy of parameter identification problems in structural
and geotechnical engineering. Two different types of ill-posedness were defined. An identification
problem is inherently ill-posed when the employed experimental data (of response and potentially
input measurements) yields non-unique sets of parameters. The problem is said to be algorithmically
ill-posed when parameter identification is unstable in the presence of measurement noise. A Bayesian
technique was proposed to tackle the identification of spacially varying system stiffness parameters
when measurements are corrupted by Gaussian random noise.

Zeghal and Abdelghaffar [102] also used a Bayesian technique to identify and analyze the nonlin-
ear seismic response of Long Valley earth dam. The problem was formulated as a combination of a
priori and experimental information with theoretical knowledge. An elastoplastic constitutive relation-
ship along with a Von-Mises yield criterion were used to model the clayey soil of Long Valley earth
dam [81]:

dσσσ =

(
E− (E : Q)(Q : E)

Hp−Ho

)
: dεεε (10)

in which σσσ and εεε are respectively total stress and strain tensors, E is elastic constitutive tensor (as
a function of the soil elastic shear modulus, Go and Poisson’s ratio ν), Q is unit outward normal to
the yield surface, Ho and Hp are respectively elastic and plastic parameters (for a Von-Mises crite-
rion, Hp = 1/(1/2G−1/2Go) where, G is tangent shear modulus and Ho = 2Go). The identification
analyses were restricted to shear modulus variation with strain amplitude, which was recognized as
the most influential model parameter affecting the dam response. The conducted analyses of Long
Valley earth dam revealed a complex 3-dimensional response that was marked by a shear stress-strain
behavior slightly more elastic than trends observed in triaxial tests. Sayed and Abdel-Ghaffar [85] ap-
plied a similar technique to earthquake records of Anderson and Puddingstone (California) earth dams.
Honjo and Kudo [47] used an alternative approach in combining observational data with a-priori in-
formation [72]. Soil stiffness parameters of an embankment in Yamagata (Japan) were identified using
deformation and pore-pressure recordings (as observed during construction) by maximization of the
relative entropy.

Lin [58, 59] used an extended Kalman filter to analyze the Lotung site using the LSST downhole
array records. This filter is an unbiased, minimum variance, and sequential estimation scheme which
incorporates available information through a priori estimates of the mean and the covariance matrix
of state and parameter vectors. A Bouc-Wen model was employed to idealize the lateral shear stress-
strain relationship:

τ̇ = Gγ̇−α|γ̇||τ|n−1
τ−βγ̇|τ|n (11)

in which τ and γ are respectively shear stress and strain, G is initial (low-strain) shear modulus, and
α, β and n are model parameters. The hysteretic behavior of soils was addressed using generalized
Masing’s rule. Figure 14 displays identified shear modulus reduction and damping curves along with
results of laboratory soil sample tests.

4.2.3 Local Identification

Identifying and calibrating models of the dynamic constitutive response of a full-scale soil system
is a challenging task, especially when this response is monitored using a limited number of sensors.
The problem is complicated further when the system boundary conditions are not well defined (e.g.,
semi infinite sites). Zeghal and Oskay [75, 110] developed a novel local identification technique that
uses the acceleration and pore-pressure records provided by dense arrays of accelerometers and pore
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Figure 14: Comparison of identified and measured shear modulus ratios and damping factors [59].
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Figure 15: Algorithm for local system identifications (Zeghal and Oskay [111]).

pressure transducers (Fig. 15). This approach reduces the indeterminacy of the problem by limiting
the identifications to a local zone. The developed technique does not require the availability of bound-
ary condition measurements, or solution of a boundary-value-problem associated with the observed
system. A multi-surface plasticity was used to model the hysteretic and path dependent stress-strain
response of soils. The identification algorithm was benchmarked using numerical simulations and cen-
trifuge models (Fig. 16) of 2-D quay wall-soil systems [110]. The concept of employing experimental
data sets and local in-situ measurements to calibrate complex constitutive laws with large number of
parameters have been systematically investigated by Yang and Elgamal [100], Levasseur et al. [56, 57],
Hashash et al. [46, 35], and Calvello and Finno:[15].

5 Conclusions
This paper presented a survey of identification techniques and analyses of geotechnical systems with
emphasis on earthquake engineering applications. The surveyed studies were subdivided into 3 cat-
egories: (1) response characterization and pattern recognition studies, (2) time series analyses, and
(3) constitutive (stress-strain) model identifications. Pattern recognition and non-parametric identifi-
cations, such as spectral analysis, stress-strain imaging and cross-correlation analyses provide valuable
insight into the system properties and response mechanisms without recourse to explicit modeling of
the involved physical phenomena. Time series provide tools to model the stochastic process of ground
motion accelerations, and have been used to generate synthetic accelerations having similar character-
istics as those of target earthquakes. Non-parametric as well as parametric models have been used in
identification analyses of constitutive response of soil systems. Bayesian and other techniques were
employed to reduce the identification problem indeterminacy. In the near future, system identifica-
tion analyses are destined to play an ever important role in assessment and modeling of geotechnical
systems in view of continuous drastic improvements in sensor and testing technologies.
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