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Abstract

This manuscript provides a novel reduced-order multiscale modeling methodology for failure
analysis of heterogeneous materials. The proposed methodology is based on the computational
homogenization method for bridging multiple spatial scales and the eigendeformation-based
model reduction method to incorporate failure in the microconstituents and interfaces. This
computationally-efficient modeling methodology leads to symmetric reduced-order algebraic
systems for evaluation of the microscale boundary value problem. The order and coarse grain-
ing for the reduced-order system are systematically identified by a novel model development
strategy. Verification studies reveal that the proposed methodology efficiently and accurately
models the failure response. The proposed approach eliminates the spurious residual stress
effect observed in reduced-order models, which pollutes the post-failure stress field at the
macroscale.
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1 Introduction
Mathematical homogenization theory provides a rigorous mathematical framework for modeling
the response of heterogeneous materials. The mathematical theory was formalized in the sem-
inal works of Babuska [1], Bensoussan [2], Sanchez-Palencia [3] and Suquet [4], among others.
Since the development of the computational framework for the mathematical homogenization
theory by Guedes and Kikuchi [5], numerous models based on the computational homoge-
nization method (CHM) have been proposed to predict the elastic and inelastic response of
heterogeneous materials including material failure.

The distinct feature of the computational homogenization method in modeling the response
of heterogeneous materials is in the evaluation of the constitutive response at a material point
of a macroscopic (homogenized) medium. In CHM, the constitutive response of the equivalent
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homogeneous medium is evaluated by solving a microscale boundary value problem defined on
a representative volume element (RVE) of the heterogeneous microstructure. This approach
decouples the effect of the microstructural topology from the material behavior of the microcon-
stituents, as well as the conditions along the microconstituent interfaces. CHM simplifies the
constitutive modeling process since the response of the microconstituents tend to be simpler
to model, compared to phenomenological modeling of the combined microstructure-material
behavior effects. In the case of modeling the failure of heterogeneous materials, a number of
outstanding computational issues remain, including selection of the boundary conditions for
the RVE problem in the presence of defects [6, 7], evolution of the RVE domain upon defect
formation, size scale effects [8], and spurious mesh dependency [9], among others.

One additional major challenge associated with the computational homogenization method
is the computational cost associated with solving nonlinear RVE problems to evaluate the
constitutive response of the macroscopic problem. This problem is alleviated by one or a
combination of two approaches. The first is the brute-force parallelization of the multiscale
problem, in which, the RVE problem evaluations are distributed to a large number of com-
pute nodes and evaluated in parallel [10]. The second approach is reduced-order evaluation of
the RVE problem. Fast Fourier transform [11], proper orthogonal decomposition [12], spectral
method [13], boundary element method [14], network approximation method [15], and transfor-
mation field analysis (TFA) [16, 17], and other TFA-based computational methods [18, 19, 20]
have been effective in evaluating the inelastic response at the RVE level in a computationally
efficient manner. In a recent study, eigendeformation-based homogenization method (EHM)
was proposed [21] to efficiently evaluate the RVE level response using a meso-mechanical model.
This method is derived based on a generalization of the transformation field analysis. By this
approach, it is possible to account for the interfacial debonding effects, in addition to nonlinear
and failure processes within the constituent materials of the heterogeneous microstructure.

This manuscript provides a model reduction methodology for efficient evaluation of the mi-
croscale boundary value problems of the computational homogenization method. The proposed
approach addresses three of the main shortcomings of the TFA-based model reduction methods
with the the following novel contributions:

1. A new methodology for the determination of the order of the reduced model is presented:
The accuracy and efficiency of the reduced models clearly depend on their order and
ability to represent the failure modes within the microstructure. A reduced-order model
development strategy is devised to identify the model order and the associated coarse
graining at the microscale for accurate and efficient representation of the failure modes.

2. The proposed reduced order model leads to a symmetric formulation: In the presence of
interfacial debonding, previous eigendeformation-based homogenization formulations lack
symmetry, which increases computational cost.

3. The proposed formulation eliminates the spurious residual stress effect upon failure due
to the coarse representation of the inelastic fields. Some of the transformation field
analysis based reduced order models (e.g., [18, 21]) lead to spurious residual stress fields
upon failure in the microscale. The spurious residual stress fields pollute the macroscale
problem by affecting the local stress redistributions.

The proposed reduced order methodology is implemented to model the failure response of brittle
composite systems, in which the failure is characterized by matrix microcracking, delamination
and debonding.
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Figure 1: Macro- and microscopic scales.

The remainder of this manuscript is organized as follows: The statement of the multi-
scale problem and the associated macroscopic and microscopic boundary value problems are
presented in Section 2. In Section 3, formulation of the symmetric reduced order model for
the microscale problem is provided. The computational algorithms employed to evaluate the
nonlinear reduced order model are discussed in Section 4. Section 5 provides small scale and
large scale numerical verification examples conducted on a fiber reinforced matrix composite.
Conclusions and discussion of future research is discussed in Section 6.

2 Problem Setting
In this section, we present a summary of the microscopic and macroscopic boundary value
problems associated with the two-scale asymptotic homogenization method for failure response
of a heterogeneous body. The details of two-scale asymptotic homogenization in the presence
of inelastic effects are reported in the literature (see e.g., Refs. [22]).

The problem setting and the multiscale heterogeneous body is illustrated in Fig. 1. The
heterogeneous domain, denoted by Ω, is parameterized by the macroscopic coordinate vector,
x. Ω is composed of the repetition of a small representative volume element, Θ, which is
parameterized by the microscopic coordinate vector, y. The size scale ratio, ζ, between the
characteristic lengths of the representative volume element, Θ, and the macroscopic body, Ω is
assumed to be very small, such that a first order asymptotic decomposition of the displacement
field is sufficient to accurately capture the response of the material. The response fields are
assumed to be periodic about the representative volume element. The periodicity condition
states that the value of the response fields are the same at the opposing faces of a parallelepiped
RVE domain.

The following notation is employed throughout the manuscript, unless otherwise noted:
Subscript roman indices denote 1, 2, or 3. Einstein summation convention is adopted for
repeated indices. Subscripts xi and yi following a comma denote differentiation with respect
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to the macroscopic and microscopic coordinate vectors, respectively. Differentiation within
parentheses denotes symmetric differentiation with respect to the indices. Bold characters
denote tensor notation. Macaulay brackets denote averaging over the RVE:

〈·〉 =
1
|Θ|

∫
Θ

(·)dy (1)

where, |Θ| is the volume of the RVE.
The displacement field of the heterogeneous body is expressed using a two-scale asymptotic

expansion:
ui (x,y, t) = ūi (x, t) + ζu1

i (x,y, t) (2)

in which, ū is the macroscopic displacement field, and; u1 is the variation of the displacement
field within the RVE.

2.1 Microscale Problem
In the presence of failure processes, u1 is described by the microscopic equilibrium equation
defined over the RVE (i.e., y ∈ Θ){

Lijkl (y)
[
ε̄kl (x, t) + u1

(k,yl)
(x,y, t)− µkl (x,y, t)

]}
,yj

= 0 (3)

in which, L is the fourth order tensor of elastic moduli, taken to be symmetric and strongly
elliptic, ε̄ = ∇sxū the macroscopic strain tensor; ∇sx(·) ≡ (·)(i,xj) denotes the symmetric gradient
operation with respect to macroscopic coordinates; and µ damage induced inelastic strains. In
this manuscript, the damage induced inelastic strains are modeled using a scalar continuous
damage mechanics model:

µij (x,y, t) = [1− ωph (x,y, t)] εij (x,y, t) (4)

in which, ωph ∈ [0, 1) is a history dependent variable, which represents damage within the
microconstituents, and ε is the strain tensor. Using the scaling relations provided by the
asymptotic decompositions with multiple spatial scales:

εij (x,y, t) = ε̄ij (x, t) + u1
(i,yj)

(x,y, t) (5)

Along the microconstituent interfaces, debonding is considered based on traction-separation
laws given as (y ∈ S)

tN (x,y, t)− [1− ωint (x,y, t)] kN (y) δN (x,y, t) ≤ 0; δN (x,y, t) ≥ 0 (6){
tN (x,y, t)− [1− ωint (x,y, t)] kN (y) δN (x,y, t)

}
δN (x,y, t) = 0 (7)

tT (x,y, t) = [1− ωint (x,y, t)] kT (y) δT (x,y, t) (8)

in which, ωint ∈ [0, 1) is a history dependent variable, which represents damage along the
interface; tN and δN are the components of the traction and displacement jump normal to
the interface, respectively; kN (y) and kT (y) the initial interface stiffness in the normal and
tangential directions, respectively, and; tT , δT the tangential components of the traction and
displacement jump along the interface, respectively. The traction and displacement jump
components are expressed in terms of the local coordinate system formed by the normal and
tangential directions at the interface point.
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The microscale problem, which is a nonlinear boundary value problem is solved to evaluate
the microscale displacement field u1 by imposing periodic boundary conditions along the exte-
rior boundaries of the RVE while restricting the rigid body motion. The microscale boundary
value problem is quasi-static as indicated by the lack of inertial terms in the governing equa-
tions. The present formulation is limited to the cases for which the characteristic size of the
RVE is small compared to the length of the deformation and stress waves.

2.2 Macroscale Problem
The macroscopic displacement field is described by the macroscopic momentum balance equa-
tion defined over Ω:

σ̄ij,xj (x, t) + b̄i (x, t) = ρ̄ (x, t) ¨̄ui (x, t) (9)

in which, double dot over a field denotes twice differentiation in time; σ̄ denotes the macroscopic
stress tensor, evaluated by volume averaging of the stresses over the domain of the RVE

σ̄ij (x, t) = 〈σij〉 (10)

The stress field is expressed as:

σij (x,y, t) = Lijkl (y)
[
ε̄kl (x, t) + u1

(k,yl)
(x,y, t)− µkl (x,y, t)

]
(11)

b̄ and ρ̄ denote the RVE-average body force/unit volume and the RVE-average density, respec-
tively:

b̄i (x, t) = 〈bi〉 ; ρ̄ = 〈ρ〉 (12)

The boundary and initial conditions of the macroscale initial-boundary value problem are
defined as

ūi (x, t) = ûi (x) ; x ∈ Ω; t = 0 (13)
˙̄ui (x, t) = v̂i (x) ; x ∈ Ω; t = 0 (14)
ūi (x, t) = ŭi (x, t) ; x ∈ Γu; t ∈ [0, to] (15)

σ̄ij (x, t)nj = t̆i (x, t) ; x ∈ Γt; t ∈ [0, to] (16)

in which, û, ŭ are prescribed initial and boundary displacements, respectively; v̂ prescribed
initial velocity, and; t̆ prescribed boundary traction. The prescribed initial and boundary
conditions are assumed to be constant with respect to the microscopic coordinate vector y.

3 Reduced Order Modeling of the Microscale Problem
The macroscale problem defined in Section 2.2 is coupled with the microscale problem defined
in Section 2.1 through the macroscopic constitutive relationship (Eqs. 10 and 11). The eval-
uation of the macroscopic stress at each macroscopic material point requires the solution of
the microscopic RVE problem associated with that material point. When the finite element
method is employed to evaluate the macroscale problem, a nonlinear microscale problem must
be evaluated to update the stress at each integration point for each increment and iteration
of every time step of the loading history. This is a tremendous computational burden. In this
section, a novel reduced order model is derived to efficiently compute the microscopic response.
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To this extent, the microscale displacement field is decomposed into linear and damage induced
components:

u1
i (x,y, t) = Hikl (y) ε̄kl (x, t) + ũi (x,y, t) (17)

in which, H is the third order elastic influence function obtained by substituting Eq. 17
into Eq. 3 and solving the microscale problem in the absence of all inelastic processes (i.e.,
ωph = ωint = 0). ũ is the displacement field induced by the damage processes within the
microconstituents and the interface:

ũi (x,y, t) =
∫

Θ
hph
ikl (y, ŷ)µkl (x, ŷ, t) dŷ +

∫
S
hint
im (y, ŷ) δm (x, ŷ, t) dŷ (18)

in which hph and hint are the phase damage and interface damage induced influence functions.
hph and hint are the particular solutions to the RVE problems obtained by substituting Eq. 17
into Eq. 3 and solving the microscale problem in the presence of phase damage (i.e., µ) and in-
terface damage (i.e., δ), respectively. The governing equations and the discrete approximations
of the elastic and damage induced influence functions are provided in Ref. [21] and will not be
discussed herein. In this manuscript, we concentrate on the new model reduction methodology
based on the microscopic displacement field decomposition provided in Eqs. 17 and 18.

Substituting Eq. 17 into Eq. 3, premultiplying the resulting equation with hph, and inte-
grating over the domain of the RVE yields:∫

Θ
hph
ipq (y, ŷ) {Lijmn (y) [Amnkl (y) ε̄kl (x, t) + ε̃mn (x,y, t)− µmn (x,y, t)]},yj dy = 0 (19)

in which, ε̃ = ∇syũ; A = I + G is the fourth order elastic strain concentration tensor; I the
fourth order identity tensor, and; G = ∇syH, the elastic polarization tensor. The use of Eq. 19
secures a symmetric formulation as subsequently derived. This is in contrast with the previous
eigendeformation-based reduced order models, which are non-symmetric [21]. Integrating by
parts, applying divergence theorem and employing the perodicity of the response fields over
the domain of the RVE yields:∫

Θ
gph
ijpq (y, ŷ)Lijmn (y) [Amnkl (y) ε̄kl (x, t) + ε̃mn (x,y, t)− µmn (x,y, t)] dy = 0 (20)

where, gph = ∇syhph is the fourth order phase damage polarization tensor.
A second set of equilibrium equations are obtained by premultiplying the microscale equi-

librium equation (Eq. 3) with hint, and following a similar procedure as described above:∫
Θ
gint
ijp (y, ŷ)Lijmn (y) [Amnkl (y) ε̄kl (x, t) + ε̃mn (x,y, t)− µmn (x,y, t)] dy = −tp (x, ŷ, t)

(21)
in which, gint = ∇syhint is the third order interface damage polarization tensor. Substituting
Eq. 4 into Eqs. 20 and 21 yields:∫

Θ

[
1− ωph (x,y, t)

]
gph
ijqr (y, ŷ)Lijmn (y) ·

·
[
Amnkl (y) ε̄kl (x, t) + ε̃mn (x,y, t)

]
dy = 0

(22)

∫
Θ

[
1−ωph (x,y, t)

]
gint
ijp (y, ŷ)Lijmn (y) ·

·
[
Amnkl (y) ε̄kl (x, t) + ε̃mn (x,y, t)

]
dy = −tp (x, ŷ, t)

(23)
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We introduce the following discretizations for damage fields ωph and ωint, and the damage
induced fields, µ and δ using mesomechanical shape functions

{ωph, µij} (x,y, t) =
n∑
γ=1

N
(γ)
ph (y)

{
ω

(γ)
ph , µ

(γ)
ij

}
(x, t) (24)

{
ωint, δ̂i

}
(x,y, t) =

m∑
β=1

N
(β)
int (y)

{
ω

(β)
int , δ̂

(β)
i

}
(x, t) (25)

in which, γ = 1, 2, . . . , n and β = 1, 2, . . . ,m; n and m denote the level of discretization within
the phases and along the interface, respectively. δ̂ denotes the displacement jump vector in
the local coordinate system (i.e., δ̂(β) =

[
δN(β) δT (β)

]T ). The phase, N (γ)
ph , and interface, N (β)

int ,
shape functions have compact support within subdomains of the phases and the interface

N
(γ)
ph (y) = 0 if y /∈ Θ(γ); Θ(γ) ⊂ Θ (26)

N
(β)
int (y) = 0 if y /∈ S(β); S(β) ⊂ S (27)

Employing Eqs. 24 and 25, ε̃ is expressed in terms of the damage induced strain and
displacement jump coefficients:

ε̃ij (x,y, t) =
∑
γ

P̃
(γ)
ijkl (y)µ(γ)

kl (x, t) +
∑
β

R̃
(β)
ijp (y) δ̂(β)

p (x, t) (28)

in which, the coefficient tensors P̃ and R̃ are:

P̃
(γ)
ijkl (y) =

∫
Θ(γ)

gph
ijkl (y, y̌)N (γ)

ph (y̌) dy̌ (29)

R̃
(β)
ijp (y) =

∫
S(β)

gint
ijq (y, y̌)N (β)

int (y̌) êq (y̌) dy̌ (30)

where êq denotes the transformation vector between the global and local coordinate systems
along the interface.

Substituting Eqs. 24 and 25 into Eq. 22, premultiplying the resulting equation withN (η)
ph (ŷ),

and integrating over the domain of the RVE yields (η = 1, 2, . . . , n):

n∑
∆=1

{[
1− ω(∆)

ph (x, t)
]∫

Θ(∆)

N
(∆)
ph (y) P̃ (η)

ijqr(y)Lijmn(y)

[Amnkl (y) ε̄kl (x, t) + ε̃mn (x,y, t)]dy
}

= 0

(31)

Similarly, substituting Eqs. 24 and 25 into Eq. 23, premultiplying the resulting equation with
N

(α)
int (ŷ) and integrating over the domain of the RVE yields (α = 1, 2, . . . ,m):

n∑
∆=1

{[
1− ω(∆)

ph (x, t)
] ∫

Θ(∆)

N
(∆)
ph (y) R̃(α)

ijp (y)Lijmn (y)

[Amnkl (y) ε̄kl (x, t) + ε̃mn(x,y, t)] dy
}

= −t̂(α)
p (x, t)

(32)
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Substituting Eq. 28 into Eqs. 31 and 32 results in

n∑
∆=1

[1− ω(∆)
ph (x, t)

]C(η∆)
ijkl ε̄kl (x, t) +

n∑
γ=1

F
(η∆γ)
ijkl µ

(γ)
kl (x, t)

+
m∑
β=1

J
(η∆β)
ijp δ̂(β)

p (x, t)

 = 0

(33)

∑
∆

[1− ω(∆)
ph (x, t)

]D(α∆)
pkl ε̄kl (x, t) +

n∑
γ=1

J
(γ∆α)
klp µ

(γ)
kl (x, t)

+
m∑
β=1

M (α∆β)
pq δ̂(β)

p (x, t)

 = −t̂(α)
p (x, t)

(34)

where,

C
(η∆)
ijkl =

∫
Θ(∆)

P̃
(η)
qrij (y)Lqrmn (y)Amnkl (y)N (∆)

ph (y) dy (35)

D
(α∆)
pkl =

∫
Θ(∆)

R̃
(α)
ijp (y)Lijmn (y)Amnkl (y)N (∆)

ph (y) dy (36)

F
(η∆γ)
ijkl =

∫
Θ(∆)

P̃
(η)
qrij (y)Lqrmn (y) P̃ (γ)

mnkl (y)N (∆)
ph (y) dy (37)

J
(η∆β)
ijp =

∫
Θ(∆)

P̃
(η)
qrij (y)Lqrmn (y) R̃(β)

mnp (y)N (∆)
ph (y) dy (38)

M (α∆β)
pq =

∫
Θ(∆)

R̃
(α)
ijp (y)Lijmn (y) R̃(β)

mnq (y)N (∆)
ph (y) dy (39)

in which, C(η∆), D(α∆), F(η∆γ), J(η∆β) and M(α∆β) are coefficient tensors. The interface
traction coefficient, t̂(α) is:

t̂
(α)
i (x, t) =

∫
S(α)

N
(α)
int (y) t̂i (x,y, t) dy (40)

The relationship between the interface traction and the displacement jump is nonlinear.
It is, therefore, not possible to derive explicit expressions for the relationship between the
traction and displacement jump coefficients. In this manuscript, the relationship between the
pointwise tractions and displacement jumps are adopted to represent the relationship between
the traction and displacement jump coefficients. This approach has also been employed in a
number of previous investigations (e.g., [20]). The unilateral contact and adhesion conditions
are expressed as

δN(α) (x, t) ≥ 0 (41)

tN(α) (x, t)−
[
1− ω(α)

int (x, t)
]
k

(α)
N δN(α) (x, t) ≤ 0 (42){

tN(α) (x, t)−
[
1− ω(α)

int (x, t)
]
k

(α)
N δN(α) (x, t)

}
δN(α) (x, t) = 0 (43)

The tangential adhesion condition is also written in a similar form as

tT (α)
ρ (x, t)−

[
1− ω(α)

int (x, t)
]
k

(α)
T δT (α)

ρ (x, t) = 0 (44)
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Similar to the interface traction-separation conditions, the nonlinear evolution of the phase
and interface damage coefficients, ω(γ)

ph and ω(α)
int , are expressed in terms of the field coefficients:

ωph = ωph (σij , εij , qa)→ ω
(γ)
ph = ω

(γ)
ph

(
σ

(γ)
ij , ε

(γ)
ij , q

(γ)
a

)
(45)

ωint = ωint
(
ti, δi, q

int
a

)
→ ω

(α)
int = ω

(α)
int

(
t
(α)
i , δ

(α)
i , qint(α)

a

)
(46)

in which, q and qint are state variables defining the evolution of the phase and interface damage
variables, respectively, and;

[·](γ) (x, t) =
∫

Θ(γ)

N
(γ)
ph (y) [·] (x,y, t) dy; [·](α) (x, t) =

∫
S(α)

N
(α)
int (y) [·] (x,y, t) dy (47)

Equilibrium equations (Eqs. 33 and 34), in addition to the interface conditions provided by
Eqs 41-44, and the evolution equations for the phase and interface damage coefficients form the
reduced order model. The reduced order model is solved to obtain the unknown coefficients
µ(γ) and δ̂(α).

The macroscopic stress tensor is expressed in terms of µ(γ), δ̂(α), and the macroscopic strain
tensor by substituting Eq. 17 and 18 into Eq. 11 and using Eqs. 24 and 25 to obtain

σ̄ij(x, t) =
∑
∆

[
1−ω(∆)

ph (x, t)
]L̄(∆)

ijklε̄kl(x, t)+
∑
γ

P̄
(∆γ)
ijkl µ

(γ)
kl (x, t)+

∑
β

R̄
(∆β)
ijp δ̂(β)

p (x, t)

 (48)

where, the coefficient tensors L̄(∆), P̄(∆γ) and R̄(∆β) are expressed as

L̄
(∆)
ijkl =

1
| Θ |

∫
Θ(∆)

N
(∆)
ph (y)Lijmn (y)Amnkl (y) dy (49)

P̄
(∆γ)
ijkl =

1
| Θ |

∫
Θ(∆)

N
(∆)
ph (y)Lijmn (y) P̃ (γ)

mnkl (y) dy (50)

R̄
(∆β)
ijp =

1
| Θ |

∫
Θ(∆)

N
(∆)
ph (y)Lijmn (y) R̃(β)

mnp (y) dy (51)

4 Computational Aspects
The implementation of the proposed reduced-order multiscale model is conducted in two stages.
The preprocessing stage consists of determining the model order, partitioning of the RVE based
upon the model order, and computing the coefficient tensors associated with the reduced order
model. The macroscopic analysis stage consists of evaluating the macroscale problem described
in Section 2.2 using a numerical method. In this study, the macroscopic analyses are conducted
using the finite element method. The commercially available finite element analysis program,
Abaqus, is employed. Reduced order multiscale models and direct numerical simulations for
the verification of the proposed approach are conducted using the user supplied subroutine
capabilities. The remainder of this section discusses a novel strategy for selection of the model
order and partitioning of the RVE domain, as well as the numerical evaluation of the reduced
order model.
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Figure 2: The partitioning and model reduction strategy. Failure profiles within the RVE subjected
to (a) uniform biaxial loading; (b) uniaxial in the lateral direction; (c) uniaxial loading in the
vertical direction; (d) shear loading along the positive direction; (e) shear loading along the negative
direction; (f) resultant partitions.

4.1 Reduced-Order Model Development Strategy
The proper partitioning of the RVE domain is critical to the efficiency and the accuracy of
the proposed reduced order modeling approach. The partitioning of the RVE consists of the
selection of the number of phase (n) and interface (m) partitions, as well as the domain of
each phase (Θ(γ)) and interface (S(β)) partition. Theoretically, as the number of partitions,
n and m, increase, the accuracy of the reduced model increases at the expense of additional
computational cost. The accuracy of the reduced order model is also strongly affected by the
selection of the partition domains, Θ(γ) and S(β) for a given number of phase and interface par-
titions. Previous and current investigations found significant variability in the performance of
a reduced order model based on the partitioning strategy. It is possible to adaptively select the
order of the reduced-order model based on a-priori error measures associated with the state of
the failure processes during the macroscopic simulations. Such a dynamic partitioning strategy
was proposed in Ref. [21]. The dynamic strategy resembles h-version adaptive finite element
modeling with goal oriented mesh adaptivity [23], or multilevel-multiscale modeling, in which
the heterogeneity within the process zones are adaptively resolved [24]. The dynamic parti-
tioning strategy, while rigorous, comes with a significant increase in computational cost. The
additional computational cost is due to error assessment and recomputation of the coefficient
tensors during the macroscopic analysis.

In this manuscript, a novel static partitioning strategy is presented, in which, the RVE do-
main partitions and the model order is identified prior to the macroscopic analysis. The present
approach provides a model selection strategy capable of accounting for the failure modes within
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the microstructure using a small number of domain partitions. The model selection strategy
consists of identification of the failure paths within the microstructure when subjected to a
number of loading modes, and partitioning the domain of the RVE as well as the interfaces
by selecting each failure path as a partition. The failure paths within the microstructure are
identified by conducting detailed RVE-level simulations. The RVE is subjected to uniform
macroscopic strain modes (e.g., uniaxial tensile or compression and shear). Figure 2 illustrates
the identification of the failure paths in a 2-D particle reinforced matrix under uniform macro-
scopic axial and shear strains. The failure path due to each loading condition is marked as an
individual partition as shown in Fig. 2e. RVE-level simulations were conducted by applying
Dirichlet conditions along the boundaries when determining the failure paths. This, along with
the unstructured finite element mesh leads to unsymmetric failure paths despite symmetry in
the RVE geometry. Periodic boundary conditions are maintained along the RVE boundaries
in the multiscale model.

The failure paths associated with different loading modes intersect each other as demon-
strated in Fig. 2. Hence, the phase partitions are allowed to overlap. The phase shape func-
tions, are selected to accommodate such an overlap. Let the domain of the RVE be partitioned
into n possibly intersecting subdomains, denoted by Θ(γ), γ = 1, 2, . . . , n. The union of the
subdomains spans the domain of the RVE:

Θ ≡
n⋃
γ=1

Θ(γ) (52)

The intersection between two partitions are denoted as Θ(γη) ≡ Θ(γ) ∩ Θ(η). A material
point within the RVE may lie in all n partitions or less. The intersections between multiple
partitions are defined by repetitive Greek superscripts: Θ(γην...) ≡ Θ(γ) ∩ Θ(η) ∩ Θ(ν) . . .. The
shape functions for the reduced order model, N (γ)

ph , are chosen as:

N
(γ)
ph (y) =

{ 1
i

if y ∈ Θ(γ)
i

0 elsewhere
(53)

in which, i = 1, 2, . . . , n, and;

Θ(γ)
1 ≡ Θ(γ)\

n⋃
η=1

Θ(γη) (54)

Θ(γ)
2 ≡

n⋃
η=1

[
Θ(γη)\

n⋃
ν=1

Θ(γην)

]
(55)

The expressions for Θγ
3 . . .Θ

γ
n are derived analogously. The shape functions defined in Eq. 53

allow the possibility of intersecting shape functions, and satisfy the partition of unity property:

n∑
γ=1

N
(γ)
ph (y) = 1; y ∈ Θ (56)

The interface shape functions are continuous across the partitions to satisfy the continuity
of tractions and displacement jumps across the interface partitions. Consider the partitioning
of the interface S into m overlapping subdomains S(α). The interface shape function, N (α)

int , is
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a linear combinations of standard finite element shape functions corresponding to the nodes
along the interface partition, S(α) [21]

N
(α)
int (y) =

∑
a∈S(α)

Na (y) ; y ∈ S (57)

in which, Na is the standard finite element shape function associated with the microscopic
finite element mesh node a.

4.2 Numerical Evaluation of the Reduced-Order Model
The evaluation of the reduced order model for the microscale problem constitutes the macro-
scopic stress update at a macroscopic point. The reduced order model is evaluated using the
active set strategy to account for the contact conditions at the interfaces.
Given: At a macroscopic material point x and at time t, the equilibrium state defined by
the macroscopic strain tensor tε̄; the inelastic strain and displacement jump coefficients, tµ(γ)

and tδ̂
(α), respectively, where γ = 1, 2, . . . , n and α = 1, 2, . . . ,m; state variables tq

(γ) and

tqint
(α), which define the evolution of the phase and interface damage state, tω

(γ)
ph and tω

(α)
int ,

respectively; as well as the change in the macroscopic strain state, ∆ε̄ (taking an assumed
strain approach in the numerical evaluation of the macroscopic boundary value problem).
Compute: The current values (at time: t + ∆t) of the inelastic strain and displacement coef-
ficients, µ(γ) and δ̂(α), respectively; the current damage state, ω(γ)

ph and ω(α)
int ; state variables,

q(γ) and qint
(α) and the macroscopic stress, σ̄.

In this section, we will employ vector notation using the classical index contractions (e.g.,
L = {LIJ})← {Lijkl}). A left subscript t indicates the value of the function at time t. A left
superscript denotes iteration count. The eigendeformation vector is defined as:

d =
{

µ(1), ...,µ(n), δ̂(1), ..., δ̂(m)
}T

(58)

The active set is defined as the set of all interface partitions in which normal displacement
jump coefficients are zero:

A =
{
α | α ∈ {1, ...,m} ; δN(α) = 0

}
(59)

We define the discrete system of nonlinear equations, Ψ, based on reduced order model as:

Ψ (d) = K
(
ω

(γ)
ph , ω

(α)
int

)
d + f

(
ω

(γ)
ph

)
(60)

in which,

K
(
ω

(γ)
ph , ω

(α)
int

)
= Kt

(
ω

(α)
int

)
+

n∑
∆=1

[
1− ω(∆)

ph

]
K(∆) (61)

and,

K(∆) =



F(1∆1) · · · F(1∆n) G(1∆1) · · · G(1∆m)

...
. . .

...
...

. . .
...

F(n∆1) · · · F(n∆n) G(n∆1) · · · G(n∆m)

Ĝ(1∆1) · · · Ĝ(1∆n) H(1∆1) · · · H(1∆m)

...
. . .

...
...

. . .
...

Ĝ(m∆1) · · · Ĝ(m∆n) H(m∆1) · · · H(m∆m)


(62)
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K(∆) are symmetric matrices since Ĝ(α∆η) = GT (η∆α), F(η∆γ) = FT (γ∆η) and H(α∆β) =
HT (β∆α). Kt

trac is defined as

Kt =



0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0
0 · · · 0 k̂(1) · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · k̂(m)


; k̂(α) =

(
1− ω(α)

int

) k
(α)
N 0 0
0 k

(α)
T 0

0 0 k
(α)
T

 (63)

The symmetry of K leads to this formulation being denoted as a symmetric formulation. The
solution of Ψ = 0 is evaluated by symmetric nonlinear solvers rather than unsymmetric ones
as has been the case in previous formulations. f is defined as

f
(
ω

(γ)
ph

)
=

n∑
∆=1

[
1− ω(∆)

ph

]
f (∆) (64)

and,

f (∆) =
{
C(1∆), ...,C(n∆),D(1∆), ...,D(m∆)

}T
ε̄ (65)

In the case of tensile loading throughout the interface, the active set is empty (A = ∅),
Ψ (d) = 0 solves the reduced order model. When A 6= ∅ a reduced system of equations is
defined:

ΨA (d) = KAdA + fA (66)

in which, dA and fA is constructed by removing each row which corresponds to δ(α)
N for each

partition α in A, from d and f , respectively. KA is constructed by removing each row and
column, which corresponds to δ(α)

N for each partition α in A, from K. The rows removed from
Eq. 60 form:

ΨĀ (d) = KĀdĀ + fĀ (67)

The reduced order model is evaluated by ensuring ΨA (d) = 0 and ΨĀ (d) ≥ 0 are satisfied.
The latter condition is necessary to ensure negative tractions upon compressive loading along
the interfaces. The computational algorithm to evaluate the reduced order problem based on
the active set strategy is provided in Box 1. The algorithm is initiated by setting the working
set, which approximates the active set at (t+ ∆t), to the active set at time t, as well as setting
the eigendeformation vector to td (Step 1). Within each iteration k, the test eigendeformation
vector,

k
d̂ is evaluated by a standard nonlinear root finding algorithm, such as Newton-Raphson

or quasi-Newton methods (Step 2a). In this manuscript, a quasi-Newton SR1 method [25] is
employed to compute the roots of ΨkW . In this method, a symmetric-rank-one matrix is added
to an approximation of the Jacobian of ΨkW at each iteration of the nonlinear solver. In
practice, this update has been shown to provide very good approximations of the Jacobian
resulting in superlinear convergence. The advantages of quasi-Newton methods are that they
do not require an explicit formula for the Jacobian and that the update can be performed on
the inverse Jacobian alleviating the need to solve a linear system of equations at each iteration.
In this paper, the algorithm is initialized with a finite difference approximation to the Jacobian.
If the computed normal displacement jump coefficients violate the impenetrability condition
(Steps 2b-c), the partition with the most severe violation is added to the working set.
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1. Initialize the algorithm by setting the initial guess for the eigendeformation vector and for
the active set:

k = 1; 0d = td; 1W = tA

in which, kW denotes the working set. The working set is an approximation to the active
set at iteration k.

2. Loop over the iterations k:

(a) Compute
k
d̂ by evaluating ΨkW

(
d̂
)

= 0 using a standard nonlinear root finding
algorithm.

(b) Loop over each interface partition, α, which is not in the working set (i.e., α /∈ kW):

i. If the impenetrability condition at partition α is violated (i.e.,
k
δ̂

(α)
N < 0), com-

pute the step size 0 < λ(α) < 1 for each interface partition violating the impen-
etrability condition as:

λ(α) =
k−1

δ
(α)
N

k
δ̂

(α)
N −

k−1
δ

(α)
N

(c) If the step size is reduced (i.e.,
{
λ(α)

}
6= ∅):

i. Compute β = arg min
{
λ(α)

}
ii. Update the working set: k+1W = kW ∪ {β}
iii. k ← k + 1

iv. kd = λ(β)
(
k
d̂− k−1d

)
+ k−1d

v. Return to the beginning of the iteration loop

(d) Check if the unilateral conditions are violated in any partition within the working
set: (i.e., If any component of ΨkW̄ (d) < 0)

i. Compute β = arg min
(
ΨkW̄

)
ii. Update the working set: k+1W = kW − {β},
iii. k ← k + 1

iv. kd =
k
d̂

v. Return to the beginning of the iteration loop

(e) Update the eigendeformation vector: d = kd

(f) Update the active set: A = kW
(g) Exit the algorithm

End iteration loop

Box 1: The active set algorithm for evaluation of the reduced order model with unilateral contact con-
straints.

When the computed normal displacement jump coefficients do not violate the impenetrability
condition, the unilateral contact constraints are checked within the active set. If the unilateral
contact conditions are violated (i.e., if the computed interface traction coefficients are positive
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at partitions within the working set), the partition with the most severe violation (largest
positive interface traction coefficient) is removed from the active set (Step 2d). When the
unilateral contact constraints are satisfied, the active set, the eigendeformation vector, the
associated internal state variables, and damage variables are updated (Steps 2e-g).

4.3 Two-Order Reduced Modeling
Reduced-order models fail to accurately capture the post-failure response of the representative
volume element. The failure is defined as the loss of load carrying capacity along at least one
loading direction. For instance, full damage within any one of the failure paths along with
interface debonding in the RVE illustrated in Fig. 2 cause failure along the associated load
direction. The reduced order models exhibit spurious residual stiffness upon failure, which pro-
hibits proper redistribution of the stresses at the macroscopic scale. While increasing the model
order diminishes the spurious residual stiffness, this approach increases the computational cost.

We propose a two-order modeling scheme to eliminate the residual-stress fields upon failure
without significantly compromising the computational efficiency. In this approach, the stresses
are computed based on a high order model, whereas the damage coefficients are evaluated using
the low-order reduced-order model described in Section 4.1. The stress-update procedure for
the two-order reduced model is as follows:

1. Evaluate the eigendeformation vector, dlow, and damage coefficients, ω(γ)
ph ; γ = 1, 2, . . . , nlow

and ω(α)
int ; α = 1, 2, . . . ,mlow for the low-order model using the numerical procedure de-

scribed in Section 4.2. nlow and mlow are the orders for the low-order model selected by
the reduced-order model development strategy described in Section 4.1.

2. Map the damage coefficients of the low-order model onto the high-order model partitions.
The mapping of the damage coefficients onto the high-order model partitions is trivial
when the high-order model is constructed by hierarchical subpartitioning of the low-order
model. In this study, each finite element within the RVE domain constitutes a partition
for the high-order model.

3. Evaluate the eigendeformation vector, dhigh, for the high order model by solving the linear
system:

dhigh = K−1
highfhigh (68)

4. Compute macroscopic stress (Eq. 48), using the eigendeformation vector of the high-order
model.

5 Numerical Verification
The capabilities of the proposed reduced order modeling methodology are verified against direct
finite element simulations. The verification study consists of (1) analysis of an RVE response
and assessment of the reduced order model predictions, and (2) a three-point bending problem
to assess the capabilities of the reduced order model in capturing the overall failure response
of macroscopic structures.

5.1 RVE Analysis
The multiscale methodology described in the previous sections is applied to develop a meso-
mechanical model for a 2-D composite matrix with a circular inclusion. Figure 2 illustrates
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Figure 3: Stress-strain response and damage evolution within the RVE when subjected to uniform
biaxial loading.

the geometry of the microstructure. The evolution of damage within the matrix and along the
interface is modeled based on continuous damage mechanics models proposed in [21] for brittle
composite constituents. The reinforcement is assumed to behave elastically within the range
of applied loads.

The capabilities of the proposed multiscale model in capturing the failure modes for a
range of loading conditions are verified by comparing the model simulations to direct numerical
simulation of the representative volume element. The finite element mesh employed in these
simulations is shown in Fig. 2. The characteristic material length scale associated with the
matrix constituent is assumed to be 1/8 of the RVE size. The finite element mesh of the RVE
is designed to have an average size of 1/8 of the RVE length scale to avoid numerical errors
associated with mesh-sensitivity. The multiscale model is developed based on the reduced order
model development strategy described in Section 4.1. The reduced order model is developed
using the biaxial tension, uniaxial tension and shear loading modes. The partitioning of the
reduced order model is shown in Fig. 2. The matrix phase and the interface are modeled using
6 and 4 partitions, respectively. This model is referred to as SBU-4-6 in the remainder of this
manuscript.

The performance of model SBU-4-6 is compared to the results of the direct numerical
simulations for the biaxial, uniaxial and shear loading cases. The force displacement diagrams
in addition to the damage evolution in the interface and phase partitions are shown in Figs. 3-
5. In biaxial loading, the failure along the interface is uniform and precedes the failure within
the matrix phase. Upon interface debonding, the failure within the matrix propagates in the
vertical and lateral directions. The evolution of damage within the matrix partitions and the
interface clearly show that the failure modes are accurately captured by SBU-4-6. A similar
trend is observed in model predictions when subjected to uniaxial (Fig. 5) and shear (Fig. 4)
loading conditions. The failure mechanisms are captured with good accuracy when compared
to the reference direct numerical simulations of the RVE.
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Figure 4: Stress-strain response and damage evolution within the RVE when subjected to shear
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0 0.04 0.08 0.12 0.16 0.2
0

13.5

27

40.5

54

67.5

St
re

ss
 [M

Pa
]

Strain [%]
 

 

SBU−4−6 model
Reference

0

0.25

0.5

0.75

1

D
am

age

Interface failure
at partition 2

Matrix failure
at partitions 3, 6

Figure 5: Stress-strain response and damage evolution within the RVE when subjected to uniaxial
tensile loading in the lateral direction.
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spurious residual stresses are eliminated with the proposed reduced order model.

Figure 6 illustrates the capability of the proposed reduced-order model in eliminating the
spurious residual stresses in the post-failure regime. The spurious residual stresses present
due to the modeling errors associated with reduction of the model order typically pollute
the post-failure stress fields in the macroscopic analyses, since this effect partially constrains
stress redistribution. Figure 6 compares the predictions of the proposed model along with the
predictions of an eigendeformation-based homogenization model (EHM (0+1) point model)
proposed in Ref. [21] along with the direct numerical simulations when subjected to uniform
biaxial tension. The matrix-reinforcement interface is assumed to remain continuously bonded
throughout the simulation. A 1-partition reduced order model, SBU-0-1, is adopted. The
predictions of the EHM (0+1) point model clearly demonstrate a residual strength upon failure
of the matrix partition, while SBU-0-1 eliminates the spurious residual stresses.

The values of the model parameters used in the reduced order model are different than those
of the direct numerical simulations. The objective of the proposed reduced order model is to
capture the failure mechanisms within the heterogeneous material in a computationally efficient
and accurate manner. The simulations conducted in this section demonstrate that the main
failure mechanisms are captured with reasonable accuracy with the reduced order model. The
model parameters for the reduced order model are computed by minimizing the discrepancy
between the ultimate strength predicted by the proposed reduced order model and the direct
numerical simulations in a least square sense. From the validation perspective, the reduced
order model can be adopted to predict the response of heterogeneous systems by calibrating
the material parameters of the damage models directly, based on experimental observations. A
general discussion and methodologies for calibration and validation procedures for multiscale
models are discussed in Ref. [26].

18



5.2 Crack Propagation in a Beam Subjected to Three-Point
Bending
We consider a three-point bending of a cracked composite plate. The predictions of the SBU-
4-6 model are compared to a fine scale finite element model, which consists of 256 RVEs
described in Section 5.1. The macroscale mesh for the multiscale model consists of 256 4-noded
quadrilaterals. The volume fraction of the circular inclusions is 30%. The circular inclusions
are assumed to be isotropic and linear elastic with E = 200GPa and ν = 0.3. Damage processes
are considered within the central third, and the matrix material is assumed to be linear elastic
in the remainder of the plate. The elastic properties of the matrix material are E = 60GPa
and ν = 0.3. The initial vertical matrix crack is assumed to extend 1/8th of the plate width.

Figures 7a and 7b illustrates the propagation of the initial matrix crack and damage within
the matrix as predicted by the direct numerical simulation and the SBU-4-6 model. In these
simulations, the interface between the matrix and the inclusions are assumed to remain fully
bonded for the duration of the loading. The propagation of the initial crack is arrested ap-
proximately halfway through the plate thickness when shear cracks develop at the edges of the
applied loading. Figure 7a shows the damage state within the third phase partition depicted in
Fig. 2b. A comparison of the reaction force-applied displacement curves of the numerical simu-
lation and the proposed multiscale model is shown in Fig. 8. The reduced-order model slightly
over-predicts the strength of the composite plate. The errors associated with the SBU-4-6 are
due to the blunting of the response fields across the failure paths within the microstructure by
the model-reduction methodology. SBU-4-6 successfully captures the propagation and arrest
of the initial crack and subsequent shear crack formation with reasonable accuracy.

Figures 10a and 10b shows the failure of the three-point bending plate in the presence of
interface effects. The direct numerical simulation with the fine mesh shows that the path of
crack propagation is significantly altered when the inclusion-matrix debonding is considered.
The path of crack propagation displays a more jagged pattern with interaction between the
matrix and interface cracks. Figure 10a displays the state of interface damage across the
macroscale. The extent of interface damage is predicted by the SBU-4-6 model with reasonable
accuracy. The comparison of the applied force-deflection curve predicted with the proposed
multiscale model and the direct numerical simulations is shown in Fig. 9. The degradation effect
of interface debonding on the overall performance of the plate is predicted by the proposed
multiscale model with good accuracy.

6 Conclusions
In this manuscript, a reduced order multiscale computational methodology for failure analysis
of heterogeneous materials is presented. The proposed approach provides a novel model de-
velopment strategy for reduced-order models capable of efficiently and accurately representing
the failure modes within the microstructure without recourse to detailed finite element mod-
eling of the RVE. A two-order modeling approach is devised to eliminate spurious residual
stresses upon failure, allowing accurate stress-redistribution within a macroscopic component.
The resulting reduced-order model possesses symmetry, allowing efficient numerical evalua-
tion of the microscale problem. The reduced order model proposed in this study is verified
against direct numerical simulations. The proposed model captures the failure modes within
the microstructure with good accuracy.

Perhaps, one of the more significant remaining challenge in multiscale computational mod-
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Figure 7: Damage profile of the 3-point bending beam specimen at the onset of shear fracture in
the absence of interface debonding effects: (a) The prediction of the SBU-4-6 model. The contour
represents the state of damage at phase partition 3; (b) Damage distribution predicted by the direct
numerical simulation.
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Figure 8: Comparison of the load-deflection curve between the multiscale SBU-4-6 model and the
direct numerical simulation in the absence of interface debonding effects.
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Figure 9: Comparison of the load-deflection curve between the multiscale SBU-4-6 model and the
direct numerical simulation in the presence of interface debonding effects.
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Figure 10: The deformed configuration of the 3-point bending beam specimen in the presence of
interface debonding effects: (a) The prediction of the SBU-4-6 model. The contour represents the
state of interface damage; (b) Crack profile predicted by the direct numerical simulation.
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eling of failure in heterogeneous materials is spurious mesh dependency of the resulting homog-
enized macroscale problem. While, the proposed reduced order modeling strategy eliminates
mesh-dependency in the microscopic domain, the homogenized macroscale problem remains
local. The localization limiters that eliminate spurious mesh dependency have been extensively
investigated in the computational mechanics literature for homogeneous materials. In contrast,
mesh dependency studies of multiscale material systems have been relatively limited. A rigor-
ous, mesh independent, reduced order multiscale computational framework will be investigated
in future studies.
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