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Abstract

This manuscript presents a new multiscale framework for the analysis of failure of thin
heterogeneous structures. The new framework is based on the asymptotic homogenization
method with multiple spatial scales, which provides a rigorous mathematical basis for bridging
the microscopic scales associated with the periodic microstructure and thickness, and the
macroscopic scale associated with the in-plane dimensions of the macrostructure. The proposed
approach generalizes the Caillerie-Kohn-Vogelius elastostatic heterogeneous plate theory for
failure analysis when subjected to static and dynamic loads. Inelastic fields are represented
using the eigendeformation concept. A computationally efficient n-partition computational
homogenization model is developed for simulation of large scale structural systems without
significantly compromising on the solution accuracy. The proposed model is verified against
direct 3-D finite element simulations and experimental observations under static and dynamic
loads.
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1 Introduction

Thin structural systems composed of heterogeneous materials have been increasingly used as
structural components particularly for impact, blast and crush applications, owing largely
to their favorable impact resistance, energy absorption capability, specific strength and stiff-
ness performance. Despite widespread use of such components, efficient and accurate model-
ing and simulations capabilities for the prediction of failure is not yet available. There is a
need for modeling and simulation tools capable of accurately representing the complex failure
processes including matrix and fiber microcracking, interface debonding, delamination, fiber
micro-buckling, kink banding and their interactions at the scale of the heterogeneities. From
a modeling point of view, accurate representation of these failure mechanisms in a computa-
tionally efficient manner remains to be a challenge. The clear choice for achieving this aim
is multiscale structural modeling without resorting to direct 3-D finite element modeling by
full resolution of the microscopic fields. While direct FEM modeling has optimal accuracy, it
typically exhausts available computational resources in simulation of large scale systems.
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Mathematical homogenization theory (MHT) provides a rigorous mathematical framework
for analysis of heterogeneous materials. Since the formalization of its mathematical foundations
in the seminal works of Benssousan [1], Sanchez-Palencia [2], Babuska [3] and Suquet [4], MHT
has been employed to characterize the response of heterogeneous solids undergoing inelastic
deformations [5, 6]. This theory has also been applied to thin structures for analysis of linear
elastic, nonlinear elastic as well as dynamic systems. Homogenization of thin structural sys-
tems consists of asymptotic analysis in the presence of a thickness scale in addition to the scale
of the periodic heterogeneity. This approach have been formalized by Caillerie [7], and Kohn
and Vogelius [8] for plates, by Kolpakov [9] for beams, by Trabucho and Viano [10] for rods
and by Cioranescu and Saint Jean Paulin [11] for reticulated structures. Despite reasonable
accuracy and improved efficiency compared to direct finite element analysis using full resolu-
tion of the microstructure throughout the component scale, main difficulty with MHT-based
structural models remains the high cost of solving 3-D microscopic boundary value problems
on the representative volume element (RVE) domains to evaluate the macroscopic constitu-
tive response. Transformation field analysis (TFA) proposed by Dvorak and Benveniste [12]
alleviates the requirement of evaluation of the microscale boundary value problem. In this
approach, the equilibrium in the microscale is satisfied by evaluating fundamental solutions
of the RVE in the elastic state, and representing the inelastic fields as a function of the fun-
damental solutions, macroscopic deformations and a small subset of coordinate tensors. TFA
based models have been employed to represent phase damage mechanisms [13, 14] and vis-
coplasticity [15]. More recently, Oskay and Fish [16, 17] proposed the Eigendeformation-based
homogenization method (EHM). EHM generalizes TFA to account for the interface debonding
within the RVE, and it incorporates a model selection capability to adaptively regulate the
model order to match the desired accuracy and efficiency requirements. While TFA-based
models have successfully applied multiscale solid systems, it has not been applied to model
thin multiscale structures.

In this manuscript, we present a new computational homogenization model for brittle fail-
ure of thin heterogeneous plates. The present approach is a generalization of the elastic theory
proposed in Refs. [7, 8] for thin heterogeneous plates to account for the presence of inelastic
and failure processes when subjected to static and dynamic loads. The presence of damage
induced inelastic processes is represented using the eigendeformation concept. Transient dy-
namic effects are considered using a two scale decomposition of time, in which, the out-of-plane
deformations are taken to oscillate in much smaller time scales compared to the in-plane de-
formations. Asymptotic analysis of the heterogeneous plate is conducted in the presence of
eigendeformation fields and inertial effects, and an inelastic plate theory is obtained for failure
analysis of heterogeneous structures.

This manuscript is organized as follows: The fundamental mathematical setting of the
multiscale problem and the original governing equations of the thin heterogeneous system is
introduced in Section 2. In Section 3, the generalization of the mathematical homogenization
theory for thin heterogeneous solids to dynamic-inelastic regime using the eigenstrain formu-
lation is presented. The decomposition of the original boundary value problem in a series of
microscale and macroscale problems is introduced. A computationally efficient reduced order
homogenization model for thin plates is described in Section 4. Computational aspects and the
implementation details of the proposed methodology are discussed in Section 5. We demon-
strate the capabilities of the present modeling approach in Section 6. Static 3-point bending
beam, mesh sensitivity analysis on notched specimens subjected to uniaxial tension, and a
dynamic impact of a rigid projectile on woven composite plate simulations are conducted for
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Figure 1: Macro- and microscopic structures.

verification of the proposed model. A summary and a brief discussion of future work conclude
the manuscript.

2 Problem Setting and Governing Equations

Consider a thin heterogeneous plate, B € R3, formed by the repetition of a representative
volume element (RVE) in two orthogonal axes, x1 and z2, perpendicular to the thickness
direction as shown in Fig. 1. The RVE, ), is composed of two or more constituent materials.
The domain of the heterogeneous body is defined as:

B = {X|X = (z,2,), © = {x1, x2} € O, & (z) < a3 < ci (m)} (1)

in which, Q € R? is the reference surface parameterized by the Cartesian coordinate vector,
x; xs-axis denotes thickness direction; x = {z1, x9, 23}; ci define the top (4) and bottom
(—) boundaries of the body. Superscript ¢ indicates the oscillatory characteristic of the corre-
sponding field with a wavelength in the order of the scaling parameter ¢ defined below. The
Greek indices are reserved to denote 1 and 2, while lowercase Roman indices denote 1, 2 and
3.

The heterogeneity in the microconstituents properties leads to an oscillatory response,
characterized by the presence of three length scales: macroscopic scale, x := {x,z3}, where
x = {x1,z2}, associated with the overall dimensions of the microstructure and two microscopic
scales associated with the rescaled unit cell denoted by y = {y1,y2}, where y = z/(, and z =
x3/€, associated with in-plane heterogeneity and thickness, respectively. Two scaling constants,
0 < (,e < 1, respectively define the ratio between the characteristic planar dimension and
thickness of the RVE with respect to the deformation wavelength at the macroscopic scale. The
oscillatory response is represented using a two-scale decomposition of the coordinate vector:

Fx) = f (2, y(x)) (2)

where, f denotes response fields, y := {y, z} is the microscopic coordinate vector. The spatial
derivative of f¢€is calculated by the chain rule:

f,ge = dia <f,aca + 2f,ya> + 5i3%f,z (3)
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in which, a comma followed by an index denotes derivative with respect to the components
of the position vector; a comma followed by a subscript variable z, or y; denotes a partial
derivative with respect to the components of the macroscopic and microscopic position vectors,
respectively; and d;; denotes the components of the Kronecker delta.

The RVE, ), is defined in terms of the microscopic coordinates:

V={yly=Wz2),y={m. e, c (y) <z<c" (v} (4)

in which Y € R? is the reference surface in the RVE. The boundaries of the RVE are defined
as:

Y = {ylyeY z=c*@y)} (5)
Moo = {ylyedy, e (y) <z<ct(y)} (6)

+

The boundary functions, ¢* are scaled with respect to the corresponding functions in the
¢ + (
Y)-

original single scale coordinate system: ¢ (z) = ec

Remark 1:
We consider the following restrictions on the response fields:

— All fields are assumed to be periodic in the microscopic planar directions:

f(d?,y,Z) :f(x7y+kgvz)

where, § denotes the periods of the microstructure; and k is a diagonal matrix with
integer components.

— The structure is taken to be thin throughout (i.e., ci —c> =0(e)).

— The thickness and the planar dimensions of the RVE is of the same order of magnitude
(e = O(()). By this restriction, one of the scaling parameters is eliminated and the for-
mulation includes a single scaling parameter. Alternative formulations for tall reticulated
structures (i.e., € > (), and plates with moderate heterogeneities in the planar directions
(i.e., ¢ > €) have been previously considered by other researchers [18, 19] in the context
of elastic analysis.

2.1 Original Boundary Value Problem

Failure of the heterogeneous body is considered as the progressive degradation of the material
properties within the microconstituents when subjected to mechanical loads of sufficient am-
plitude. The microconstituents are assumed to be perfectly bonded along the interfaces. The
governing equations of the failure of the heterogeneous body is expressed as (x € B, t € [0, to]):

05 (5t) b (1) = pf (%) i (%) (7)
Uicj (x,t) = ngkl (x) [eil (X,t)—ﬂiiz (Xat)} (8)
¢ ous
¢ _ L _ 1[0y j
€6t = v, =g (8-1'3' i 8:&') )
i (1) = W (x,1) e (x,1) (10)
Wb (x,t) = Wb (afj,efj,s<> (11)

4



where, uf denotes the components of the displacement vector; Ufj the Cauchy stress; efj and

ng the total strain and inelastic strain tensors, respectively; w¢ € [0,1] is the scalar damage
variable, with w¢ = 0 corresponding to the state of no damage, and w¢ = 1 denoting a
complete loss of load carrying capacity; bg the body force; p¢ (x,t) density, and; ¢t the temporal

coordinate. Superposed single and double dot correspond to material time derivative of orders
one and two, respectively. ng 1> the tensor of elastic moduli, obeys the conditions of symmetry

¢ _7¢ _ 76 s
Ly = Ly = Liju = Liyij (12)

and positivity
3Co >0, L§&iiém > Coijén Vi = & (13)

The evolution equation of w¢ is given in a functional form (Eq. 11) as a function of strain,
stress and additional state variables s¢. The specific form of the damage evolution within the
microstructure is presented in Section 4.1 (see [20] for a rather complete treatise on continuous
damage mechanics approach).

The initial and boundary conditions are assumed to be a function of the macroscopic
coordinates only. The initial conditions are

ub (x,t) = 4 (x); @ (x,t)=0;(x); x€B; t=0 (14)
The boundary of the structure is defined by I' = 'y U Ty, as illustrated in Fig. 1.

r, = {x|x€Q, xgzc;(x)} (15)

Iy = {x]w €00, & (x) < x3 < ci(x)} (16)

Homogeneous displacement conditions are assumed on I'g, whereas traction boundary condi-
tions are assumed on I'y:

uf (x,1) i xeTly; tel0,t] (17)
—+

=0
Ufj (x,t)n; =7, (x,t) ; xel'y; tel0,t,) (18)
The above boundary conditions are chosen for simplicity of the presentation. Treatment of
the general (displacement, traction and mixed type) boundary conditions is presented in Sec-
tion 3.3.1.

3 Generalized Mathematical Homogenization of Thin
Plates with Eigenstrains

We employ the mathematical homogenization theory with multiple scales to evaluate the failure
of thin structural systems described by Eqs. 7-18. To this extent, we generalize the linear elastic
composite thin plate theory first proposed by Caillerie [7] and, Kohn and Vogelius [8] to account
for the presence of inelastic and damage fields using the eigendeformation concept [16]. We
start by an asymptotic decomposition of the displacement field:



where, w is the out of plane displacement, and !, u?, ... denote higher order displacements.
Analogous expressions have also been proposed in asymptotlc analysis of heterogeneous rods
(see e.g., [10, 9]). We further assume that the transient motion in the thickness direction
is dictated by the presence of much smaller time scales (O(¢~2)) compared to the planar
deformation:

u

Qv

—~~

ke
~

U ($, Yy, t) (20)
(x,t) = us(w,y, (%) (21)

u

LW

This condition ensures recovery of the classical plate theory in the static limit. Similar scalings
have been used in the context of plate dynamics (e.g., [21]).
The damage variable is approximated as

wé(x,t) = w(z,y,t) +0(() (22)

The following load scalings are necessary to account for the diminishing transverse dimensions
of the heterogeneous structure [22]:

g(x t) = <x y.t) 3 b5 (x,t) = %3 (2, y,t) (23a)
7E(x, ) Crz(x,t) 5 T(xt) =G (a,t) (23b)
Pt (x) =p(y) (23¢)

The strain field is expressed in terms of an asymptotic series by using the chain rule (Eq. 3)
as well as Egs. 9 and 19:

ZC” el(w,y,t (24)

where the components of the strain field are expressed as:

1
egﬁ(xa Yy, t) = ula ) 633(3:7 Yy, t) = ; Wz, + U13’ya ; 633( z,Y, ) - ué,z (253‘)
(eys) 2 (3:ya)

1
1 +1
ﬂ(x y,t) = (a xg) +u ?;y5)5 Ega(x,%t) = 5“3,35 + U’(gy )i EéB(anat) = ugz (25b)
n=12...
The stress field is also expressed based on asymptotic expansion:
(o]
= (lof(w,y,1) (26)
n=0
using Eqgs. 8, 22 and 24, the components of the stress field are obtained:
G?j ($7 Yy, t) = Lijk:l (y) [6Zl(x> Yy, t) - MZl(xv y, t)} (27)
where,
pyy = wlz, y, el (z,y,1) (28)



The momentum balance equations in various orders are obtained by substituting Eqs. 19
and 26 into Eq. 7, and using Eqgs. 20, 21 and 23:

O™ : oy, =0 (29a)
O(1) U?a,xa + Uij,yj =0 (29b)
O() & Olagy + 01y, + diaba = Siapiiy (29¢)

0%+ Tpoan + O—?j v + Oizbs = Giapiiy, + Ogipti (29d)
O(C") + Oy + 01 = Siapiil) + Saipii] 2, m=13,4,... (29¢)

Similarly, substituting stress and displacement decompositions (Egs. 19 and 26) into Eqgs. 17
and 18, and using Eq. 23b gives the boundary conditions in various orders:

o) ?j(a: v, t)n; = x €y, w(z,t) =0, xe€ly (30a)
0(Q) le (x,y,t)n; = rely; (m y,t) =0, x€Ty (30Db)
0(¢?) 12](37 y,t)n; = 5wﬂ' (z), zeTly; ul(z,y,t)=0, z€Tly (30c)
0(¢?) %(x v, t)nj = 5237'3 (), zely; u(zr,y,t)=0, zely (30d)
o(¢ Z(x v, t)n; = x € y; uwl(z,y,t) =0, zely (30e)

n=4,5,...

3.1 First Order Microscale Problem

The O (( _1) equilibrium equation along with the O (1) constitutive and kinematic equations,
and initial and boundary conditions form the first order microscale problem (RVE!). RVE!
is summarized in Box 1. In what follows, we formulate the evolution of microscale problems
based on trandformation field analysis.

Given: material properties, L;ji(y), macroscopic strains, w .., and the inelastic strain
field, :“21

Find: for a fixed z € Q and ¢ € [0, ], the microscopic deformations, u} (Z,y,f) € Y — R
which satisfy

e Equilibrium:

{Lmz (¥) Wlhy) (T3, 8) + Lijas (¥) w o (7,1) = Lijia () iy (T, y, D} u 0
4]

e Boundary Conditions

1 i i Yy
~ Uiy, periodic on y € I'y

- {Lz'ijU%hyl) + Lija3W gz, — Lijklugl} nj=0onyeclY

Box 1: The first order RVE problem (RVE?).

For a fixed macroscopic state and time (i.e., evolution of the system is frozen), the eigen-
deformation concept may be invoked to evaluate the first order microscale problem. By this



approach, w ,, and ,ugl are viewed as forces acting on an instantaneously linear system. Hence,
the microscopic displacement field is decomposed as:

u(z,y,t) = ul(z,y,t) + ;" (z,y,t) (31)

}"” and ul1 " are displacement fields induced by the macroscopic deformation and in-

elastic strains, respectively. The above decomposition is valid for arbitrary damage state. We
first consider the damage-free state (i.e., ud; =0 — uz-m = 0). At this state, the RVE! problem
may be trivially satisfied when the microscopic displacement takes the following form:

where, u

uf =l (@,y,1) = i, 1) = £0iaw,e, (x,1) (32)

where, Z = z — (z), and; (-) :=1/|Y| fy -d) denotes volume averaging on the RVE. Next, we
consider the case when the macroscopic deformations vanish at an arbitrary damage state.
The resulting system of equations constitutes an elasticity problem with eigenstrains, ,u?j. The

solution may be expressed in terms of damage influence function, O, as follows

ﬁz@%%%ﬂz/émWﬁmwaﬁmﬁ (33)
Yy

The damage influence function is evaluated by solving the First Order Damage Influence
Function (DIF!) problem defined in Box 2

Given: material properties, L;jmn (y) and d is Dirac delta function.
Find: O, (y,y) : Y x Y — R such that:

e Equilibrium:

{szmn (¥) (é(m,yn)kl v, %) + Innd (y — 5,))} _0 ygey

Y5
e Boundary conditions:

— C:)Z-kg periodic on y € ng

— Lijmn (¥) <é(m,yn)kl (v, ¥) + Lnnrad (y — 5’)) nj=0onyerY

Box 2: The first order Damage Influence Function problem (DIF?!).

Remark 2:
The general expression for the microscopic displacement field, ull becomes

uzl(x7 Yy, t) - Ui(l’, t) - ééiaw,ma (l’, t) + /éikl(%y)ﬂzl(wa y? t)dy
Y

Gradient of the above equation substituted into Eqgs. 25a and 28 leads to

M?j(l'vy,t) = w(l'vy’t)/é(i,yj)kl(Yay)u%l(l‘?yat)dy
Yy

The above is a homogeneous integral equation. For an arbitrary damage state, w, it can only
be satisfied trivially [23] (i.e., u?j = 0), and the microscopic displacement field expression
reduces to Eq. 32.



3.2 Second Order Microscale Problem

The O (¢) equilibrium equation along with the O (1) constitutive and kinematic equations,
and initial and boundary conditions form the second order microscale problem (RVE?) as
summarized in Box 3.

Given: material properties, L;;i (y), macroscopic strains, W zoag and U g, , and inelastic
strain tensor, pij;

Find: for a fixed 7 € Q and t € [0, 9], the microscopic displacements u? (Z,y,f) € Y — R
which satisfy

e Equilibrium:

{Lz’jkl (¥) Uty (T3, 8) + Lija3 () uszo (7,1) + Lijag (y)

% (ta) (#8) = 200,25 (2.8)) = Ligwa (v) (@, y,8)} =0

7y]

e Boundary Conditions:

— u%z.’yj) periodic on y € Fg)
- {Lijkl (¥) ufy ) (T3, 1) + Lijas (¥) usza (2,1) + Lijags ()

X (u(awﬁ)(m,t) — 2W goxs (a‘c,t)) — Liji (y) ,ukl(a_:,y,ﬂ} nj=0ony e I‘%

Box 3: The second order RVE problem (RVE?).

The second order microscale problem is evaluated analogous to the first order problem using
the eigendeformation concept. The forcing terms in RVE? are the macroscopic generalized
strains, u; ., and w,, as well as the inelastic strains, p;; (superscript 1 is omitted in what
follows for conciseness). The microscopic displacement field is evaluated by considering the
following decomposition:

u? = u¥ 4y (34)
in which, u?“’ and uf“ correspond to the displacement components due to the forcing terms
associated with the macroscopic displacements w and u;, respectively. First, consider the case
when w = 0. Employing the eigendeformation concept, the microscopic displacement field is
expressed in terms of the influence functions:

uF (2,5, 1) = Oiap (¥) Uawy) (¥, ) — 2iatiz a, (2,1) + / Oy, ¥) fir(z, ¥, t)dy (35)
Y

in which, fiz3 denotes the components of the inelastic strain field due to in-plane deformations,
and; Oy is the first order elastic influence function. ©;;3 is the solution to the first order
elastic influence function problem outlined in Box 4.

Considering the case when u; = 0 with nonzero w, the microscopic displacement field is
expressed in terms of the second order influence functions as

uzzw (CE, Yy, t) = E'La,@ (y) Wzazg (l’, t) + / éikl (ya y)ﬂkl (x’ S’a t)dy (36)
Y



where, fi;; denotes the components of the inelastic strain field due to the bending deformation;
Eiap and 2,1 the second order elastic and damage influence functions, respectively. Z;,3 and
Ziw are solutions to elastic and damage influence function problems (EIF?) and (DIF?), re-
spectively, which are summarized in Boxes 5 and 6. Under general loading conditions (nonzero
u; and w with arbitrary damage state, w), microscopic displacement field, u? is given by Eq. 34
with the right hand side terms provided by Eqgs. 35 and 36.

Given: material properties Ljjy ().
Find: ©;q5(y) : Y — R such that:
e Equilibrium:
{Lijmn@(m,yn)aﬁ (Y) + Lijaﬁ (Y)}yj =0

e Boundary Conditions:

— O,qp periodic on y € I%;

- Lijmn (y) (@(m,yn)aﬁ (Y) + Imnaﬁ (Y)) n; = 0 on y € Fl

Box 4: The first order Elastic Influence Function problem (EIF!).

Given: material properties L;j (y).
Find: Ziap (y) : Y — R such that:

e Equilibrium:
{LijmnE(m,yn)aﬁ (Y) - 2Lija,3 (Y)}yj =0

e Boundary Conditions:
— Eiap periodic on y € F%’
- Lijmn (y) (E(m,yn)aﬁ (y) - éjmnozﬁ (y)) n; = 0 on yc Fi

Box 5: The second order Elastic Influence Function problem (EIF2).

Remark 3:

The transverse shear stress components vanish:

<U§j (l‘, Yy, t)> =0 (37)
The stress field may be expressed in terms of the influence functions by combining the displace-
ment decompositions given by Eqs. 34-36 with the O(1) kinematic and constitutive expressions
(Egs. 25b and 27):
Uilj (z,y,t) = Lijia (¥) Ariap (¥) Ua,es (7,1) = Lijrt () Eriap (Y) W zazs (T51)
+Lijr (¥) / Atmn (Y5 9) fimn (2,9, 1) dy
Yy

y
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in which,

NAz‘jocﬁ ( ) = dijas + @ (4,y5)ap (y) 5 NEija,@ (Y) = {ijaﬁ - éa(i,yj)aﬁ (Y) 39
Aijit (7, 3) = Oyt v, 9) — A = ¥) Lijits Eijia (¥, 9) = E(ig 0 (v, 3) — d(F = ¥) Liju

Premultiplying the equilibrium equations for the influence function problems, EIF!, EIF?,
DIF! and DIF? shown in Boxes 4, 5, 2 and 6, respectively, by zd;, (p = 1,2, 3) and integrating
over the RVE leads to:

Yy . Yy
A3j7}o¢ﬁ 0; E3{}o¢ﬂ =0 (40)
T3]kl =0; H3jkl =0

where the coefficient tensors AY . EY . TY ! and H z‘J;kl are defined as:

ijaB’ TijaB’ Tijk

A%’aﬂ = (Lijia (y) Ariap (¥)) 5 Ez)]}aﬁ {Lijkt (¥) Exias (¥))
Tz%}kl = <Lijmn (Y) Amnkl (Y7 S’)> ; Hz;);‘k:l <L2jmn (Y) Ernki (Y7 5’)>

Given: _material properties, Lijmn (y) and d is Dirac delta function.
Find: Zi (y,y) : Y x Y — R such that:

e Equilibrium:

{Lz‘jmn (v) (

[1]:

(moyn)ki (Y3 ¥) = 2lnnid (y — S')) } o 0; y,ye)y
'Yy

e Boundary conditions:

- fikg periodic on y € Faj

= Lijmn () (S gyt ¥59) = Znpad (y = 3) ) ny = 0 on y € T

Box 6: The second order Damage Influence Function problem (DIF?).

Applying the averaging operator to Eq. 38 and using Eqs 41, Eq. 37 is satisfied. The
above argument is justified when d;,z is within the appropriate trial function space, which is
automatically ensured for Eq. 40a when the EIF! and EIF? problems are evaluated within the
classical finite element method framework. A numerical approximation of the DIF! and DIF?
problems (described in Ref. [16]) ensures the admissibility of ¢;,2 for Eq. 40b.

3.3 Macroscale Problem

We introduce the force, moment and shear resultants based on the averaging of the stress
components over the RVE:

Na,@ (x,t) := <O‘é5>; Mg (z,t) == <20éﬁ>; Qq (z,t) := <O‘§a> (42)

Averaging the O(¢) momentum balance equation (Eq. 29¢) over the RVE, employing the O((?)
boundary conditions, along with Eq. 37:

Napas (2,1) + qa (2,1) = (p) lia (€, 1) = (p2) U 2, (z,1) (43)
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where, ¢, denotes the traction acting at the top and bottom surfaces of the plate as well as
the body forces:

Ga (2, 1) = (ba) (2, 8) + {G)y T (2,8) +{G-)y T (z,1) (44)

and (-)y = fY -dy, and;
G+ (y \[l—l—cyl—i-cyZ) (45)

accounts for the arbitrary shape of the RVE boundaries. Premultiplying Eq. 29¢ with 2 and
averaging over the RVE yields:

Mg (2,t) = Qo (2,) + pa (2, ) = (p2) iia (z,t) — <p732> W g, (z,1) (46)
where,
Pa (,1) = (2ba) (z,t) + ((¢* = (2)) Gy)y T (2,8) + ((¢7 = (2)) G- )y 7o (1) (47)

Averaging the O (C 2) momentum balance equation (Eq. 29d) over the RVE, and using O ((3)
boundary condition yields:

in which,
m (x,t) = (bs) (x,) + (G4 )y 75 (2,8) +(G-)y 75 (2,1) (49)
The constitutive relationships for the force and moment resultants as a function of in-plane
strains (€as = Ua,zz) and curvature (kos = —Wz,a4), are obtained by averaging Eq. 38 over
the RVE:
Nog (z,t) = Agjﬁ#new] (x,t) + Egjﬂun’{l”? (x,t)+
Y () i (.08 do Y 0N B (2.9 1) dS (50)
/y T, (3) ikt (2,9,6) A5 + /y HY o (9) i (2,5.1) d
Mg (z,t) = Fgﬁ“neun (x,t) + ngﬁun’il‘” (x,t)+
Vo ey - . . Y en s . . (51)
. Grogr (%) g (2,7, 1) dy + . Copr () it (z,3,1) dy
where, the coeflicient tensors, Faﬁw, ngﬁlm’ Gaﬁkl (y) and C¥ sk (V) are defined as:
Fgﬁ;m (2Lapre () Ayeun () Daﬂ;m (2Lare () Ereun (v)) (52)
g (9) = <2La,3ij( ) Aijii (y 5’)> Cagkz () = <ZLa,6ij( ) Eijki (y,y)>

3.3.1 Boundary Conditions

To complete the formulation of the macroscopic problem, it remains to define the bound-
ary conditions along I'g. Formulations of boundary conditions in the context of elastic beam
and plate theories have been proposed in the past by a number of researchers based on de-
cay analysis [24, 25], inner expansions [26], approximate conditions using integral forms [27],
among others. While the former two approaches are more rigorous and accurate, they are
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computationally expensive for nonlinear analysis due to the requirement of evaluation auxil-

iary problems to evaluate the solution close to the boundaries. In this manuscript, the original
boundary conditions along I'g are assumed to be of the following form:

uf (x,t) = r%(x,t); on T} (53)

Ufj (x,t)n; = Tic (x,t); onIY (54)

where, boundary partitions satisfy: I'p = Ty UT], TiNTY = 0. Along the displacement
boundaries, I'j the displacement data of the following form is admitted

7 (%, 1) = 03W (2,1) + (i [T (2, ) — 204 (2,1)] (55)

Matching the displacement terms of zeroth and first orders along the boundary gives
O1): w(z,t) = W(x,t) (56)
O): uqg—2wy, = rqo(z,t)—20(x,t) (57)

Averaging Eq. 57 over the RVE boundary gives the remaining displacement and rotation
boundary conditions
Ug =To; Wg, =04; only (58)
Along the traction boundaries, I'fj, the traction data is assumed to satisfy the following
scaling relations with respect to ¢

TZ.C = (OiaTa (z, ) + (20i3m3 (2, 1) (59)

The traction boundaries are satisfied approximately in the integral form. The equivalence
relation between the average and exact boundary conditions may be shown based on the Saint
Venant principle [27]. The moment, force and shear resultant boundary conditions are given
as:

Nogng =Ta; Magng = (2) Ta;  Qala = T3 (60)

Boundary data is taken to satisfy the free-edge condition [28].

4 Reduced Order Model for Thin Plates

The eigenstrain based homogenization of the governing equations of a thin heterogeneous
structure leads to a macroscopic problem with balance equations provided by Eqs. 43, 46
and 48 along with the constitutive relations (Egs. 50 and 51). The damage induced inelastic
strain tensors fi;; and fi;j account for the coupling between the microscopic and macroscopic
problems. We seek to solve the macroscopic problem in a computationally efficient manner.
To this extent, the damage variable and eigenstrains are described as:

2 o [ N0 iy D(a,1)
fig o @y, )= 3 NOy)al (1) (61)
g = | st

where, N, NU) and 9@ are shape functions, and; MEJ), ,u,iy) and w®) (x,t) are the weighted

average planar deformation, bending induced inelastic strain and damage fields, respectively:
=)

luz (y)ﬂlj(x y’ )
alh b @) = / D(y)igg (. y.1) {dy (62)
(D Y n<f><y>w<x y,t)
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where, (), 1&([ ) and ") are microscopically nonlocal weight functions. The discretization
of macroscopic and microscopic inelastic strains results in reduction in number of kinematic
equations for the system, which in turn improves the computational efficiency of the model.
The shape functions are taken to satisfy partition of unity property, while the weight are
positive, normalized and orthonormal with respect to shape functions [16]:

SNOm =1 @z [ mdy =1 [ GDHND Gdy=b (63
I=1 Yy y

where N&) and go(I ) denote any of the shape and weight functions, respectively. The in-plane
deformation and bending induced inelastic strain fields may be expressed as:

1
fiij(z,y,t) = w(z,y,1) <5m5jﬁeaﬁ(x, 1)+ 5 (Gisdja + Siadjs) usa (1) + u(iy, (@, , t)> (o)
fij(z,y,t) = w(z,y, 1) (5m5jﬁ"3’faﬁ($:t) + “%;,ij)(x’y’t» o)

Expressions for [LEJI-) and ﬂg) are obtained by substituting Eqgs. 35 and 36 into Eqgs. 64 and 65,
respectively and employing the inelastic field discretizations (Eqgs. 61-63):

“z(al)(x t) = w(a,1) <A5112m‘3w (z,1) +Z jIk{)ul(cl)(x’t)> (66)
ﬂg')(x’t) = w(l)( t) (El(ﬂ)mﬁ,m (x,t) + Zkal (m,t)) (67)
I IJ
in which, the coefficient tensors, A,Eﬂ)m, Ei(j;)m’ Pz(jkl)’ and QZ L are:
A = / DD WD (y) Ay (v) dy; Bl = / D (¥)Eijun (v) dy — (68)
J)
P = [ 900w, v 0, = [ 000w, cay (o)

Employing the eigenstrain and damage decompositions, the in-plane force and moment
resultants are expressed in terms of the phase average fields as

I _ I
Nog (@,8) = Ay e (2,0) + B Ry (1) +Z( T8 (@, t) + 2, Al (x,t)) (70)
I=1

~(I
Maﬁ (1’, t) = Fgﬁpnelﬂi (1’, t) + Dozﬂ,wr]/ilﬂl T, t + Z ( a,ﬁ’kllu’l(fl) (l‘ t) + C(,B)kllugfl) (.Z', t)) (71)
I=1

The coefficient tensors are expressed in terms of the damage influence functions:
Pl (v / N () O () dys - Qi (¥ / N (y) By, () dy (72)

I - I .
To(ﬁ)kz = <Laﬁij [Pi(jk?l(y) — LijiuND (Y)} > ; H(g)kl <Laﬁij [ng,ll(y) — LN (y)D (73)

1 A I = N
G((xﬁ)kl = <2Laﬁij [P i(jk)l(y) — LijuN (I)(Y)D% nyﬁ)kl = <ZLa,6’zJ [QW( ) = LijuN (I)(Y)D(M)

The reduced order macroscopic problem is summarized in Box 7.
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Given: Influence functions, ©;43, Eiag, Oty ikt Logri, and; material parameters associ-
ated with the evolution of damage; boundary data ra, 6a, Ta, 7.7 body force, b;; density,
p, initial condition data, w, w, 1, and V4.

Find: macroscopic displacements u, and w ., such that:

'L 7

e Momentum balance:

Nagzs (2,1) + @a (2,1) = (p) lla (2, 1) — (p2) W g, (7,1)
Mg s (z,t) — Qq (x,t) + pa (x,t) = (p2) tig (2, t) — <p22> W g, (x,1)
Qaz, (1) +m(z,t) = (p) ¥ (2,1)

e Constitutive relations:

NE

n o N A
Nap = Ay peun (2:8) + Byt (,1) + (Tc(yﬁ)klﬂéz) (z,t) + Héﬁ)lcl W (@, t)>

I

Il
—

NE

n - (I
Map = Fgﬁuneun (z,t) + nggun’iun (z,t) + (G&gkzﬂi(gz) (2,1) + Cc(w?kl:“éz) (z, )>

~
Il

1

= 00) A tt) 3 P )

/’I/aﬁ_w

i) = wD(z,1)

IJ ~
B (@, 1) + Z@Lﬁwuun @,ﬂ]

Kinematics:

eaﬁ($7t) = U(%yﬁ)(l‘,t); /{oaﬂ(xat) = _w,wawg(xvt)

Initial conditions (x € Q):

w(z,t =0) =w(z); ua(z,t=0)="1uq(x)

w(z,t=0) =w(z); Us(x,t=0)="704(x)

Boundary conditions:

— . — T
Ug = Ta; Wy, = 0o on I'j

Nopng = (Ta); Magng = (27a); Qana =713 on I]

e Evolution equations for wd) (z,y,t)

Box 7: The reduced order macroscopic problem (n-point model).
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Remark 4:

The verification studies provided below are conducted by choosing identical shape
functions to define the inelastic field discretizations (i.e, N) = NU) = N = 9@ and
Y0 = ) = () = (DY such that:

(I _ 1ifye y(l)
N (y) { 0 elsewhere

v (y) = ——ND(y)

where, Y is the I*® partition in . The partitions are disjoint subdomains filling the entire
microstructure (i.e., Y = J7_, Y and YI) N Y =@ for I # J) and each subdomain resides
in a single physical phase. N and ) are the simplest functions that satisfy partition of
unity, positivity, normality and orthonormality conditions given in Eq. 63.

4.1 Rate dependent damage evolution model

The inelastic processes within the microstructure is idealized using the damage variables, w(!).
In this manuscript a rate-dependent model is used to characterize the evolution of damage
within the microstructure [29]:

A potential damage function, f, is defined:

f (U(I)J(I)) =¢ (U(I)> —¢ (T(I)) <0 (75)

in which, v) (z,t) and r) (x,t) are phase damage equivalent strain and damage hardening
variable, respectively, and; ¢ is a monotonically increasing damage evolution function. The
evolution equations for v and () are given as

. 9¢
OO s
w = A R (76)
=X (77)
where the evolution is based on a power law expression of the form:
‘ 1 N\
h= 5 (7 (0 0)) (78)
(5 = [l - | + ()]/2 denotes MacCauley brackets; p(/) and ¢} define the rate-dependent
response of damage evolution.
The phase damage equivalent strain is defined as
o) = \/; (F(I)é(f))Tf,(I) (F(I)é(f)) (79)

in which, €™ is the average principal strain tensor in Y/); L is the tensor of elastic moduli
rotated onto the principal strain directions, and; F() (x,t) is the weighting matrix. The
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weighting matrix accounts for the anisotropic damage accumulation in tensile and compressive
directions:

FO = | o w0 Y
0 0 A
n_1 1 D! !
hé):§+;atan [Cg>(€§>_cg >)} (81)

where, material parameters, cgj) and cgl), control damage accumulation in the tensile and

compressive loading. A power law based damage evolution function is considered:

Ny I I ) ot I
oD (o )):a()<v()—vo > . D <1 (82)
+

in which, a(¥) and b() are material parameters. The analytical form of ¢() (T(I)) is obtained
by replacing v by () in Eq. 82.

5 Computational aspects

The proposed multiscale model is implemented and incorporated into a commercial finite ele-
ment analysis program (Abaqus). The implementation is a two stage process as illustrated in
Figure 2. The first stage (pre-processing) consists of the evaluation of first and second order
RVE problems, summarized in Boxes 1 and 3, and computation of coefficient tensors. The
preprocessing stage is evaluated using an in-house code, in which the linear elastic RVE prob-
lems are eveluated using the finite element method. The model order, n, is taken to be a user
defined input variable. By this approach, the coefficient tensors remain constant throughout
the macroscale analysis. Alternative strategies are also possible, where the model order is
updated based on the model error and accuracy [16]. A commercial finite element software
(Abaqus) is employed to evaluate the macroscopic boundary value problem summarized in
Box 7. User-defined generalized shell section behavior subroutine (UGENS) is implemented
and incorporated into Abaqus to update force and moments resultants. The UGENS sub-
routine consists of computation of force (A) and moment (M) resultant at the current time
step, given the generalized macroscale strain tensors (e, ) and the damage state variable, w
at the previous time step and the generalized strain increments. Details of the procedure to
evaluate the constitutive response in UGENS are lengthy yet straight forward. The procedure
for constitutive update based on reduced order damage models are provided in Ref [16]. The
Abaqus general purpose elements, S4R, are employed in the verification simulations.

Classical rate independent damage models are known to exhibit spurious mesh sensitiv-
ity when loading extends to the softening regime. This phenomenon is characterized by the
localization of strains to within the size of a finite element. This problem is typically alle-
viated by considering gradient enhancement [30, 31], non-local regularization of the integral
type [32], Cosserat continuum model [33] and viscous regularization [34]. Multiscale failure
models based on damage mechanics may show mesh sensitivity at all associated scales. The
proposed multiscale model is microscopically nonlocal through the integral-type nonlocal for-
mulation presented in Section 4. At the macroscopic scales, mesh sensitivity is alleviated
by considering the viscous regularization of the damage model [34]. Viscous regularization
permits the implementation within the standard finite element framework.
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Preprocessing Stage

Macroscopic Analysis Stage

- Evaluate RVE problems (Box 2, 4, 5, 6)
to obtain following influence functions:

Nonlinear analysis of the
(Abaqus)

(eiaﬁ > E‘iaﬁ > eikl and E‘ikl )
- Define the model order n.
- Divide RVE into #n partitions.
- Compute coefficients tensors:
A EX T HY F' D'
jop > T ijef > T ijkl> T ikl T ofumn > ofun >

Glys s A JED PUD Q) P N0 =Ny te(xn ), k(0,40 1)

ijun > = ijun >~ afun > Zopun
N A ) ) 0 D) M(x,t)= M(x, y,t,e(x,t),x(x,0), A", g "
Pg'/'k] ’Q[/kl’Taﬂkl’Haﬁkl’ Gaﬂkl’ Co(ﬂkl) ( ) ( y ( ) ( ) 'u 'u

Force and moment update
(UGens)

Figure 2: Implementation of the proposed multiscale model using the commercial finite element code
Abaqus.

6 Numerical Verification and Validation

The capabilities of the proposed multiscale plate model are assessed by considering three test
cases: (a) 3-point bending; (b) uniaxial tension, and; (c) impact of rigid projectile on a woven
composite plate. The model simulations are compared to direct 3-D (reference) finite element
models in which the microstructure is resolved throughout the macro-structure.

6.1 3-Point Plate Bending

We consider a three-point bending of a simply supported composite plate as shown in Fig. 3.
The dimensions of the rectangular plate are W/L = 3/40 and ¢/L = 1/80, in which ¢, W and
L are the thickness, width and length of the plate, respectively. The small scaling parameter
¢ can be calculated as the ratio between the thickness (or in-plane periodicity dimension) and
the span length between the supports (e = ¢ = 1/40). A static vertical load is applied at the
center of the plate quasi-statically until failure.

The microstructure consists of a matrix material reinforced with stiff unidirectional fibers
oriented in the global z-direction as illustrated in Fig 3. The fiber fraction is 19% by volume.
The stiffness contrast between the matrix and reinforcement phases is chosen to be EM /EF =
0.3, where, EM and E' are the Young’s Modulus of the matrix and fiber, respectively. The
Poisson’s ratio of both materials is assumed to be identical (v = v™). Damage evolution
parameters are chosen to assure a linear dependence between the damage equivalent strain
and evolution law (i.e., in Eq. 82, /) = 1). Damage is allowed to accumulate in tension
only and no significant damage accumulation occurs under compressive loads. The fiber phase
is assumed to be damage-free for the considered load amplitudes, and damage is allowed to
accumulate in the matrix phase only. The model parameters for the matrix and the fiber
material are summarized in Table 1. The superscripts M and F' denotes matrix and fiber
phases respectively.

A suite of multiscale model simulations are conducted to verify the proposed approach.
3-, 5-, 13- and 25- partition models are compared with 3-D reference simulations. The mi-
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Table 1: Material property values used in 3-point bending and uniaxial tension test simulations.

EF) () EA) (M)
200 GPa | 0.3 | 60 GPa | 0.3
200 500 | 0 00 [ 00,00 | 4
0.75 1.0 1.eb 0.0 0.0 | 20 | 2.1

M) M)

Table 2: Errors in terms of failure displacement, failure force and L? norm in the force-displacement space.

Model %o error in failure % error in failure % L2 orror
displacement force
Slow Int. Fast Slow Int. Fast Slow Int. Fast
n=3 | 28189 | 2.0079 | 5.4234 | 0.6942 | 2.8026 | 3.9114 | 0.0295 | 0.0878 | 0.1520
n=>5 | 2.1551 | 0.69527 | 0.32336 | 3.082 | 0.47734 | 0.0471 | 0.0642 | 0.0488 | 0.0457
n =13 | 5.0153 | 2.8458 | 4.8786 | 5.7351 | 2.9361 | 2.4879 | 0.1095 | 0.0740 | 0.0622

n=2510.1385 | 1.2027 | 0.9786 | 2.7725 | 1.0971 | 0.9417 | 0.0921 | 0.0660 | 0.0540

crostructural partitions for the 4 multiscale models are illustrated in Fig. 4. Simulations are
conducted at 3-different load rates. An order of magnitude difference in the load rates are
applied between the slow, intermediate and fast simulations. Figure 5 illustrates the normal-
ized force-displacement curves at the midspan of the plate. A reasonably good agreement is
observed between the proposed multiscale models and reference simulations. The modeling
error for the proposed models is tabulated in Table 1 for each multiscale model at each strain
rate. It can be observed that while higher partition schemes tend to achieve better accuracy
compared to lower partitions, a clear diminishing of error with increasing number of partitions
does not occur. This is due to the non-optimal selection of the domains of each partition,
which significantly affects the quality of the model. The issue of optimal selection of par-
tition domains is further discussed in Section 7. Displacement profiles at failure illustrated
in Fig 6 also indicate similar trends observed above. The maximum error is observed in the
3-partition model simulations. Maximum normalized error occurs at the midspan of the plate
(=6.5-9%). Damage contours at each partition of the 5-partition model is compared to the
three-dimensional reference simulations in Fig 7. The maximum damage is accumulated at the
lowermost layer subjected to tensile loads. Upper layers are subjected to neutral and compres-
sive loads leading to minimal damage accumulation. The 3-D reference analysis plots indicate
that failure starts at the bottom of the plate, which is subjected to higher tensile stresses.

6.2 Uniaxial Tension Test

We illustrate the nonlocal characteristics of the proposed multiscale model using a uniaxially
loaded thin rectangular plate. The dimensions of the plate are W/L = 1/5 and t/L = 1/30.
Two notches with half the thickness of the plate is placed at opposite edges of the plate 45°
apart. Prescribed displacements are applied along the in-plane dimension parallel to the long
edge. The microstructural configuration and material properties are identical to the 3-point
bending case discussed in the previous section. The model parameters for the matrix and the
fiber material are summarized in Table 1.

A series of numerical simulations are conducted on three different finite element meshes
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unidirectional fiber
reinforced matrix
RVE

quasi-static loading

simple supports

Figure 3: Macro- and microscopic configurations of the 3-point bending plate problem.

(a) (b) (c) (d)

Figure 4: Microstructural partitioning for (a) 3-partition, (b) 5-partition, (c) 13-partition, and (d) 25-
partition models. Each partition is identified using separate colors.
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Figure 5: Normalized force-displacement curves in 3-point bending simulations. Multiscale simulation

Normalized vertical displacement

predictions compared to those of 3-D reference simulations.
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Figure 6: Comparison of the displacements along the length of the plate, between the proposed multiscale
models and 3-D reference problem.
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Figure 7: Damage profile for (a) 3-D reference simulation and, (b) 5-partition model. Damage variables
plotted correspond to damage in each matrix partition in the 5-partition model.

with h/L ratios of 1/60, 1/120 and 1/240 as shown in Fig 8. Two cases of microstructural
orientation is considered: fibers are placed parallel and perpendicular to the stretch direc-
tion. Simulations are conducted using a 5-partition model (n = 5). Figure 9 illustrates the
normalized force-displacement curves for coarse, intermediate and fine meshes. The softening
regime of the curves for both microstructural orientations shows nearly identical response for
all three meshes, clearly indicating the mesh independent characteristic of the proposed mul-
tiscale model. In case of fibers parallel to the loading direction a 166% and 140% increase
have been observed in the failure load and displacements, respectively. Figure 10 illustrates
the damage fields ahead of the notches for the intermediate and fine meshes when the fibers
are placed perpendicular to the loading direction. The contours correspond to the damage
state at 75% of the failure displacement. The damage accumulation is observed to be along
the direction of the elastic fibers.

6.3 High Velocity Impact Response of Woven Composite Plate

The capabilities of the proposed multiscale model are further verified by predicting the impact
response of a composite plate. A 5-layer E-glass/polyester plain weave laminated composite
system was experimentally investigated by Garcia-Castillo et al. [35]. The microstructure of the
composite laminated plate is illustrated in Fig. 11. The composite specimens are 140 mm by
200 mm rectangular plates with 3.19 mm thickness. The specimens were subjected to impact
by steel projectiles with velocities ranging between 140-525 m/s. We employ the proposed
multiscale model to predict the impact response of plates observed in the experiments. A
19-partition model is employed. The plate consists of 5- plain weave plies with 0.276 mm
thickness. A 34.5 pum thick ply-interphase layer is assumed to exist between each pair of plies
in this 5-ply composite. The weave tows are in 0- and 90- directions. The fiber volume fractions
are 9% in 0-direction and 22% in the 90- direction with a total of 31%. The matrix, fiber tows
in 0- and 90- directions and ply-interphase in each layer is represented by a single partition
totaling 19 for 5 plies.

Failure in each partition is modeled using the rate-dependent damage model described
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(a) (b)

Figure 8: Finite element discretization of the macroscopic plates: (a) Coarse mesh (h/L = 1/60), (b) in-

(©)

termediate mesh (h/L = 1/120), and (c) fine mesh (h/L = 1/240).

1
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08 loading directio\
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loading direction

0.3
02k - — —Coarse Mesh (h/L=0.017)
- - Intermediate Mesh (h/L=8.33e-3)
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1
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Figure 9: Normalized force-displacement curves simulated using coarse, intermediate and fine meshes for

cases where fibers are placed parallel and perpendicular to the loading direction.
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Figure 10: Damage contour plots for (a) fine mesh and, (b) intermediate mesh.

in Section 4.1. Material properties of fiber tows in 0- and 90- directions are taken to be
identical. The ply-interphase and matrix properties are also assumed to be identical. The
static response of the composite system when subjected to uniaxial tension is used to calibrate
aD and b) parameters for matrix and reinforcement by minimizing the discrepancy between
the reported experimental failure stress and strain (3.6 % and 367 MPa) and the simulated
values (Fig. 12). Genetic and gradient-based optimization algorithms are employed to calibrate
the model parameters [17]. The stress-strain curves based on uniaxial tension as well as
damage evolution in each microconstituent are shown in Fig. 12 for loading in two orthogonal
directions. The damage evolution parameter a(/) and b(/) were determined as 0.08 and 1.5 for
fiber, and 0.92 and 2.5 for matrix materials, respectively. The fibers in 0- and 90-, as well as
the matrix and ply-interphase materials are assumed to have identical failure characteristics.
A linear rate dependence is adopted for all microconstituents (i.e., p) = 1). Damage is
assumed to accumulate on the onset of loading (v(()l) = 0). Ply-interphase failure between
all plies are observed in numerical simulations as indicated in Fig. 12, which is in agreement
with the experimentally observed response [35]. In figure 11a and 11b illustrates the failure
modes modeled in the simulations: Failure of the interphase between laminates, cracking
within the matrix and fibers in the longitudinal and transverse directions. The effects of the
fiber - matrix interface cracking is implicitly taken into account through the microconstituents
cracking only. The failure of the interphase and the longitudinal fiber cracking (at 5% strain)
precede the matrix cracking (at 7% strain). The damage in the transverse fiber cracking
remains low throughout the uniaxial loading. The observations stated here remain to be
verified by experimental observations since the authors did not have access to the tested
specimen.

The exit velocities of the projectile when the composite specimen is subjected to impact
velocities above the ballistic limit are predicted using the multiscale model. The experimentally
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Figure 11: Microstructure of the 5-ply woven laminate system.

provided ballistic limit value of 211 m/s is employed to calibrate the rate dependent material
parameter of the microconstituent failure models (¢) = 1.8¢ — 5). Figure 13 shows the
exit velocity of the projectile as a function of the impact velocity. The simulated response
shows a nonlinear relationship in impact velocities close to the ballistic limit followed by a
linearizing trend - similar to the experimental observations. The discrepancy between the
experimental observations and the simulated exit velocities are attributed to the limited data
used in the calibration of the microconstituent material parameters. Figure 14 provides ply-
interphase damage regions for impact velocities of 211, 300, 400 and 500 m/s. The size of the
ply-interphase damage region is observed to have only a slight variation with respect to the
impact velocity, which is in agreement with the experimental response.

7 Conclusions and Future Work

We presented a new failure modeling approach for static and dynamic analysis of thin het-
erogeneous structures. The proposed approach is computationally advantageous compared to
direct nonlinear computational homogenization technique in two respects: (1) the necessity
of evaluating nonlinear microscopic boundary value problems at all integration points in the
macroscopic finite element mesh is eliminated using the eigendeformation concept, and; (2) ne-
cessity to resolve the thickness direction in the macroscopic scale is alleviated by considering
a structural theory based approach. A number of challenges remain. First is the thin plate
assumptions present on the macroscopic displacement fields. It is well known that this re-
striction is prohibitive for thick plates and restricts the representable failure modes. A higher
order displacement field - perhaps extending beyond first order or even layerwise theories -
needs to be chosen to represent the macroscopic response without significantly compromising
on the efficiency of the model. The second concern is the extension of the proposed approach
to large microscopic strains. While our current approach is efficient for small deformations,
generalization to large deformations is not clear within the framework of eigendeformation
theory. The third issue concerns the proper selection of the microscopic partitions. The error
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Figure 12: Simulations conducted under uniaxial tension: (a) Stress-strain curves when subjected to 0.1/s
and 100/s strain rates in the 0-direction; (b) damage evolution in interphase, matrix and fiber phases for
loading in the O-direction; (c) stress-strain curves when subjected to 0.1/s and 100/s strain rates in the
90-direction; (d) damage evolution in interphase, matrix and fiber phases for loading in the 90-direction.
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analysis results indicate that the accuracy of the proposed multiscale model is affected by the
selection of the domain of each partition. Development of a robust partitioning strategy is
therefore crucial in the minimization of the modeling errors. A final point is regarding the lack
of consistent fragmentation criteria for heterogeneous materials. A detailed investigation of
fragmentation is essential to correctly model the failure and fragmentation response of compos-
ite systems when subjected to penetration, crushing and blast problems. The issues outlined
above require further investigation and will be explored by the authors.
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