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Abstract

A new two-level multiscale enrichment methodology for analysis of heterogeneous plates is
presented. The enrichments are applied in the displacement and strain levels: the displace-
ment field of a Reissner-Mindlin plate is enriched using the multiscale enrichment functions
based on the partition of unity principle; the strain field is enriched using the mathematical
homogenization theory. The proposed methodology is implemented for linear and failure anal-
ysis of brittle heterogeneous plates. The eigendeformation-based model reduction approach is
employed to efficiently evaluate the nonlinear processes in case of failure. The capabilities of
the proposed methodology are verified against direct three-dimensional finite element models
with full resolution of the microstructure.
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1 Introduction

Modeling and simulation of heterogeneous and composite systems has been an important re-
search subject in the past few decades. With the advent of multiscale modeling and simulation
technology, significant strides have been made in modeling and understanding of complex, non-
linear phenomena associated with the mechanical response of these materials. While, many
of the complex heterogeneous and composite systems are manufactured and used in the form
of plates and shells, most of the recent development has focused on the modeling of solid
heterogeneous systems. In this manuscript, we focus on the multiscale modeling of linear and
nonlinear heterogeneous plates. A novel two-level multiscale enrichment methodology is pro-
posed to model the response of heterogeneous systems in the context of plate theory. The
proposed approach has its roots in the mathematical homogenization theory and multiscale
enrichment by partition of unity methods, but it extends these methods to the analysis of
heterogeneous plate structures.
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Mathematical homogenization theory (MHT) is the most mathematically rigorous tool for
analysis of heterogeneous materials and structures. Since its inception with the seminal works
of Babuska [1], Bensoussan [2], Sanchez-Palencia [3], Suquet [4] and others, it has been popular
in the academic world and is slowly taking root in the industry largely due to efforts to in-
corporate MHT based computational methods into commercially available computer codes [5].
The MHT results in the enrichment of the macroscopic strain fields using influence functions,
which represent the effects of microscopic deformation modes. A number of restrictions in the
theory limit the applicability and faster acceptance of MHT based modeling methods: The
first is the scale separation assumption. The theory separates the microscopic and macroscopic
scales through asymptotic analysis with the help of periodicity condition. The theory is valid
when the characteristic scale ratio (defined as the ratio between the characteristic lengths of
the microscopic and macroscopic scales) is very small, and the macroscopic response fields
are smooth. Second, the MHT based computational methods are typically cumbersome for
nonlinear analysis of large-scale structures. This is because integration of macroscopic stresses
requires evaluation of an RVE problem at every macroscopic integration point at each iteration
of each increment - a tremendous computational burden.

One modeling approach for evaluating heterogeneous systems without scale separations
is by hierarchical decomposition of the displacement field into macroscopic and microscopic
counterparts. The microscopic displacement field is treated as enrichment to the macroscopic
fields, which are typically discretized using the standard finite element shape functions. The
enrichment fields are non-standard basis functions embodying the response characteristics of
the microscopic heterogeneities. Variational multiscale methods formalized by Hughes [6] and
partition of unity method formalized by Babuska and Melenk [7] provide rigorous frameworks
for enrichment of the macroscopic fields with local basis functions with compact support.
Yu and coworkers applied the displacement enrichment strategy to model the mechanical
and functional response of thin composite plates [8, 9, 10]. In this formulation, 3-D warping
functions are employed to enrich the Reissner-Mindlin theory. Additional methods with similar
characteristics have also been proposed in the context of heterogeneous material modeling
(see, e.g., [11]). More recently, Fish and Yuan [12, 13] developed a multiscale enrichment
methodology based on the partition of unity principle to characterize the response of linear and
nonlinear heterogeneous materials. In this method, the macroscopic standard finite element
basis is enriched using the influence functions of the classical mathematical homogenization
method. This method was shown to be effective in capturing the response even in the presence
of high stress and strain gradient zones present around a crack tip.

Two approaches have been proposed to circumvent the second restriction of MHT. The
first one is a brute force approach: the micro-level RVE computations are distributed to mas-
sively parallel compute nodes [14]. Since the RVE evaluations at a given iteration can be
conducted independently, significant cost reduction is possible by this approach. The sec-
ond approach is the reduction of the microscopic model order by replacing the original RVE
problem with a lower order approximation. Voronoi cell method [15], Fourier transform [16],
spectral [17], R3M [18] and transformation field analysis [19, 20, 21, 22] based methods, among
others, have been recently proposed to evaluate the nonlinear response of heterogeneous mate-
rials. Eigendeformation-based model reduction methodology, recently proposed by Oskay and
Fish [23] provides an efficient and effective means for reducing the model order and analysis
of nonlinear heterogeneous systems.

A majority of the current state-of-the-art model reduction approaches are concerned with
reducing the size of the RVE problem only. Attempts to reduce the order of the macroscopic
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problem, on the other hand, have been relatively rare. Analysis of plate and shell structures
call for an alternative approach to model reduction by exploiting the size disparity between
thickness and the characteristic length of the macroscale, in addition to the characteristic
scale ratio. Asymptotic analysis with two characteristic scale ratios have been proposed to
analyze the response of plates, shells and other structural components including rods and
beams [24, 25, 26, 27, 28]. Mathematical homogenization of thin heterogeneous plates typically
leads to Kirchhoff-type models. The properties of the resulting homogenized plates depend on
the ratio between the two characteristic length ratios [29]. More recently, a combined micro-
macro model reduction methodology has been proposed by Oskay and Pal [30] for failure
analysis of thin heterogeneous plates. In this approach, the eigendeformation-based model
reduction methodology is applied in the context of nonlinear mathematical homogenization of
thin plates. The applicability of many MHT-based heterogeneous plate models is restricted to
the analysis of very thin domains, where the Kirchhoff assumptions are valid in the macroscale.

In this manuscript, a two-level enrichment methodology is presented for analysis of het-
erogeneous structures. A higher order plate theory is derived by enriching a Reissner-Mindlin
plate using first and second order multiscale enrichment functions. The enrichment functions,
which are obtained through MHT, are introduced by employing the partition of unity method.
Linear and nonlinear problems are analyzed. In the nonlinear case, the formulation for fail-
ure of structures composed of brittle heterogeneous materials is given. The failure within the
microstructure is idealized by considering degradation of the material properties of the micro-
constituents (e.g., fiber, matrix) through microcracking. The eigendeformation-based model
reduction methodology is employed to increase the computational efficiency of the model. The
proposed failure model proves advantageous compared to current modeling approaches because
(1) the microscopic kinematics is captured accurately with a few additional basis functions us-
ing the multiscale enrichment methodology, and (2) plates with arbitrary microstructures can
be modeled, extending beyond the traditional laminated composite paradigm including 3-D
and complex composite architectures. The proposed work is novel in the following respects:
(a) The multiscale enrichment methodology originally proposed in [12] for 3-D solid continua
is applied to the structural theory for the first time; (b) a novel fast integration scheme is in-
troduced to efficiently evaluate the macroscale element matrix computations without recourse
to computationally costly homogenization-like integration scheme, and; (c) the multiscale en-
richment and eigendeformation-based model reduction methodologies have been seamlessly
integrated and associated computational algorithms are provided.

This manuscript is organized as follows: Section 2 describes the setting of the problem
and assumptions regarding the domain of the heterogeneous body. In Section 3, we state the
multiscale enrichment functions for analysis of linear heterogeneous plates and discuss their
characteristics. A novel integration scheme is presented for multiscale enrichment methodology.
The capabilities of the linear enrichment functions are verified against direct 3-D finite element
analysis of plates with full resolution of the microscopic details and the thickness direction. In
Section 4, the failure model and the setting for the nonlinear plate problem is described. A
nonlinear enrichment methodology based on eigendeformation-based reduced order modeling
approach is presented. Details of the numerical implementation of the proposed model in a
commercial finite element code and the verification against 3-D finite element simulations are
provided. Section 5 concludes the manuscript by discussion of the results and future research
directions.
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Figure 1: The domain of the heterogeneous plate composed of globally non-periodic microstructures of
arbitrary complexity.

2 Problem Setting

Consider a heterogeneous plate with domain, B, as shown in Fig. 1:

B :=
{
x |x = (x, z), x = {x1, x2} ∈ Θ, −1

2
t (x) ≤ z ≤ 1

2
t (x)

}
(1)

where, Θ ∈ R2 is the reference surface parameterized by the Cartesian coordinate vector, x;
z-axis denotes thickness direction perpendicular to Θ; x = {x1, x2, z} the three-dimensional
position vector, and; t define the top and bottom boundaries of the body. The thickness of the
plate is considered to be small compared to the characteristic deformation wavelength of the
structure. The heterogeneous plate domain, B, is composed of non-overlapping representative
volume elements (RVEs) within the boundaries of the structure:

B =
⋃

all RVEs

Yx (2)

The domain of an RVE is defined as:

Yx :=
{
x |x = (x, z), x = {x1, x2} ∈ Yx ⊂ Θ, −1

2
t (x) ≤ z ≤ 1

2
t (x)

}
(3)

in which Yx ∈ R2 is the reference surface in the RVE. We assume local periodicity of the RVE:
the microstructure is allowed to be different along the length of the plate, yet it is taken to be
repetitive at the locality of an RVE. While this condition is not necessary for the enrichment
approach, it significantly simplifies the element level computations. The boundaries of an RVE
are defined as:

∂Yzx =
{
x |x ∈ Yx, z = ±1

2
t(x)

}
(4)

∂Yper
x =

{
x |x ∈ ∂Yx, −1

2
t(x) < z <

1
2
t(x)

}
(5)

in which, ∂Yx denotes the boundaries of the RVE reference surface.
In what follows, Greek subscripts denote 1 and 2, unless otherwise indicated, while lower-

case Roman indices denote 1, 2 and 3, with x3 = z.
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3 Multiscale Enrichment of Linear Heterogeneous

Plates

In this section, the two-level multiscale enrichment methodology is introduced in the context of
linear heterogeneous plate problems. The formulation of the enrichment methodology and the
properties of the linear enrichment functions, computational aspects, and numerical verification
of the methodology are described.

3.1 Formulation

The starting point for the enrichment formulation is the three-dimensional governing equations
of a heterogenous plate illustrated in Fig. 1. In this section, each microconstituent is assumed to
be linear-elastic with perfect bonding along the interfaces. The displacement field is expressed
in the following form:

ui (x) = u0
i (x)− zδiαθα (x) +HiA (x) ηA (x) (6)

in which, u0
i denotes the displacement components on the reference surface, Θ; θα the rotations;

HiA the displacement enrichment functions, and; ηA smooth functions introduced to satisfy the
partition of unity property of the enrichment. Plate theories with varying degree of complexity
are obtained by choosing appropriate number of (typically) polynomial forms for HiA (see e.g.,
Refs [31]) along with the kinetic conditions to satisfy displacement and stress continuity within
the microstructure. Appropriate selection of the enrichment functions is therefore critical to
efficient and accurate representation of the deformation fields within the structure. In this
manuscript, we employ the influence functions of the classical mathematical homogenization
theory as the enrichment functions. The influence functions are the solutions to the first and
second order linear influence function problems defined on the RVE domain:
IFP1: First Order Influence Function Problem:[

Lijmn

(
H1

(m,n)kl + Imnkl

)]
,j

= 0 on Yx (7a)

H1
ikl x-periodic on ∂Yper

x ; H1
ikl x-periodic on ∂Yz

x (7b)

eziLijmn

(
H1

(m,n)kl + Imnkl

)
nj = 0 on ∂Yz

x (7c)

IFP2: Second Order Influence Function Problem:[
Lijmn

(
H2

(m,n)kl − zImnkl
)]

,j
= 0 on Yx (8a)

H2
ikl x-periodic on ∂Yper

x ; H2
ikl x-periodic on ∂Yz

x (8b)

eziLijmn

(
H2

(m,n)kl − zImnkl
)
nj = 0 on ∂Yz

x (8c)

where, Lijkl is the tensor of elastic moduli, which varies within the RVE due to material
heterogeneity; ez denotes the unit vector along the z direction, and; nj the normal vector.
The boundary conditions provided in IFP1 and IFP2 are augmented by restricting the rigid
body modes. x-periodicity denotes periodicity in all three directions, while x-periodicity de-
notes periodicity along the directions defining the reference surface. The boundary conditions
constitute a mixture of traction and periodic boundary conditions. This particular choice en-
sures that the homogenized stiffness of the RVE reduces to the plane-stress condition in the
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(a) (b) (c)

Figure 2: The components of the elastic influence functions for a 2-D matrix with circular inclusion:
(a) H1

i11; (b) H1
i12; (c) H2

i11.

homogeneous limit. This condition is illustrated in Appendix A. The enrichment functions
for the three-dimensional case are taken as HiA ←

{
H1
iαβ, H

2
iαβ, H

1
iα3

}
. The components of

a two-dimensional two-phase composite with constant Poisson’s ratio and matrix/inclusion
stiffness ratio of 0.3 are shown in Fig. 2. Three enrichment functions are introduced in 2-D:
HiA ←

{
H1
i11, H

2
i11, H

1
i12

}
. The influence functions have the following characteristics:

1. The influence functions are unique with the provided boundary conditions. Traction
homogeneity is assumed normal to the reference surface along with the periodicity in
the remaining boundaries and directions. The proof follows from the standard analysis
techniques used in the classical homogenization theory [2].

2. The plate is allowed to deform along the thickness direction as illustrated in Fig. 2a.

3. HiA introduces higher order deformation modes as illustrated in Fig. 2.

The accuracy and convergence properties of the enrichment functions are assessed numerically
in this manuscript. Mathematical analysis of the enrichment functions proposed herein will
be conducted in a future publication.

The second enrichment is in the strain level. The strain field is enriched by employing the
first and second order influence functions:

εij (x) = A1
ijαβ (x) eαβ (x) +A2

ijαβ (x)καβ (x) +A3
ijα (x) γα (x) + ε̂ij (x) (9)

in which, eαβ = u0
(α,β) is the macroscopic in-plane strain; καβ = θ(α,β) the macroscopic curva-

ture; γα = u0
3,α − θα the macroscopic transverse shear, and ε̂ij is the strain tensor due to the

displacement enrichment functions. The formulation is restricted to the small strains. The
strain concentration tensors are expressed in terms of the influence functions:

A1
ijαβ = Iijαβ +G1

ijαβ; A2
ijαβ = −zIijαβ +G2

ijαβ; A3
ijα = Iijα3 +G1

ijα3; (10)

where, Gpijkl = Hp
(i,j)kl, p = 1, 2 are the polarization tensors.

3.2 Classical Multiscale Enrichment based on Partition of Unity

The macroscopic displacement components u0
i , θα, and ηA are discretized based on the standard

2-D finite element shape functions, Na (x) defined on the reference surface Θ:

u0
i (x) = Na (x) c0ia; θα (x) = Na (x) θαa; ηA (x) = Na (x) ηAa; a = 1, 2, . . . , nnode (11)
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where, nnode is the number of nodes along the reference surface, Θ. The discretization of all
the macroscopic displacement components using the same shape functions is not a necessary
condition of the formulation. Similar formulations may be achieved by employing separate
shape functions for each component. We use a standard Galerkin formulation to discretize
the macroscopic domain of the structure. In what follows, we concentrate on the numerical
formulation at the element level. The global matrices are established using standard assembly
procedures [32].

Within a finite element, the displacement field is expressed in the matrix form as:

u (x, t) = N (x) c (12)

in which, N = {N 1,N 2, . . . ,N nen}, and

N a (x) =

 1 0 0 −z 0
0 1 0 0 −z Ha (x)
0 0 1 0 0

Na (x) (13)

in which, nen denotes the number of nodes in a macroscopic finite element; Na the shape
function at node a; c =

{
c0ia, θαa, ηAa

}
denotes the vector of nodal coefficients for standard

and enrichment degrees of freedom. Ha, are the enrichment functions associated with node a:

Ha (x) =

 H1
111 H1

122 H1
112 H2

111 H2
122 H2

112 H1
113 H1

123

H1
211 H1

222 H1
212 H2

211 H2
222 H2

212 H1
213 H1

223

H1
311 H1

322 H1
312 H2

311 H2
322 H2

312 H1
313 H1

323

Na (x) (14)

where Hp
ikl = Hp

ikl(x); p = 1, 2.
The strain field for the proposed displacement field decomposition reads:

ε (x) = B (x) c (15)

The components of the B = {B1,B2, . . . ,Bnen} are expressed as:

Ba (x) =
[

A1 (x) Be
a + A2 (x) Bκ

a + A3 (x) Bγ
a Ĝa (x)

]
(16)

where,

Be
a (x) =

 Na,x 0 0 0 0
0 Na,y 0 0 0

Na,y Na,x 0 0 0

 (17)

Bκ
a (x) =

 0 0 0 Na,x 0
0 0 0 0 Na,y

0 0 0 Na,y Na,x

 (18)

Bγ
a (x) =

[
0 0 Na,x −Na 0
0 0 Na,y 0 −Na

]
(19)

Using the indicial notation, the components of Ĝa are expressed as:(
Ĝpijkl

)
a

= Hp
(i,j)klNa +Hp

iklNa,j +Hp
jklNa,i (20)

and, A1, A2 and A3 are the strain concentration functions expressed in the matrix form.
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3.2.1 Numerical Integration

The discrete system of equations obtained by the Galerkin formulation leads to an element
stiffness tensor of the form:

Ke =
∫
Ae

t(x)∫
−t(x)

BT (x) L (x) B (x) dAdz (21)

Consider a scaling constant defined as a ratio between the size of the in-plane dimensions of the
RVE and the macroscopic finite element (ζ = |Y |/|Ae|). When ζ � 0, a homogenization like
integration (HLI) scheme is sufficient to numerically evaluate the element stiffness matrix. In
the homogenization like integration scheme, the stiffness matrix is integrated over nint RVEs
placed at the integration points of the macroscopic element:

Ke ∼=
nint∑
I=1

WIJI
〈
BTLB

〉
(22)

The HLI scheme asymptotically converges to the full integration of all RVEs within the finite
element at the scale separation limit (as the scaling constant approaches zero) [12]. For larger
values of the scaling constant, a full integration within the finite element is necessary.

3.3 HLI-Free Homogenization Operator for Multiscale Enrich-
ment

The HLI and full integration schemes are computationally costly compared to classical strain-
only enrichment because of the necessity of integration over RVE domains. In strain only
enrichment schemes, the Hill-Mandel condition is typically employed, avoiding the integration
over the microscopic scales. In higher order homogenization approaches, asymptotic or tailor
series expansions are introduced to derive higher order micro-macro energy balance equations.
In this section, a novel homogenization operator is introduced to avoid the numerical integra-
tion of the stiffness matrix and the force vector.

The energy equivalence between the micro- and macroscopic scales in the strain-only en-
richment case (ε̂ij = 0) yields:

〈σijεij〉 = 〈σαβ〉 eαβ + 〈−zσαβ〉καβ + 〈σα3〉 γα (23)

in which, 〈σαβ〉, 〈−zσαβ〉 and 〈σα3〉 are the homogenized in plane force, moment and shear
force resultants, respectively. This expression is in contrast with the Hill-Mandel condition
for fully periodic RVEs: 〈σijεij〉 = 〈σij〉 〈εij〉. The alternative expression for the micro-macro
energy balance is because the RVE average of the enrichment functions does not necessarily
vanish. This characteristic is demostrated by considering a uniform RVE in Appendix A. A
partial derivation of Eq. 23 is provided in Appendix B. In the general two-level enrichment
case (ε̂ij 6= 0), the energy equivalence may be expressed as (see Appendix B):

〈σijεij〉 = σ̄eαβeαβ + σ̄καβκαβ + σ̄γαγα + σ̄ηAηA + σ̄∇ηAαηA,α (24)

where, the generalized stresses, σ̄eαβ, σ̄καβ, σ̄γα, σ̄ηA, and σ̄∇ηAα are the energy conjugates of the
corresponding generalized strain components, as indicated in Eq. 24. The generalized stress
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components are defined as:

σ̄eαβ = L̄
(ee)
αβγηeγη + L̄

(eκ)
αβγηκγη + L̄

(eγ)
αβηγη + L̄

(e∇η)
αβAγηA,γ (25a)

σ̄καβ = L̄
(κe)
αβγηeγη + L̄

(κκ)
αβγηκγη + L̄

(κγ)
αβη γη + L̄

(κ∇η)
αβAγ ηA,γ (25b)

σ̄γα = L̄
(γe)
αβρeβρ + L̄

(γκ)
αβρκβρ + L̄

(γγ)
αβ γβ + L̄

(γ∇η)
αAβ ηA,β (25c)

σ̄ηA = L̄
(ηη)
AB ηB + L̄

(η∇η)
ABβ ηB,β (25d)

σ̄∇ηAα = L̄
(∇ηe)
Aαβρeβρ + L̄

(∇ηκ)
Aαβρ κβρ + L̄

(∇ηγ)
Aαβ γβ + L̄

(∇ηη)
AαB ηB + L̄

(∇η∇η)
AαBβ ηB,β (25e)

in which, the generalized elastic moduli are given as:

L̄
(ee)
αβγη =

〈
Lαβkl : A1

klγη

〉
; L̄

(eκ)
αβγη =

〈
Lαβkl : A2

klγη

〉
; L̄

(eγ)
αβη =

〈
Lαβkl : A3

klη

〉
(26a)

L̄
(κκ)
αβγη =

〈−zLγηkl : A2
klαβ

〉
; L̄

(κγ)
αβη =

〈−zLαβkl : A3
klη

〉
L̄

(γγ)
αβ =

〈
Lα3kl : A3

klβ

〉
(26b)

L̄
(e∇η)
αβAγ =

〈
A1
klαβLkljγHjA

〉
; L̄

(κ∇η)
αβAγ =

〈
A2
klαβLkljγHjA

〉
; L̄

(γ∇η)
αAβ =

〈
A1
klαLkljβHjA

〉
(26c)

L̄
(ηη)
AB = 〈GijALijklGklB〉 ; L̄

(η∇η)
ABβ = 〈GijALijkβHkB〉 ; L̄

(∇η∇η)
AαBβ = 〈HiALiαkβHkB〉 (26d)

and;

L̄
(κe)
γηαβ = L̄

(eκ)
αβγη; L̄

(γe)
ηαβ = L̄

(eγ)
αβη ; L̄

(γκ)
ηαβ = L̄

(κγ)
αβη ; L̄

(∇ηe)
Aγαβ = L̄

(e∇η)
αβAγ

L̄
(∇ηκ)
Aγαβ = L̄

(κ∇η)
αβAγ ; L̄

(∇ηγ)
Aβα = L̄

(γ∇η)
αAβ ; L̄

(∇ηη)
BβA = L̄

(η∇η)
ABβ

(27)

The RVE average of the elastic strain energy is expressed in terms of the generalized
macroscopic stress and strains in Eq. 24. In the matrix form, the macroscopic constitutive
relationship is expressed as:

σ̄ = L̄ε̄ (28)

in which, the generalized tensor of elastic moduli is:

L̄ =


L̄(ee) L̄(eκ) L̄(eγ) 0 L̄(e∇η)

L̄(κe) L̄(κκ) L̄(κγ) 0 L̄(κ∇η)

L̄(γe) L̄(γκ) L̄(γγ) 0 L̄(γ∇η)

0 0 0 L̄(ηη) L̄(η∇η)

L̄(∇ηe) L̄(∇ηκ) L̄(∇ηγ) L̄(∇ηη) L̄(∇η∇η)

 (29)

The components of the generalized macroscopic tensor of elastic moduli are the matrix form
of the elastic moduli tensors provided in Eq. 26. By this approach, the strain field is re-
lated to the unknown displacement coordinate vector with a macroscopic relationship, B̄ ={
B̄1, B̄2, . . . , B̄nen

}
such that:

B̄a =



Be
a 0

Bκ
a 0

Bγ
a 0

0 Bη
a

0 Bη,1
a

0 Bη,2
a

 (30)

with, Bη
a = INa; Bη,α

a = INa,α, and; I is the identity matrix. By this approach, the element
stiffness matrix can be expressed as:

Ke =
nint∑
I=1

WIJIB̄
T L̄B̄ (31)
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Figure 3: The geometry of the four-point bending plate problem.

The proposed homogenization operation and the HLI integration scheme leads to identical
stiffness matrices. The proposed scheme is computationally advantageous since no RVE level
integration is required as B̄ and L̄ are functions of macroscopic coordinates only.

3.4 Numerical Verification

The proposed multiscale model is verified using a four-point plate bending problem. A quarter
of the plate geometry is illustrated in Fig. 3. The dimensions of the plate are L = 28.23mm,
W = 9.41mm, and T = 1mm where, L, W , and T denote the length, width, and the thickness of
the plate, respectively. The microstructure consists of two woven composite layers separated by
a thin interphase. The laminate and interphase thicknesses are 0.47 and 0.06mm, respectively.
The interphase has identical properties with the composite matrix material. The elastic moduli
of the reinforcement and matrix materials are 60 GPa and 3 GPa, respectively. The Poisson’s
ratio for both of the materials is 0.35. Numerical simulations with span-to-thickness ratios,
S/T = 23.52 and S/T = 18.82 are conducted to verify the proposed multiscale model. Along
the transverse direction, forces with the amplitude 9.62 N/mm and 19.24 N/mm are applied
in S/T = 23.52 and S/T = 18.82 simulations, respectively. The vertical deflection profile
predicted by the proposed multiscale model for S/T = 23.52 is compared with the predictions
of a full 3-D finite element analysis (mesh shown in Fig. 3), and two Abaqus shell models in
Fig. 4. Abaqus S8R model employs the standard 8-noded quadrilateral shell elements with the
homogenized material properties of the RVE, which consists of the two-woven layers and the
interphase. The homogenized properties are obtained by evaluating the IFP1 problem using
periodic boundary conditions at all directions:

Lhom
ijkl =

1
|Yx|

∫
Yx

LijmnA
1
mnkldY (32)

The non-zero values of the homogenized stiffness tensor, Lhom
ijkl , are provided in Table 1. In S8R-

Composite model, numerical integration is employed in the thickness direction. Each woven-
composite layer and the interphase are treated as separate layers in the through-thickness
integration. The homogenized properties of the woven composite layer are computed by eval-
uating the IFP1 problem a periodic woven composite unit cell. The homogenized properties
of the composite laminate are summarized in Table 1. Figure 4 shows that the displacement
is predicted using the proposed multiscale model with excellent accuracy (within 1.6%).

10



0 5 10 15 20 25

−5

−4

−3

−2

−1

0

1

2

x[mm]

V
er

tic
al

 D
is

pl
ac

em
en

t [
m

m
]

 

 

S8R
S8R−Composite
Model
Reference

Figure 4: The displacement profiles of the 4-point bending of the plate as computed by Abaqus models,
the proposed model and the reference three dimensional model.

Table 1: Homogenized material properties employed in Abaqus model analyses

Lhom
1111 Lhom

1122 Lhom
2222 Lhom

1212 Lhom
1313 Lhom

2323

RVE 1.5123e4 2.7245e3 1.1185e4 3.7190e3 2.2074e3 2.2100e3
Laminate 1.5795e4 2.7732e3 1.1566e4 3.8803e3 2.3590e3 2.3669e3

The relative maximum error of the proposed model and the Abaqus models compared to
the reference model are summarized in Table 2. The proposed model predicts the bending
response with excellent accuracy.

4 Multiscale Enrichment of the Nonlinear Hetero-

geneous Plates

In this section, the two-level enrichment methodology is extended to the problems with material
nonlinearity. The formulation of the enrichment methodology is presented in the context of
failure modeling. Implementation details and numerical verifications are provided.

Table 2: Performance of the proposed multiscale model in the 4-point bending of elastic unidirectionally
reinforced plate

S/T = 23.52 S/T = 18.82
Source u3 error % u3 error %
Reference 4.64005 - 4.6708 -
Model 4.7121 1.55 4.7430 1.55
S8R 4.4051 5.06 4.4560 3.96
S8R-Composite 4.2137 9.19 4.2634 8.72
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4.1 Formulation

The constitutive equation of the 3-D nonlinear boundary value problem is expressed as follows:

σij (x) = Lijkl (x) [εkl (x)− µkl (x)] (33)

where, µij denotes the inelastic strain field. The inelastic strain field reflects the effects of
plastic, thermal, damage or other processes. In this manuscript, we restrict our attention to
the failure response of brittle heterogeneous materials. The failure response is modeled using
continuum damage mechanics. The inelastic strain component then takes the form:

µij (x) = ω (x) εij (x) (34)

where, ω ∈ [0, 1] is a nonlinear history dependent damage variable with ω = 0 corresponding
to the state of no damage, and ω = 1 representing a complete loss of load carrying capacity.
The enriched displacement field decomposition is identical to the linear case and provided by
Eq. 6. The strain tensor is expressed as:

εij (x) = A1
ijαβ (x) eαβ (x) +A2

ijαβ (x)καβ (x) +A3
ijα (x) γα (x) + ε̂ij (x) (35)

with the secant concentration tensors:

A1
ijαβ = Iijαβ + G1

ijαβ; A2
ijαβ = −zIijαβ + G2

ijαβ; A3
ijα = Iijα3 + G1

ijα3; (36)

where, Gpijkl = Hp(i,j)kl, p = 1, 2 are the secant polarization tensors.
The enrichment functions Hpikl vary with the evolution of the inelastic strains. The bound-

ary value problem of the classical mathematical homogenization theory yields the nonlinear
enrichment functions, Hpikl.
NIFP: Nonlinear Influence Function Problem:[

Lijmn

(
H1

(m,n)αβeαβ + Imnαβeαβ − µemn
)]

,j
= 0 on Yx (37a)[

Lijmn

(
H2

(m,n)αβκαβ − zImnαβκαβ − µκmn
)]

,j
= 0 on Yx (37b)[

Lijmn

(
H1

(m,n)α3γα + Imnα3γα − µγmn
)]

,j
= 0 on Yx (37c)

µeij = ωA1
ijαβeαβ; µκij = ωA2

ijαβκαβ; µγij = ωA3
ijαγα (37d)

Hpikl x-periodic on ∂Yper
x ; Hpikl x-periodic on ∂Yz

x (37e)

eziLijmn

(
Hp(m,n)kl + (−z)p−1Imnkl

)
nj = 0 on ∂Yz

x (37f)

where, µij = µeij + µκij + µγij .
Evaluation of the macroscale plate problem by using the enrichment functions defined above

poses a significant computational challenge. For instance, when the HLI integration scheme
is utilized, the NIFP problem must be evaluated at each integration point of the macroscale
finite element mesh during each iteration and increment of the macroscale problem. In case
of a full integration scheme, the computational complexity increases as the number of RVEs
describing the macroscopic domain increases. An efficient way to circumvent this problem is
to use the eigendeformation-based model reduction methodology. The eigendeformation based
model reduction methodology hinges on expressing the solution field as a superposition of lin-
ear influence functions and representing the inelastic fields in terms of these linear functions.
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Ref. [23] provides a detailed account of the eigendeformation based model reduction method-
ology. In this work, this methodology is applied in the context of heterogeneous plates. By
this approach, the strain field is expressed using only the elastic strain concentration tensors:

εij (x) = A1
ijαβ (x) eαβ (x) +A2

ijαβ (x)καβ (x) +A3
ijα (x) γα (x) + ε̃ij (x) + ε̂ij (x) (38)

where,

ε̃ij (x) =
∫
Yx

gijkl (x̂,x)µkl (x̂) dx̂ (39)

gijkl = h(i,j)kl, and; hikl are the influence functions induced by the inelastic deformations. The
inelastic strain induced influence functions are obtained by evaluating the following linear-
elastic RVE problem for every point x̂ within the RVE.
ISIF: Inelastic Strain Induced Influence Function Problem:[

Lijmn
(
h(m,n)kl (x, x̂)− d (x− x̂) Imnkl

)]
,j

= 0 x, x̂ on Yx (40a)

hikl x-periodic on ∂Yper
x ; hikl x-periodic on ∂Yz

x (40b)
eziLijmn

(
h(m,n)kl (x, x̂)− d (x− x̂) Imnkl

)
nj = 0 on ∂Yz

x (40c)

in which, d is the Dirac delta distribution. The influence function problem, ISIF, is evaluated
numerically by replacing the Dirac distribution with a function approximation [23].

It is also possible to use a dynamic enrichment strategy to describe the displacement field by
replacing the linear enrichment functions HiA with HiA in Eq. 6. This approach leads to a non-
standard non-local formulation. In this approach the enrichment functions computed at the
integration points (using the HLI scheme) neighboring an enriched nodes must be interpolated
to compute the enrichment function at the enriched node. Since, the inelastic fields associated
with all elements neighboring the node contribute to the form of the enrichment function, the
constitutive response and the resulting formulation is non-local. In contrast, the displacement
field introduced in Eq. 6 leads to a numerical formulation that lies within the standard finite
element framework.

4.2 Computational Aspects

The discretization of the macroscopic displacement components for the nonlinear problem is
identical to the linear problem, and described in Eq. 11. We proceed by the discretization of
the inelastic strain field, µij , and the damage variable, ω:

{ω, µij} (x) =
∑
I

N
(I)
ph (x)

{
ω(I), µ

(I)
ij

}
(x); I = 1, 2, . . . (41)

where, N (I)
ph are shape functions and, µ(I)

ij and ω(I) are interpreted as weighted phase average
of the respective fields over the RVE at position x.{

ω(I), µ
(I)
ij

}
(x) =

∫
Yx

ψ(I) (x) {ω, µij} (x)dY (42)

µ
(I)
ij and ω(I) are constant within the RVE but vary from one RVE to the next. The shape

and weight functions N (I)
ph and ψ(I), respectively are taken to be piecewise constant within the
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RVE:

N
(I)
ph (x) =

{
1 if x ∈ Y(I)

x

0 elsewhere
(43)

ψ(I) (x) =
1

|Y(I)
x |

N
(I)
ph (x) (44)

where, Y(I)
x denotes non-overlapping subdomains of the RVE at position x. Therefore, if the

RVE at position x is decomposed into n non-overlapping partitions (I = 1, 2, . . . , n), it is
sufficient to evaluate n weighted phase average inelastic strains to define the deformation of
the structure. The resulting model is called an n-partition model.

The weighted phase average inelastic strain field is related to the weighted phase average
damage and strain by substituting Eq. 41 into Eq. 34 and using Eq. 42:

µ
(I)
ij (x) = ω(I) (x) ε(I)ij (x) (45)

Combining Eqs. 38, 39 and 45 yields:
n∑
J=1

[
IijklδIJ − ω(I) (x)P (IJ)

ijkl

]
µ

(J)
kl (x) = ω(I) (x)×

×
(
A

1(I)
ijαβeαβ (x) +A

2(I)
ijαβκαβ (x) +A

3(I)
ijα γα (x) + ε̂

(I)
ij

)
; I = 1, 2, . . . , n

(46)

where, δIJ is the Kronecker delta, and;

P
(IJ)
ijkl (x) =

∫
Y(I)

x

P̃
(J)
ijkl (x) dY (47)

A
p(I)
ijkl (x) =

1

|Y(I)
x |

∫
Y(I)

x

Apijkl (x) dY (48)

ε̂
(I)
ij (x) =

1

|Y(I)
x |

∫
Y(I)

x

ε̂ij (x) dY (49)

and,

P̃
(J)
ijkl (x) =

1

|Y(J)
x |

∫
Y(J)

x

gijkl (x, x̂) dŶ (50)

When put in a matrix form, Eq. 46 results in a nonlinear system of equations, which may
be evaluated to compute the constitutive response:

Φ (d) = K (d) d− f = 0 (51)

in which,

d =
{

µ(1),µ(2), . . . ,µ(n)
}T

(52)

K =


I−P(11)ω(1) −P(12)ω(1) · · · −P(1n)ω(1)

−P(21)ω(2) I−P(22)ω(2) · · · −P(2n)ω(2)

...
...

. . .
...

−P(n1)ω(n) −P(n2)ω(n) . . . I−P(nn)ω(n)

 (53)
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f (d) =
{
ω(1)B(1);ω(2)B(2); . . . ω(n)B(n)

}
c = Qc (54)

The components of the B(I) =
{

B(I)
1 ,B(I)

2 , . . . ,B(I)
nen

}
are expressed as:

B(I)
a (x) =

[
A1(I)Be

a + A2(I)Bκ
a + A3(I)Bγ

a Ĝ(I)
a (x)

]
(55)

The components of the Ĝ(I)
a are obtained by weighted averaging of the corresponding compo-

nents of Ĝa over the RVE partition, I. Finally, the strains can be expressed in terms of the
unknown vector c by substituting the inelastic strain field discretization provided in Eq. 41
and solution of Eq. 51 into Eq. 38:

ε = Bc =
(
B + MK−1Q

)
c (56)

where,
MI (x) =

{
P̃(1), P̃(2), . . . , P̃(n)

}
(57)

4.2.1 Integration Algorithm

The general structure of the multiscale enrichment methodology implementation is illustrated
in Fig. 5. The proposed methodology is incorporated into the commercial finite element
program Abaqus using the user element subroutine utility (UEL). The implementation of the
methodology consists of the preprocessing stage, and computation of the element matrices in
UEL. In the preprocessing stage, the elastic and damage influence functions are computed by
solving the IFP1, IFP2, and ISIF problems presented above. The linearity of the influence
function problems permits their computation prior to macroscopic analysis. The coefficient
tensors used in the stress integration and evaluation of the enrichment functions are computed
at the preprocessing stage as well. The computation of the coefficient tensors consists of three
steps: (1) selection of the model order, n; (2) partitioning of the RVE based on the model order,
and; (3) evaluation of the integral forms to obtain the coefficient tensors. Various partitioning
strategies including the dynamic partitioning strategy, in which the number of partitions are
taken as a function of the damage state, and the static partitioning strategy, in which number
of partitions are taken to be constant at an RVE throughout the macroscopic analysis are
presented in Ref. [23]. In this section, we focus on the computation of the macroscopic response
given the coefficient tensors.

The microscopic response within a macroscopic finite element is evaluated by a simple
update algorithm. We present the computation of the element level stiffness matrix and force
vectors only. The global matrices can be evaluated using standard finite element assembly
procedures. The steps of the proposed algorithm are described below:
Given: the displacement coefficients nc, damage and inelastic strain states, nω(I) and nµ

(I),
respectively, at the equilibrium state at time tn, and; the displacement coefficient increments,
∆c.
Calculate: the updated damage and inelastic state variables n+1ω

(I) and n+1µ
(I), respectively;

internal force and tangent stiffness matrix at the current equilibrium state at time tn+1.
In what follows, a left subscript n denotes the value at time tn. The variables without a

left subscript are the current values at time tn+1.
At each macroscopic integration point within the macroscopic finite element:

1. Evaluate Φ (d) = 0 using a Newton iteration scheme. by setting the initial guess to nd.
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Figure 5: Program Architecture: Preprocessing and element level computations.

2. At each microscopic integration point, compute:

(a) Strain using Eq. 56.
(b) Stress using Eq. 33.
(c) Consistent tangent moduli Lt such that σ − nσ = Lt∆ε. The strain increment can

be computed as ∆ε = B∆c

3. Integrate over the RVE at the macroscopic integration point to compute the internal
force and tangent stiffness matrix based on the homogenization-like integration scheme.

fint =
nint∑
I=1

WIJI
1
|YI |

∫
YI

BTσdx (58)

K =
nint∑
I=1

WIJI
1
|YI |

∫
YI

BTLBdx (59)

where, WI is the weighting factors; JI the jacobian, and YI is the RVE positioned at the
integration point, I.

4.3 HLI-Free Homogenization Operator for Nonlinear Multi-
scale Enrichment

In this section, the homogenization operator proposed for the linear problems in Section 3.3
is extended to nonlinear problems. The generalized stress components is related to the stress
tensor by the following relationships:

σ̄eαβ =
〈
A1
klαβσkl

〉
; σ̄καβ =

〈
A2
klαβσkl

〉
; σ̄γα =

〈
A3
klασkl

〉
(60a)

σ̄ηA = 〈GklAσkl〉 ; σ̄∇ηAα = 〈HkAσkα〉 (60b)

First consider the macroscopic in-plane stresses σ̄eαβ. In the presence of nonlinearities, the
macroscopic in-plane stresses is expressed in terms of the generalized macroscopic strains and
the eigenstrains by substituting Eqs. 9, 33, 39, 41 and 50 into the above equation:

σ̄eαβ = L̄
(ee)
αβγηeγη + L̄

(eκ)
αβγηκγη + L̄

(eγ)
αβηγη + L̄

(e∇η)
αβAγηA,γ +

n∑
I=1

M
e(I)
ijkl µ

(I)
kl (61)
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in which,
M

e(I)
ijkl =

〈
A1
mnijLmnpq

(
P̃

(I)
pqkl − IpqklNph

)〉
(62)

Using the same procedure for the remainder of the generalized stress components leads to the
constitutive relationship between the generalized stress, strain and eigenstrain. In the matrix
form, the macroscopic constitutive relationship is expressed as:

σ̄ = L̄ε̄ +
n∑
I=1

M(I)µ(I) (63)

where,

M(I) =
[
Me(I), Mκ(I), Mγ(I), Mη(I), M∇η(I)

]T
(64)

and,

M
κ(I)
ijkl =

〈
A2
mnijLmnpq

(
P̃

(I)
pqkl − IpqklN (I)

ph

)〉
; Mγ(I)

αkl =
〈
A3
mnαLmnpq

(
P̃

(I)
pqkl − IpqklN (I)

ph

)〉
(65a)

M
η(I)
Akl =

〈
GmnALmnpq

(
P̃

(I)
pqkl − IpqklN (I)

ph

)〉
; M∇η(I)Aαkl =

〈
HmALmαpq

(
P̃

(I)
pqkl − IpqklN (I)

ph

)〉
(65b)

By this formulation, the computation of the tangent stiffness and force vectors are simpli-
fied. The steps of the proposed algorithm are described below:
Given: the displacement coefficients nc, damage and inelastic strain states, nω(I) and nµ

(I),
respectively, at the equilibrium state at time tn, and; the displacement coefficient increments,
∆c.
Calculate: the updated damage and inelastic state variables n+1ω

(I) and n+1µ
(I), respectively;

internal force and tangent stiffness matrix at the current equilibrium state at time tn+1.

At each macroscopic integration point within the macroscopic finite element:

1. Evaluate Φ (d) = 0 using a Newton iteration scheme. by setting the initial guess to nd.

2. Compute stress using Eq. 63

3. Compute Consistent tangent moduli L̄t such that σ̄ − nσ̄ = L̄t∆ε̄.

4. Compute the force and tangent stiffness matrix:

f e =
nint∑
I=1

WIJIB̄
T
σ̄; Ke =

nint∑
I=1

WIJIB̄
T L̄tB̄ (66)

4.4 Damage Evolution Model

The evolution of damage within the microconstituents and along the interfaces is modeled
using a rate-dependent continuous damage mechanics model. Consider a damage potential
function such that

f
(
υ(I), r(I)

)
= φ

(
υ(I)

)
− φ

(
r(I)
)

6 0 (67)

where, φ is a monotonically increasing damage evolution function. The evolution of the history
parameter, r(I) and damage is then expressed in terms of the consistency parameter, λ:

ṙ(I) = λ̇ (68)

ω̇(I) = λ̇
∂φ

∂υ(I)
(69)
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Figure 6: The geometry, loading and discretization of the three-dimensional structure.

The damage accumulation is governed by the Kuhn-Tucker conditions (λ̇ ≥ 0; f ≤ 0; λ̇f = 0).
υ(I) is given in terms of the principal strains as:

υ(I) =

√
1
2
(
Fε̂(I)

)T L̂
(
Fε̂(I)

)
(70)

in which, ε̂(I) is the principal strain tensor in Y(I)
x ; L̂ is the tensor of elastic moduli rotated onto

the principal strain directions, and; F is the weighting matrix that accounts for the anisotropic
damage accumulation in tensile and compressive directions:

F(η) =

 h1 0 0
0 h2 0
0 0 h3

 (71)

hξ =
1
2

+
1
π

atan
[
c1

(
ε̂
(I)
ξ − c2

)]
; ξ = 1, 2, 3 (72)

Material parameters, c1 and c2 control damage accumulation in the tensile and compressive
loading.

4.5 Numerical Verification

4.5.1 Failure due to Uniaxial Loading

The planar deformation performance of the proposed multiscale approach is verified by an-
alyzing the three-dimensional structure illustrated in Fig. 6. The structure is comprised of
three unidirectionally reinforced unit cells with a fiber volume fraction of 26.7%. The rein-
forcements are placed perpendicular to the loading direction. The structure is subjected to
uniaxial tension along the x-direction until failure. Perfect adhesion is assumed along the
boundaries of the microconstituents. The fibers remain elastic throughout the duration of the
loading, with the Young’s modulus and Poisson’s ratio of 60 MPa and 0.3, respectively. The
matrix is taken to accumulate damage during loading. The material parameters describing
the damage accumulation along with the elastic parameters are summarized in Table 3.
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Table 3: Material property values for the matrix material

E ν aph
1 aph

2 c1 c2 υini

60 GPa 0.3 0.3 1.0 1e5 0.0 0.0

The reference solution is provided by three-dimensional finite element analysis with full
resolution of the microstructure throughout the structure. The discretization of the three-
dimensional reference model is illustrated in Fig. 6. Two separate multiscale (4-partition and
10-partition) models are considered for verification. The macroscopic scale of the multiscale
models are discretized using three 4-node quadrilateral shell elements enhanced by multiscale
shape functions. The discretization of the microscopic scale is identical to a third of the
three-dimensional finite element mesh shown in Fig. 6.

The overall stress-strain response of the multiscale models in addition to the reference sim-
ulation is presented in Fig. 7. The stress-strain curves of the multiscale models follow the
reference curve closely, indicating that the multiscale models correctly predict the damage
evolution within the microstructure as evidenced further in Fig. 8. The stress-to-failure values
provided by the multiscale models match reasonably well with the reference model (with an
error of 8.39% for 4-partition model, and 6.85% for 10-partition model). While, a 10-partition
model predicts the reference state closer than the 4-partition model, it has been previously ob-
served that the model error reduction is not monotonic with the increasing model order [30].
Specifically, a significant increase in model order (i.e., value of n) is typically necessary for
further increase in model accuracy. Figure 7 also illustrates the effect of displacement level
enrichment on the failure response of the structure. While the predictions of pre-peak strength
damage evolution match closely with the proposed multiscale models, the strain-only enrich-
ment overpredicts the post-peak strength. This is in line with the previous investigations that
the response of displacement-strain enriched multiscale models reduce to the strain-only en-
riched models in the presence of smooth fields [12]. Figure 8 illustrates the damage evolution
profiles of the 4-partition, 10-partition and reference models. The reported damage values
are average over the three unit cells shown in Fig. 6. In all three elements, both of the pro-
posed multiscale models predicts the overall damage evolution within the microstructure with
reasonable accuracy.

4.5.2 Failure due to Bending

The bending performance of the proposed multiscale approach is verified against direct finite
element simulations using a 4-point plate bending problem. The geometry of the problem
is identical to that described in Section 3.4 (S/W = 16 case) and shown in Fig 3. The
plate is subjected to vertical displacement until failure under bending. The failure of the
microstructure is through matrix microcracking only, and the reinforcements are assumed to
be elastic. The material parameters describing the failure of the matrix are shown in Table 3.

The predictions of a 4-partition multiscale model are compared to the three-dimensional
finite element simulations. The macroscopic mesh of the multiscale model consists of 192
quadrilateral enriched elements while the direct finite element model consists of 67392 tetra-
hedra. Figure 9 illustrates the reaction force-applied displacement diagrams for the reference
and multiscale models. The proposed multiscale model predicted the failure force within 2.1%
accuracy. The damage profile for each partition of the multiscale model as well as the refer-
ence simulation is provided in Fig. 10. Damage accumulation characteristics predicted using
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Figure 7: The stress-strain response of 4-partition and 10-partition multiscale models, strain-only enriched
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Figure 9: The reaction force-applied displacement curve of the 4-point bending plate.

the multiscale model closely matches the 3-D simulations with the lowermost layer having
the higher damage accumulation rate. While the reference model predicts a periodic phase
damage, the effect is smeared by the multiscale model, since the damage within each partition
shown in Fig 10 is assumed to be uniform.

4.5.3 Failure of a Cracked Plate under Tension

The performance of the proposed multiscale approach is further verified by analyzing cracked
composite plate subjected to tension. A quarter of the plate structure is illustrated in Fig. 11.
The plate consists of a two-layer woven composite system. The geometry of the microstructure
is identical to the linear plate explained in Section 3.4. The length of the center crack is 1/4 of
the width of the plate. The plate is subjected to uniaxial tension perpendicular to the crack
direction until failure.

The material parameters employed in the simulations for the interphase, matrix and fiber
tows are summarized in Table 4. The composite plate is assumed to fail by matrix cracking
and fiber breakage. The reference solution is provided by three-dimensional finite element
analysis with full resolution of the microstructure throughout the plate. The discretization
of the three-dimensional reference model is shown in Fig. 11. 7-partition multiscale model is
employed to verify the proposed multiscale methodology. In the 7-partition model, the matrix
within each layer, the interphase, 0- and 90- direction fibers in each layer constitute separate
phases. The macroscopic plate is discretized using 8-node quadrilateral plate elements enriched
by the multiscale enrichment functions.

The constitutive response of the woven composite plate as predicted by the proposed mul-
tiscale model and the reference model is illustrated in Fig. 12. The fracture stress and strain
is predicted to be (145.7MPa, 0.464%) and (130.7MPa, 0.51%) by the multiscale and reference
models, respectively. The modeling errors introduced by the plate theory and the reduction
methodology amounts to 11.5% and 9% for the fracture stress and strains, respectively. The
damage profiles of the composite microconstituents, including average damage in the matrix,
interphase and fibers in 0- and 90- directions for top and bottom layers, are shown in Fig. 13.
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Figure 10: The damage profiles for the 4-point bending plate.
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Figure 11: The geometry of the woven-composite plate with a center crack under tensile loading. Quarter
of the plate is modeled due to symmety.

Table 4: Material property values for the microconstituents in the woven composite plate.

Constituent E[GPa] ν aph
1 aph

2 c1 c2 υini

Matrix 3.0 0.35 16.0 0.5 1e5 0.0 0.0
Interphase 3.0 0.35 16.0 0.5 1e5 0.0 0.0

Fiber 60.0 0.35 0.7 1.0 1e5 0.0 0.0

The failure response of the multiscale model is in reasonable agreement with the reference 3-D
finite element simulations.

5 Conclusions

In this manuscript, a two-level enrichment strategy for analysis of linear and nonlinear
heterogeneous plates is presented. The enrichment strategy consists of a strain-level enrichment
using the mathematical homogenization theory, and a displacement-level enrichment using the
partition of unity. Both the displacements and the strains are enriched using linear and
nonlinear influence functions of the computational homogenization theory.

The proposed multiscale enrichment strategy is verified against direct three-dimensional fi-
nite element simulations, in which, the microscale is explicitly resolved throughout the macro-
scopic plate domain. The numerical simulations demonstrated that the linear and failure
response of thin heterogeneous structures are predicted by good accuracy and computational
efficiency. The reduction in the computational cost is due to (1) the novel integration scheme
for multiscale enrichment, which eliminates the requirement for homogenization-like integra-
tion scheme, and (2) the eigendeformation-based model reduction methodology in evaluation
of the nonlinear response.
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Figure 12: Comparison of the stress-strain response of cracked woven composite plate computed by the
reference and multiscale models.

A Properties of the Elastic Influence Functions:

We illustrate the properties of the elastic influence functions using a homogeneous RVE (i.e.,
Lijkl (x) = Lijkl). When a homogeneous RVE is considered, the equilibrium equation of the
IFP1 reduces to:

LijmnH
1
(m,n)kl,j = 0 (73)

When considering the fully periodic boundary conditions for three-dimensional homogenization
problem, the constant strain modes are eliminated, leading to a trivial solution of this problem.
The boundary conditions of the IFP1 problem permit constant strain modes along the thickness
direction. Hence the solution of the problem above is not trivial. Equation 77 is satisfied for
a constant strain field with nonzero components H(3,3)kl. The elastic influence function is
obtained by using the traction free boundary conditions:

niLijmn

(
H1

(m,n)kl + Imnkl

)
nj = 0 on ∂Yz (74)

Considering an isotropic material with normal coincident with e3, the nonzero components of
the elastic influence function are obtained as:

H1
311 = H1

322 = − λz

λ+ 2µ
; H1

333 = −z (75)

It is worth noting that the homogenized tensor of elastic moduli, L̄ijkl, with the boundary
conditions above reduces to the plane-stress tensor of elastic moduli:

L̄ijmn :=
〈
Lijkl

(
H1

(k,l)mn + Iklmn

)〉
= λ̄δijδmn + 2µIijmn (76)

where, λ̄ = 2λµ/(λ+ 2µ). The RVE average of the first order elastic influence function vanish:〈
H1
ikl

〉
= 0.
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Figure 13: Damage profiles predicted by the proposed multiscale model: (a) top layer matrix phase;
(b) bottom layer matrix phase; (c) interphase; (d) top layer 90-direction fiber phase; (e) bottom layer
90-direction fiber phase; (f) top layer 0-direction fiber phase; (g) bottom layer 0-direction fiber phase.
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Consider the IFP2 problem on a homogeneous RVE. The equilibrium equation becomes:

LijmnH
1
(m,n)kl,j − Li3kl = 0 (77)

The solution of the IFP2 problem may be obtained by employing the traction free boundary
conditions of the RVE problem. In an isotropic material, the second order elastic influence
function is of the following quadratic form:

H2
311 = H2

322 =
λ

2(λ+ 2µ)

(
t2

4
− z2

)
(78)

H2
333 = H2

113 = H2
223 =

1
2

(
t2

4
− z2

)
(79)

The remaining components of H2
ikl are zero. It is worth noting that in contrast to the second

order influence function with periodic boundary conditions, the RVE average of the second
order influence function is nonzero:

〈
H2
ikl

〉 6= 0.

B Derivation of the Hill-Mandel Energy Condition

In this section, the Hill-Mandel Energy condition (Eq. 23) is derived. We start by the expansion
of the average energy term within a unit cell:

〈σijεij〉 = eγη
[〈
A1
ijγηLijklA

1
klαβ

〉
eαβ +

〈
A1
ijγηLijklA

2
klαβ

〉
καβ +

〈
A1
ijγηLijklA

3
klα

〉
γα

+
〈
A1
ijγηLijklGklA

〉
ηA +

〈
A1
ijγηLijklHkA

〉
ηA,l
]

+ κγη
[〈
A2
ijγηLijklA

1
klαβ

〉
eαβ

+
〈
A2
ijγηLijklA

2
klαβ

〉
καβ +

〈
A2
ijγηLijklA

3
klα

〉
γα +

〈
A2
ijγηLijklGklA

〉
ηA

+
〈
A1
ijγηLijklHkA

〉
ηA,l
]

+ γη
[〈
A3
ijηLijklA

1
klαβ

〉
eαβ +

〈
A3
ijηLijklA

2
klαβ

〉
καβ

+
〈
A3
ijηLijklA

3
klα

〉
γα +

〈
A3
ijηLijklGklA

〉
ηA +

〈
A3
ijηLijklHkA

〉
ηA,l
]

+ ηB
[〈
GijBLijklA

1
klαβ

〉
eαβ +

〈
GijBLijklA

2
klαβ

〉
καβ +

〈
GijBLijklA

3
klα

〉
γα

+ 〈GijBLijklGklA〉 ηA + 〈GijBLijklHkA〉 ηA,l] + ηB,j
[〈
HiBLijklA

1
klαβ

〉
eαβ

+
〈
HiBLijklA

2
klαβ

〉
καβ +

〈
HiBLijklA

3
klα

〉
γα + 〈HiBLijklGklA〉 ηA

+ 〈HiBLijklHkA〉 ηA,l]

(80)

Minor symmetry of Lijkl is employed to obtain the expansion above. We will show that the
following expressions hold:〈

A1
ijγηLijklA

p
klαβ

〉
=
〈
Lγηkl : Apklαβ

〉
;
〈
A1
ijγηLijklA

3
klα

〉
=
〈
Lγηkl : A3

klα

〉
(81a)〈

A3
ijηLijklA

p
klαβ

〉
=
〈
L3ηkl : Apklαβ

〉
;
〈
A3
ijηLijklA

3
klα

〉
=
〈
L3ηkl : A3

klα

〉
(81b)〈

A2
ijγηLijklA

p
klαβ

〉
= −

〈
zLγηkl : Apklαβ

〉
;
〈
A2
ijγηLijklA

3
klα

〉
= − 〈zLγηkl : A3

klα

〉
(81c)

where p = 1, 2. First, we show that Eq. 81a holds. Exploiting the definition of A1
ijγη, Eq. 81a

can be written as: 〈
A1
ijγηLijklA

p
klαβ

〉
=
〈
LγηklA

p
klαβ

〉
+
〈
G1
ijγηLijklA

p
klαβ

〉
(82)
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Applying the chain rule and the Green’s theorem, the second term yields:〈
G1
ijγηLijklA

p
klαβ

〉
=

1
|Y|

 ∫
∂Yper

H1
iγηLijklA

p
klαβnjdΓ +

∫
∂Yz

H1
iγηLijklA

p
klαβnjdΓ +

∫
Y

H1
iγη

(
LijklA

p
klαβ

)
,j
dY
 (83)

Using the definitions of the IFP1 and IFP2 problems, we observe that all terms vanish in
the equation above (first by periodicity, second by periodicity and zero traction condition and
third by equilibrium). By this results, the coupling terms between ηA, and the in-plane strain,
curvature and transverse shear strains vanish (i.e.,

〈
GijBLijklA

1
klαβ

〉
=
〈
GijBLijklA

2
klαβ

〉
= 0

and
〈
GijBLijklA

3
klα

〉
= 0). The derivation of the second part of Eq. 81a as well as Eq. 81b

follows the ideas above and skipped in this presentation.
Equation 81c is shown to hold by exploiting the definition of A2

ijγη:〈
A2
ijγηLijklA

p
klαβ

〉
=
〈
−zLγηklApklαβ

〉
+
〈
G2
ijγηLijklA

p
klαβ

〉
(84)

and observing that the second term vanishes by the same arguments applied to the second term
of Eq. 82. Equation 24 is achieved by denoting the nonzero components in Eq. 80 as in Eq. 26.
In the absence of the displacement level enrichment, the energy conjugate of the in-plane
strains, curvature and transverse shear strains are the homogenized in-plane force, moment
and shear force resultants, respectively. In the presence of displacement level enrichment, the
generalized stress tensors do not yield the same physical meaning despite being the energy
conjugates of the corresponding strain measures. The in-plane force resultants, bending and
shear forces are calculated by appropriate averaging over the RVE.
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