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Abstract

The manuscript presents a novel model reduction approach for periodic heterogeneous media, which combines the multiple scale
asymptotic (MSA) expansion method with the transformation field analysis (TFA) to reduce the computational cost of a direct homog-
enization approach without significantly compromising on solution accuracy. The evolution of failure in micro-phases and interfaces is
modeled using eigendeformation. Adaptive model improvement strategy incorporating a hierarchical sequence of computational homog-
enization models is employed to control the accuracy of the model. We present the model formulation and the computational details
along with verification (with respect to direct homogenization) and validation (with respect to physical experiments) studies.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The importance of composite materials for high-perfor-
mance applications that require high specific strength
and/or stiffness, low electrical conductivity, transparency
to radio emissions, and resistance to corrosion has been rec-
ognized more than half a century ago. Yet the supporting
modeling and simulation tools used in practice are often
ranging from the rule of mixtures dating back to the Renais-
sance era to various effective medium models of Eshelby [1],
Hashin [2], Mori and Tanaka [3], self-consistent approaches
of Hill [4] and Christensen [5] among many others. The
emerging computational homogenization methods based
on the mathematical homogenization theory pioneered by
Babuska [6], Bensoussan [7], Suquet [8], Sanchez-Palencia
[9], Guedes and Kikuchi [10] and Terada and Kikuchi [11]
had so far very little or no impact on practitioners. This
can be attributed to the following reasons:
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1. material characterization and calibration to experimen-
tal data are often available on the macro-scale only;

2. lack of accuracy in the vicinity of high gradient regions;
and

3. computational cost.

The first barrier is concerned with scale-specific mea-
surements of in situ properties, uncertainty quantification
and indirect calibration by inverse methods [12]. The sec-
ond barrier is concerned with the principal limitations of
the homogenization approach: periodicity and uniformity
of macro-scale fields. Various hierarchical techniques
[13,14] and higher order homogenization techniques [15]
have been developed to extend the range of validity of
O(1) computational homogenization approaches. The pres-
ent manuscript does not address the first two barriers, but
rather focuses on the last one.

The third barrier is purely computational. The computa-
tional complexity of solving a two-scale nonlinear problem
is tremendous. To illustrate the computational complexity
involved, consider a macro-problem with Ncells Gauss
points, n load increments in the macro-scale, and Icoarse

and Ifine average iterations in the macro- and micro-scales,
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respectively. The total number of linear solves of a micro-
problem is Ncells Æn Æ Icoarse Æ Ifine – a formidable computa-
tional cost if the number of unit cells and degrees-of-free-
dom in a unit cell is substantial. This tyranny of scales
can be effectively addressed by a combination of parallel
methods and by introducing an intermediate mesomechan-
ical model as shown in Fig. 1. While parallelization in
space is very natural since unit cell problems are fully par-
allelizable in space (see for instance [16]), parallelization in
time remains an outstanding issue. Some promising results
on parallelization in time have been obtained by utilizing
waveform relaxation scheme [17] and space–time varia-
tional multigrid method [18].

Development of mesomechanical models for periodic
heterogeneous continua has been an active research area
in the past decade. Perhaps, one of the oldest mesomechan-
ical approaches is based on purely kinematical Taylor’s
hypothesis (closely related to Cauchy–Born rule) which
assumes a uniform deformation in the fine scale; it satisfies
compatibility but fails to account for equilibrium across
micro-constituents boundaries. A major progress in meso-
mechanical modeling (obviously at the expense of compu-
tational cost) has been made by utilizing boundary
element method [19], the Voronoi cell method [20], the
spectral method [21], the transformation field analysis
[22,23], the Fast Fourier Transforms [24,25], the network
approximation method [26] and the mathematical homo-
genization with eigenstrains [27–31] based on the Trans-
formation Field Analysis (TFA) [32]. Despite significant
progress, the need for flexible low-cost mesomechanical
approach, which can be easily adapted to meet accuracy
needs, still remains.

The Transformation Field Analysis synonymous with
the pioneering work of Dvorak and Benveniste [32], has
its roots in early works of Laws [33], Willis [34] and
Dvorak [35]. It is based on a brilliant idea that allows pre-
computing certain information (localization operators,
concentration tensors, transformation influence functions)
in the preprocessing phase prior to nonlinear analysis,
which consequently can be carried out with a small subset
of unknowns. By this approach the effect of eigenstrains,
representing inelastic strains, thermal strains or phase
transformation strains, is accounted for by solving a linear
elasticity problem and is linearly superimposed with the
deformation induced by uniform overall strain. The salient
Micro-problem

Meso

Fig. 1. Linking micro-mechanical and macro-mechan
feature of TFA based approaches is that unit cell equilib-
rium equations, which have to be satisfied Ncells Æn Æ Icoarse Æ
Ifine times in the direct homogenization approach (see earlier
discussion) are satisfied a priori, in the preprocessing stage.

In this manuscript we develop an adaptive mesomechan-
ical approach which is based on the generalization of the
mathematical homogenization theory with eigenstrains
[25–27,31] in the following two respects:

(i) It accounts for interface failure in addition to failure
of micro-constituents; interface failure is modeled
using so-called eigendisplacements – a concept similar
to eigenstrains used for modeling of inelastic defor-
mation of phases; eigenstrains and eigendisplace-
ments are collectively called eigendeformation.

(ii) It is equipped with an adaptive model improvement
capability; it incorporates a hierarchical sequence of
computational homogenization models where the
most inexpensive member of the sequence represents
simultaneous failure of each micro-phase (inclusion,
matrix and interface), whereas the most comprehen-
sive model of the hierarchical sequence coincides with
a direct homogenization approach (see for instance
[11]).

The paper is organized as follows: The fundamental
properties of the response fields and definitions of the spa-
tial scales along with the governing equations are provided
in Section 2. Section 3 outlines the formulation of the gen-
eralized mathematical homogenization with eigendeforma-
tion that decomposes the original boundary value problem
into micro- and macro-scale problems. Derivation of
reduced order model, nonlocal damage evolution law,
and model improvement strategies are discussed in Section
4. Section 5 focuses on the implementation details of the
reduced order model including stress update, consistent
tangent operator and extension to large macroscopic defor-
mation. Verification and validation studies are given in
Section 6. A summary and a glimpse on future work con-
clude the manuscript.

2. Problem setting and governing equations

Consider a heterogeneous body formed by the repetition
of a locally periodic micro-structure occupying an open,
-problem

Macro-problem

ical problems through a mesomechanical model.
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Fig. 2. Macro- and microscopic structures.
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bounded domain, X � Rnsd , with nsd being the number of
space dimensions, as shown in Fig. 2. The micro-structure
(unit cell) is composed of two or more different materials
and is denoted by H � Rnsd . The size of the unit cell is taken
to be small compared to the dimensions of the macroscopic
domain X. The ratio between the size of the unit cell and
the macroscopic domain is denoted by a small positive con-
stant, f. Under loads, the response of the heterogeneous
body rapidly oscillates in space due to the fluctuations in
the material properties within the unit cell. In other words,
response fields are functions of the macro-scale coordinate
system, x, as well as the micro-scale coordinate system,
y � x/f, which may be regarded as a stretched position
vector within the micro-structure. Schematically, this is
denoted by

f fðxÞ ¼ f ðx; yðxÞÞ; ð2:1Þ
where f denotes response fields; and superscript f indicates
the dependence of the response field on the micro-struc-
tural heterogeneities. The macroscopic spatial derivative
of ff may be calculated by the chain rule

f f
;xi
ðxÞ ¼ f;xiðx; yÞ þ

1

f
f;yi
ðx; yÞ; ð2:2Þ

where a comma followed by a subscript variable xi or yi

denotes a partial derivative with respect to the components
of the macroscopic and microscopic position vectors,
respectively.

All response fields are assumed to be locally periodic
throughout the deformation process

f ðx; yÞ ¼ f ðx; yþ kŷÞ; ð2:3Þ
where ŷ denotes the periods of the micro-structure; and k is
a nsd · nsd diagonal matrix with integer components.

In this manuscript, a damage process within the micro-
constituents and interfaces is modeled using continuous
damage mechanics (CDM) although the methodology
developed is applicable to other inelastic models. A his-
tory-dependent damage parameter, xf

ph, is introduced to
represent the state of damage in the micro-phases (inclu-
sion and matrix). Similarly, the adhesion between the
micro-constituents is modeled using CDM, in which the
interface damage parameter, xf

int, represents the state of
adhesion. A simple Coulomb type friction model is consid-
ered to account for tractions introduced due to surface
roughness along the debonded surfaces. Unilateral contact
conditions are imposed along the interfaces to prevent
interpenetration of micro-constituents upon compressive
loading. A similar interface model has been previously
employed by Raous et al. [36] to characterize the behavior
of fibrous ceramic composites.

In Sections 2–5 we derive the formulation for small
deformation problems. Extension to large macro-defor-
mation is given in Section 5.3. We consider the following
governing equations on x 2 X and t 2 [0, t0]

rf
ij;jðx; tÞ þ bf

i ðx; tÞ ¼ qfðx; tÞ€uf
i ðx; tÞ; ð2:4Þ

rf
ijðx; tÞ ¼ 1� xf

phðx; tÞ
h i

Lf
ijklðxÞ�fkl x; tð Þ; ð2:5Þ

�fijðx; tÞ ¼ uf
ði;jÞðx; tÞ �

1

2

ouf
i

oxj
þ

ouf
j

oxi

 !
; ð2:6Þ

xf
phðx; tÞ ¼ xf

phðrf
ij; �

f
ij; s

f
phÞ; ð2:7Þ

where uf
i denotes displacements; rf

ij the Cauchy stress; �fij
the strain; xf

ph 2 ½0; 1� with xf
ph ¼ 0 corresponding to the

state of no damage, and xf
ph ¼ 1 denoting a complete loss

of load carrying capacity; bf
i the body force; qf(x, t) the

density; t the temporal coordinate; X and [0, t0] the spatial
and temporal problem domains, respectively; superposed
single and double dot correspond to material time deriva-
tive of orders one and two, respectively; and Lf

ijkl the tensor
of elastic moduli obeying the conditions of symmetry

Lf
ijkl ¼ Lf

jikl ¼ Lf
ijlk ¼ Lf

klij ð2:8Þ

and positivity

9C0 > 0; Lf
ijklnijnkl P C0nijnkl; 8nij ¼ nji: ð2:9Þ

The evolution equation of xf
ph is given in a functional form

(Eq. (2.7)) as a function of strain, stress and additional
state variables sph

f (see [37] for various damage evolution
equations).

The initial and boundary conditions are assumed to be a
function of the macro-scale coordinates only

uf
i ðx; tÞ ¼ ûi xð Þ; x 2 X; t ¼ 0; ð2:10Þ

_uf
i ðx; tÞ ¼ v̂i xð Þ; x 2 X; t ¼ 0; ð2:11Þ

uf
i ðx; tÞ ¼ �ui x; tð Þ; x 2 Cu; t 2 0; t0½ �; ð2:12Þ

rf
ijðx; tÞnj ¼ �tiðx; tÞ; x 2 Ct; t 2 0; t0½ � ð2:13Þ

in which ûi and v̂i are the initial displacement and velocity
fields, respectively; �ui and �ti are the prescribed displace-
ments and tractions on the boundaries Cu and Ct, respec-
tively, where C = Cu [ Ct and Cu \ Ct = ;, and; ni is the
unit normal to Ct.

Let Sf denote the interface between the micro-constitu-
ents which is the union of the interfaces in the unit cells

Sf ¼
[allcells

a¼1

Sa: ð2:14Þ

The momentum balance along the interface is given by
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rf
ijnj

���
Sf
þ

þ rf
ijnj

���
Sf
�
¼ tfi ðx; tÞ

��
Sf
þ
þ tfi ðx; tÞ

��
Sf
�
¼ 0; ð2:15Þ

where tfi is the traction along the interface; and Sf
þ and Sf

�
denote the two sides of the interface. Damage progression
may lead to a discontinuity of the displacements along the
interface due to decohesion denoted as

df
i ðx; tÞ � suf

i ðx; tÞt ¼ uf
i

��
Sf
�
� uf

i

��
Sf
þ
; ð2:16Þ

where df
i is the displacement jump along the micro-constit-

uent interfaces; and sÆb is the jump operator. The unilateral
contact conditions with adhesion on Sf are then given as

tNfðx; tÞ � 1� xf
intðx; tÞ

� �
kf

NðxÞd
Nfðx; tÞ 6 0;

dNfðx; tÞP 0; ð2:17Þ
tNfðx; tÞ � 1� xf

intðx; tÞ
� �

kf
NðxÞd

Nfðx; tÞ
� �

dNf

ðx; tÞ ¼ 0 ð2:18Þ

in which tNf and dNf are normal components of traction
and displacement jump at the interface, respectively;
xf

int 2 ½0; 1� is the interface damage variable indicating the
state of debonding along the interface, with undamaged
state being xf

int ¼ 0 and kf
N being the interface stiffness

along the normal direction. In the tangential directions, a
Coulomb type friction model is considered in addition to
adhesion

tTf
q ðx; tÞ ¼ tTaf

q ðx; tÞ þ tTff
q ðx; tÞ; ð2:19Þ

tTaf
q ðx; tÞ � 1� xf

intðx; tÞ
� �

kf
TðxÞd

Tf
q ðx; tÞ ¼ 0; ð2:20Þ

tTffðx; tÞ
�� �� 6 lF tNfðx; tÞ � 1� xf

intðx; tÞ
� �

kf
NðxÞd

Nfðx; tÞ
�� ��;

ð2:21Þ
tTff
�� �� < lF tNf � ð1� xf

intÞkf
NdNf

�� �� ) _dTf
q ¼ 0; ð2:22Þ

tTff
�� �� ¼ lF tNf � ð1� xf

intÞk
f
NdNf

�� �� ) _dTf
q ¼ jtTff

q ð2:23Þ

where tTf
q and dTf

q are the tangential components of traction
and displacement jump at the interface, respectively; bold-
face symbols indicate the vector form; tTaf

q and tTff
q are tan-

gential traction due to adhesion and Coulomb friction,
respectively; kT is the interface stiffness along the tangential
direction; lF the friction coefficient; and j P 0. The sub-
script q is used for three-dimensional problems only where
it ranges from 1 to 2. The evolution of the interface dam-
age, xf

int, is given in the functional form as

xf
intðx; tÞ ¼ xf

intðtfi ; d
f
i ; s

f
intÞ ð2:24Þ

in which sf
int denote the interface state variables. Additional

details are provided in Section 4.1.
The interface model with unilateral contact, adhesion

and friction conditions can be summarized as follows: In
case of pure tensile loading along the interface, the normal
direction behavior is governed by the adhesion conditions.
When compressive normal forces are present, displacement
jump in the normal direction vanish (i.e., closure) and uni-
lateral contact conditions are employed. In the presence of
tangential and tensile forces along the interface, tangential
behavior is governed by the adhesion condition given by
Eq. (2.20). For compressive loads, friction conditions are
in effect (Eqs. (2.21)–(2.23)) in addition to adhesion.
3. Generalized mathematical homogenization with

eigendeformation

The governing equations (Eqs. (2.4)–(2.24)) are solved
approximately using two-scale mathematical homogeniza-
tion with eigendeformation. The eigendeformation includes
both the phase damage (modeled by eigenstrains) and
interface damage (modeled by eigendisplacements). We
extend the original formulation developed in [25–27],
which accounted for damage at the micro-phases only.
The 2-scale asymptotic expansions of the displacement
field, uf

i , phase damage, xf
ph, and interface damage, xf

int,
on x 2 X; y 2 H and t 2 [0, t0] are given as

uiðx; y; tÞ � u0
i ðx; tÞ þ fu1

i ðx; y; tÞ; ð3:1Þ
xphðx; y; tÞ � x0

phðx; y; tÞ þ fx1
phðx; y; tÞ; ð3:2Þ

xintðx; y; tÞ � x0
intðx; y; tÞ þ fx1

intðx; y; tÞ: ð3:3Þ

The strain field is obtained by substituting Eq. (3.1)
into Eq. (2.6) and exploiting the chain rule given by Eq.
(2.2)

�ijðx; y; tÞ � �0
ijðx; y; tÞ þ f�1

ijðx; y; tÞ ð3:4Þ

in which the first and second order strain components are
in the form

�0
ijðx; y; tÞ ¼ u0

ði;xjÞðx; tÞ þ u1
ði;yjÞðx; y; tÞ; ð3:5Þ

�1
ijðx; y; tÞ ¼ u1

ði;xjÞðx; y; tÞ: ð3:6Þ

The average strains are defined by integrating Eq. (3.4)
over the unit cell domain

��ijðx; tÞ ¼
1

jHj

Z
H
�ijðx; y; tÞdH ¼ u0

ði;xjÞðx; tÞ þOðfÞ; ð3:7Þ

where jHj denotes the volume of H.
The first and second order stress components are evalu-

ated by substituting the asymptotic strain field decomposi-
tion given by Eq. (3.4) into the constitutive equation (Eq.
(2.5)) and using the asymptotic expansion of the phase
damage variable (Eq. (3.2))

rijðx; y; tÞ � r0
ijðx; y; tÞ þ fr1

ijðx; y; tÞ: ð3:8Þ

Further assuming Lf
ijkl ¼ LijklðyÞ gives

r0
ijðx; y; tÞ ¼ 1� x0

phðx; y; tÞ
h i

LijklðyÞ�0
kl; ð3:9Þ

r1
ijðx; y; tÞ ¼ 1� x0

phðx; y; tÞ
h i

LijklðyÞ�1
kl

� x1
phðx; y; tÞLijklðyÞ�0

kl: ð3:10Þ

The average stress field is obtained by integrating Eq. (3.8)
over the unit cell



Given: material properties, Lijkl, kN, kT, lF and
macroscopic strains, ��ij.

Find: microscopic deformations u1
i 2 �X� �H�

½0; t0� ! R which satisfy on x 2 X and t 2 [0, t0]

• Equilibrium:

LijklðyÞ ��klðx; tÞþ u1
ðk;ylÞðx;y; tÞ�lklðx;y; tÞ

h in o
;yj

¼ 0;

y2H:

• Kinematics:

lijðx;y;tÞ¼xphðx;y;tÞ ��ijðx;tÞþu1
ði;yjÞðx;y;tÞ

h i
; y2H:

• Unilateral contact and adhesion conditions in the
normal direction (y 2 S):

tNðx; y; tÞ � 1� xintðx; y; tÞ½ �kNðyÞdNðx; y; tÞ 6 0;

dNðx; y; tÞP 0;

ftNðx; y; tÞ � 1� xintðx; y; tÞ½ �kNðyÞdNðx; y; tÞg
dNðx; y; tÞ ¼ 0:

• Friction and adhesion conditions in the tangential
direction (y 2 S):
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�rijðx; tÞ ¼
1

jHj

Z
H

rijðx; y; tÞdH

¼ 1

jHj

Z
H

r0
ijðx; y; tÞdHþOðfÞ: ð3:11Þ

The first and second order equilibrium equations are
obtained by substituting Eq. (3.8) into Eq. (2.4), making
use of the chain rule (Eq. (2.2)) and applying Eq. (2.1) to
the body force (bf

i ¼ biðx; y; tÞ)

Oðf�1Þ : r0
ij;yj
ðx; y; tÞ ¼ 0 ð3:12Þ

Oð1Þ : r0
ij;xj
ðx; y; tÞ þ r1

ij;yj
ðx; y; tÞ þ biðx; y; tÞ

¼ q€u0
i ðx; tÞ: ð3:13Þ

Considering the O(f�1) equilibrium equation and combin-
ing it with Eqs. (3.5), (3.7) and (3.9) yields

LijklðyÞ ��klðx; tÞ þ u1
ðk;ylÞðx; y; tÞ � lklðx; y; tÞ

h in o
;yj

¼ 0;

ð3:14Þ

where lij is the inelastic strain defined as

lijðx; y; tÞ ¼ x0
phðx; y; tÞ ��ijðx; tÞ þ u1

ði;yjÞðx; y; tÞ
h i

: ð3:15Þ

The evolution equation of the phase damage variable, x0
ph,

is expressed in terms of the asymptotic terms of strain,
stress and state variables as

x0
phðx; y; tÞ ¼ x0

phðr0
ij; �

0
ij; s

0
phÞ: ð3:16Þ

Integrating the O(f�1) equilibrium equation (Eq. (3.13))
and exploiting periodicity of stresses yields momentum bal-
ance of the macroscopic problem

�rij;xjðx; tÞ þ �biðx; tÞ ¼ �q€u0
i ðx; tÞ; ð3:17Þ

where �bi and �q are the unit cell average body force and den-
sity, respectively.

Next, we consider asymptotic expansions of interface
conditions. Substituting asymptotic expansion of stress
(Eq. (3.8)) into Eq. (2.15) leads to the expressions for the
first and second order interface tractions on x 2 X; y 2 S;
t 2 [0, t0]

tiðx; y; tÞ � t0
i ðx; y; tÞ þ ft1

i ðx; y; tÞ; ð3:18Þ
t0
i ðx; y; tÞ ¼ r0

ijðx; y; tÞnj; ð3:19Þ
t1
i ðx; y; tÞ ¼ r1

ijðx; y; tÞnj: ð3:20Þ

The resulting momentum balance equations at the interface
are given as

Oð1Þ : r0
ijnj

���
Sþ
þ r0

ijnj

���
S�
¼ t0

i ðx; y; tÞ
��
Sþ
þ t0

i ðx; y; tÞ
��
S�
¼ 0;

ð3:21Þ

OðfÞ : r1
ijnj

���
Sþ
þ r1

ijnj

���
S�
¼ t1

i ðx; y; tÞ
��
Sþ
þ t1

i ðx; y; tÞ
��
S�
¼ 0:

ð3:22Þ

Since the leading order displacement field, u0
i , is a function

of the macroscopic spatial coordinate system, x, only, it is
continuous within a unit cell. Thus, the leading order dis-
placement discontinuity is of the order O(f)

diðx; y; tÞ � fd1
i ðx; y; tÞ: ð3:23Þ

In order to ensure traction continuity along the interface,
normal and tangential interface stiffness coefficients should
be of the order O(f�1), i.e.,

kf
NðxÞ ¼

1

f
kNðyÞ; kf

TðxÞ ¼
1

f
kTðyÞ; ð3:24Þ

where kN(y) and kT(y) are of order O(1). The interface con-
ditions along the normal and tangential directions may be
obtained by substituting the traction and displacement
jump decompositions into Eqs. (2.17)–(2.24). In what fol-
lows, superscripts denoting the leading order terms of the
interface tractions, interface displacement jumps and dam-
age variables are omitted for conciseness of presentation.

The O(f�1) equilibrium equation given by Eq. (3.14),
contact conditions at the interface, along with the periodic-
ity assumption of local fields and evolution equations for
damage variables define the so-called unit cell problem.
The unit cell problem is summarized in Box 1. Eq. (3.17)
along with macroscopic domain boundary and initial con-
ditions given by Eqs. (2.10)–(2.13) and constitutive relation
given by Eq. (3.9) define the so-called macro-scale problem.
The macro-scale problem is summarized in Box 2. Note
that inertia effects appear in the macro-scale problem only;
the unit cell problem is quasi-static with time correspond-
ing to history dependence.

Box 1 Unit cell problem based on classical mathematical
homogenization



tT
q ðx; y; tÞ ¼ tTa

q ðx; y; tÞ þ tTf
q ðx; y; tÞ;

tTa
q ðx; y; tÞ � 1� xintðx; y; tÞ½ �kTðyÞdT

q ðx; y; tÞ ¼ 0;

tTf
�� ��ðx; y; tÞ 6 tcritðx; y; tÞ;

tTf
�� ��ðx; y; tÞ < tcritðx; y; tÞ ) _dT

q ðx; y; tÞ ¼ 0;

tTf
�� ��ðx; y; tÞ ¼ tcritðx; y; tÞ

) _dT
q ðx; y; tÞ ¼ jtTf

q ðx; y; tÞ; j P 0;

tcritðx; y; tÞ ¼ lF tNðx; y; tÞ � 1� xintðx; y; tÞ½ �
��

� kNðyÞdNðx; y; tÞ
��:

• H-periodic boundaries on y 2 CH.
• Evolution equations for xph(x,y, t) and xint(x,y, t).

Elastic influence function (EIF) problem
Given Lijmn(y), find H iklðyÞ : �H! R such that

LijmnðyÞAmnklðyÞ
� �

;yj
¼ 0; y 2 H;

AijklðyÞ ¼ I ijkl þ GijklðyÞ; GijklðyÞ ¼ H ði;yjÞklðyÞ;
H-periodic boundary conditions on y 2 CH;
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Box 2 Macro-scale problem
Given: average body force, �bi, average density, �q,
initial and boundary conditions, ûi, v̂i, �ui, �ti, and the
solution of the unit cell problem summarized in Box
1 at time t 2 [0, t0].

Find: macroscopic deformations u0
i 2 �X� ½0; t0� !

R

• Momentum balance (x 2 X; t 2 [0, t0]):

�rij;xjðx; tÞ þ �biðx; tÞ ¼ �q€u0
i ðx; tÞ:

• Kinematics (x 2 X; t 2 [0, t0]):

��ijðx; tÞ ¼ u0
ði;xjÞðx; tÞ:

• Constitutive relation (x 2 X; t 2 [0, t0]):

�rijðx; tÞ ¼
1

jHj

Z
H

LijklðyÞ ��klðx; tÞ þ u1
ðk;ylÞðx; y; tÞ

h
� lklðx; y; tÞ�dH:

• Initial and boundary conditions:

u0
i ðx; tÞ ¼ ûi xð Þ; x 2 X; t ¼ 0;

_u0
i ðx; tÞ ¼ v̂i xð Þ; x 2 X; t ¼ 0;

u0
i ðx; tÞ ¼ �uiðx; tÞ; x 2 Cu; t 2 0; t0½ �;

r0
ijðx; tÞnj ¼ �tiðx; tÞ; x 2 Ct; t 2 0; t0½ �:

Phase damage influence function (PDIF) problem

Given Lijmn(y), find hph
iklðy; ŷÞ : �H� �H! R such that

LijmnðyÞðgph
mnklðy; ŷÞþ Imnkl dðy� ŷÞÞ

n o
;yj

¼ 0; y; ŷ2H;

gph
ijklðy; ŷÞ¼ hph

ði;yjÞklðy; ŷÞ;

H-periodic boundary conditions on y2CH;
The two-scale nonlinear boundary value problems sum-
marized in Box 1 and Box 2 can be solved using direct com-
putational homogenization procedures (see for instance
[11,16]). Instead, we proceed by formulating a mesome-
chanical approach based on the generalization of the math-
ematical homogenization theory with eigendeformation.
We start by introducing the decomposition of the micro-
scale displacement field [25–27]
shph
ikltðy; ŷÞ¼ 0 on y; ŷ2H;
u1
i ðx; y; tÞ ¼ H ikl yð Þ��klðx; tÞ þ ~uiðx; y; tÞ; ð3:25Þ
where Hikl is a H-periodic function, and ũi is the displace-
ment field induced by damage process within the micro-
constituents and interfaces. The micro-scale displacement
field decomposition given by Eq. (3.25) is valid for arbi-
trary damage state. We first consider the state in which
micro-constituents are free of damage with perfect bonding
along the interfaces (i.e., xph = 0, di = 0). In this case, the
damage induced displacement field vanishes and the equi-
librium of the unit cell reduces to
where Iijkl is the fourth order identity tensor. The elastic
influence function (EIF) problem is solved for Hikl. For a
comprehensive treatment of the linear unit cell problem,
see [10,38].

Next, consider the case when ��ij ¼ 0 and arbitrary dam-
age variables xph and xint. Eq. (3.14) then reduces to

LijklðyÞ ~�klðx; y; tÞ � lklðx; y; tÞ½ �
� �

;yj
¼ 0: ð3:26Þ

Eq. (3.26) constitutes an elasticity problem with eigen-
strains, lij, within the micro-constituents and eigendis-
placements, di, along the interface. The solution may be
expressed by means of damage influence functions as

~uiðx; y; tÞ ¼
Z

h
hph

iklðy; ŷÞlklðx; ŷ; tÞdŷ

þ
Z

S
hint

im ðy; ŷÞdmðx; ŷ; tÞdŷ ð3:27Þ

in which hph
ikl and hint

im are the influence functions for damage
within the micro-constituents and along the interfaces,
respectively. Expressions similar to the first term in Eq.
(3.27) can be found in [31,32,39,40]. The phase influence
function, hph

ikl, is computed by solving the so-called
phase damage influence function (PDIF) problem defined
below:
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where gph
ijkl is the polarization function for phase damage;

and d the Dirac delta function. The interface influence
function, hint

ip , satisfies the so-called interface damage influ-
ence function (IDIF) problem defined below:
Interface damage influence function (IDIF) problem

Given Lijmn(y ), find hint
ip ðy; ŷÞ : �H� S ! R such that

LijmnðyÞgint
mnpðy; ŷÞ

n o
;yj

¼ 0; y 2 H; ŷ 2 S;

gint
ijpðy; ŷÞ ¼ hint

ði;yjÞpðy; ŷÞ;
H-periodic boundary conditions on y 2 CH;

shph
ip tðy; ŷÞ ¼ Qip dðy� ŷÞ when y 2 S or ŷ 2 S

functions, Hikl, hph
ikl, hint

ip , and macroscopic strains, ��ij.
Find: lij 2 �X� �H� ½0; t0� ! R and di 2 �X� S�

½0; t0� ! R which satisfy on x 2 X and t 2 [0, t0]

• Kinetics (ŷ 2 S)

tpðx; ŷ; tÞ ¼ �
Z

H
gint

ijpðy; ŷÞLijmn AmnklðyÞ��klðx; tÞ½

þ ~�mnðx; y; tÞ � lmnðx; y; tÞ�dy:

• Kinematics (y 2 H)

~�ijðx; y; tÞ ¼
Z

h
gph

ijklðy; ŷÞlklðx; ŷ; tÞdŷ

þ
Z

S
gint

ijmðy; ŷÞdmðx; ŷ; tÞdŷ;

lijðx; y; tÞ ¼ xphðx; y; tÞ AijklðyÞ��klðx; tÞ
�

þ~�ijðx; y; tÞ
�
:

• Unilateral contact and adhesion conditions in the
normal direction (y 2 S)

tNðx; y; tÞ � 1� xintðx; y; tÞ½ �kNðyÞdNðx; y; tÞ 6 0;

dNðx; y; tÞP 0;

ftNðx; y; tÞ � 1� xintðx; y; tÞ½ �kNðyÞdNðx; y; tÞg
� dNðx; y; tÞ ¼ 0:

• Friction and adhesion conditions in the tangential
direction (y 2 S)

tT
q ðx; y; tÞ ¼ tTa

q ðx; y; tÞ þ tTf
q ðx; y; tÞ;

tTa
q ðx; y; tÞ � 1� xintðx; y; tÞ½ �kTðyÞdT

q ðx; y; tÞ ¼ 0;

tTf
�� ��ðx; y; tÞ 6 tcritðx; y; tÞ;

tTf
�� ��ðx; y; tÞ < tcritðx; y; tÞ
) _dT

q ðx; y; tÞ ¼ 0;

tTf
�� ��ðx; y; tÞ ¼ tcritðx; y; tÞ
) _dT

q ðx; y; tÞ ¼ jtTf
q ðx; y; tÞ; j P 0;

tcritðx; y; tÞ ¼ lF tNðx; y; tÞ � 1� xintðx; y; tÞ½ �
��

� kNðyÞdNðx; y; tÞ
��:

• Evolution equations for xph(x,y, t) and xint(x,y, t).
in which gint
ijp is the polarization function for the interface

damage; and Qip denotes transformation from the local
interface to the global Cartesian coordinate system.

We now proceed to constructing a unit cell problem that
incorporates the influence functions. Based on Eq. (3.25),
the O(f�1) equilibrium equation takes the form

LijmnðyÞ AmnklðyÞ��klðx; tÞ þ ~�klðx; y; tÞ � lklðx; y; tÞ½ �
� �

;yj
¼ 0;

ð3:28Þ

where the damage induced strain, ~�ij, is given as

~�ijðx; y; tÞ ¼ ~uði;yjÞðx; y; tÞ

¼
Z

h
gph

ijklðy; ŷÞlklðx; ŷ; tÞdŷ

þ
Z

S
gint

ijmðy; ŷÞdmðx; ŷ; tÞ�dŷ: ð3:29Þ

Premultiplying Eq. (3.28) by the interface damage influ-
ence function, hint

ip , integrating by parts over the unit cell H,
using Green’s theorem and considering the periodicity as
well as the symmetry conditions on Lijkl, the relation
between the interface tractions and phase stresses are
obtained:
tpðx; ŷ; tÞ ¼ �
Z

H
gint

ijpðy; ŷÞLijmnðyÞ AmnklðyÞ��klðx; tÞ½

þ ~�mnðx; y; tÞ � lmnðx; y; tÞ�dy: ð3:30Þ
Eqs. (3.15), (3.29) and (3.30) along with the interface
conditions summarized in Box 1 and damage evolution
equations constitute a series of integral equations with
inequality constraints. This system is summarized in
Box 3.
Box 3 Unit cell problem based on the generalized mathe-
matical homogenization with eigenstrains
4. A reduced order model

To reduce the computational cost of direct homogeniza-
tion method, the integral equations in Box 3 are decom-
posed using separation of variables for the interface
damage, damage induced strain, phase damage and inelas-
tic strain fields

xphðx; y; tÞ ¼
X

c

N ðcÞph ðyÞx
ðcÞ
ph ðx; tÞ;

lijðx; y; tÞ ¼
X

c

N ðcÞph ðyÞl
ðcÞ
ij ðx; tÞ; ð4:1Þ
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xintðx; y; tÞ ¼
X

b

N ðbÞint ðyÞx
ðbÞ
int ðx; tÞ;

d̂iðx; y; tÞ ¼
X

b

N ðbÞint ðyÞd̂
ðbÞ
i ðx; tÞ; ð4:2Þ

c ¼ 1; 2; . . . ; b ¼ 1; 2; . . .

The phase shape functions, N ðcÞph , are assumed to be
C�1(H) continuous matching the continuity of the displace-
ment derivatives. On the other hand, the interface shape
functions, N ðbÞint , are taken to be C0(S) due to C0(S) continu-
ity of the displacement jumps at the interface, i.e.,
d̂i 2 C0ðSÞ. In Eq. (4.2), displacement jumps are decom-
posed into opening/sliding components in the local coordi-

nate system, d̂ðbÞ ¼ ½dNðbÞðdTðbÞÞT�T.

Both N ðcÞph and N ðbÞint are assumed to satisfy the partition of
unity propertyX

c

N ðcÞph ðyÞ ¼ 1;
X

b

N ðbÞint ðyÞ ¼ 1: ð4:3Þ

In the following, superscripts, g and c are reserved for func-
tions denoting phase fields, whereas, a and b are reserved
for the interface fields.

We further define weighted average fields as

xðcÞph ðx; tÞ ¼
Z

H
uðcÞph ðyÞxphðx; y; tÞdy;

lðcÞij ðx; tÞ ¼
Z

H
uðcÞph ðyÞlijðx; y; tÞdy; ð4:4Þ

xðbÞint ðx; tÞ ¼
Z

S
uðbÞint ðyÞxintðx; y; tÞdy;

d̂ðbÞi ðx; tÞ ¼
Z

S
uðbÞint ðyÞd̂iðx; y; tÞdy ð4:5Þ

in which the phase and interface weight functions, uðcÞph and
uðbÞint satisfy positivity

uðcÞph ðyÞP 0; uðbÞint ðyÞP 0 ð4:6Þ

and normalizationZ
H

uðcÞph ðyÞdy ¼ 1;

Z
S

uðbÞint ðyÞdy ¼ 1 ð4:7Þ

conditions. It can be easily shown that Eqs. (4.1), (4.2),
(4.4), and (4.5) imply orthonormality of the shape and
S
(α)

S
(β)

O
(αβ)

S
(α)
= S

(α)
O

(αβ)fiber

matrix

interface

a

Fig. 3. The interface shape and weight functions: (a) interface partitions in m
weight functions for arbitrary damage state within the
phases and interfacesZ

H
uðcÞph ðyÞN

ðgÞ
ph ðyÞdy ¼ dK

cg; ð4:8ÞZ
S

uðbÞint ðyÞN
ðaÞ
int ðyÞdy ¼ dK

ba ð4:9Þ

in which dK
cg is the Kronecker delta.

We now focus on various choices of the weight and
shape functions satisfying orthonormality (Eqs. (4.8) and
(4.9)), partition of unity (Eq. (4.3)), positivity (Eq. (4.6))
and normalization (Eq. (4.7)) conditions.

Consider a two-scale heterogeneous material composed
of nph phases and nint interfaces (e.g., for fibrous or woven
composites, nph is typically 2 with matrix and fiber phases
occupying domains, H(M) and H(F), respectively, and
nint = 1). The micro-structure is further partitioned into n

subdomains denoted by H(g), g = 1,2, . . . ,n. The partition-
ing is constructed so that each subdomain belongs to a
single phase (H(g) ˙ H(M) � H(g) or H(g) ˙ H(F) � H(g)),
H �

Sn
g¼1H

ðgÞ and H(g) ˙ H(c) � ; for g 5 c. The phase
shape and weight functions (N ðgÞph and uðgÞph , respectively)
are selected to be piecewise constant in H with nonzero
values within their corresponding partitions, H(g), only

N ðcÞph ðyÞ ¼
1 if y 2 HðcÞ;

0 elsewhere;

(
ð4:10Þ

uðcÞph ðyÞ ¼
1

HðcÞ
�� ��N ðcÞph ðyÞ; ð4:11Þ

where jH(c)j is the volume of partition H(c). It is a trivial
exercise to verify that the above phase shape functions sat-
isfy the orthonormality (Eq. (4.8)) and partition of unity
(Eq. (4.3)) conditions, whereas the weight functions satisfy
the normalization and positivity conditions. It is important
to note that the local supports, H(g), are arbitrary noncon-
tiguous domains. This choice proves to be valuable in
devising an adaptive partitioning strategy discussed in Sec-
tion 4.3.

The interface is divided into m partitions such that
S �

Sm
a¼1

�SðaÞ. In contrast to the phase partitioning, inter-
face partitions overlap as schematically shown in Fig. 3:
Nint

(α)
(y)

S
(β)

O
(αβ)

int

(α)
(y)

}

S
(α)

}

S
(β)

b

ultidimensions, (b) interface shape and weight function in one dimension.
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�SðaÞ ¼ SðaÞ
[Xm

b¼1
b6¼a

OðabÞ; ð4:12Þ

where S(a) is the nonoverlapping region in �SðaÞ; and O(ab) is
the overlap between neighboring partitions �SðaÞ and �SðbÞ.
The interface shape functions, N ðaÞint , are constructed by a
linear combination of finite element shape functions corre-
sponding to the nodes in the interface partition, S(a)

N ðaÞint ðyÞ ¼
X

a2SðaÞ

NaðyÞ; y 2 S ð4:13Þ

in which Na are standard finite element shape functions
associated with the microscopic finite element mesh node
a. The interface weight functions are chosen to be piecewise
constant

uðaÞint ðyÞ ¼
1= SðaÞ
�� �� if y 2 SðaÞ;

0 elsewhere;

(
ð4:14Þ

where jS(a)j is the area of interface partition, S(a). Again, it
is a trivial exercise to verify that the interface shape and
weight functions satisfy the aforementioned four condi-
tions (Eqs. (4.3), (4.6), (4.7) and (4.9)).

Employing the above definitions of the phase and inter-
face weight functions, Eqs. (4.4) and (4.5) reduce to

xðgÞph ðx; tÞ ¼
1

HðgÞ
�� ��

Z
HðgÞ

xphðx; y; tÞdy;

lðgÞij ðx; tÞ ¼
1

HðgÞ
�� ��

Z
HðgÞ

lijðx; y; tÞdy;

xðaÞint ðx; tÞ ¼
1

SðaÞ
�� ��

Z
SðaÞ

xintðx; y; tÞdy;

d̂ðaÞi ðx; tÞ ¼
1

SðaÞ
�� ��

Z
SðaÞ

d̂iðx; y; tÞdy:

ð4:15Þ

Substituting Eqs. (4.1), (4.2) into Eqs. (3.15) and (3.29),
premultiplying the resulting equation by uðgÞph , and integrat-
ing over the unit cell yieldsXn

c¼1

dK
gcI ijkl � P ðgcÞ

ijkl x
ðgÞ
ph ðx; tÞ

h i
lðcÞkl ðx; tÞ

� xðgÞph ðx; tÞ
Xm

b¼1

R̂
ðgbÞ
ij � d̂ðbÞðx; tÞ

h i
¼ xðgÞph ðx; tÞA

ðgÞ
ijkl��klðx; tÞ; ð4:16Þ

where

P ðgcÞ
ijkl ¼

1

HðgÞ
�� ��

Z
HðgÞ
eP ðcÞijklðyÞdy; ð4:17Þ

AðgÞijkl ¼
1

HðgÞ
�� ��

Z
HðgÞ

AijklðyÞdy; ð4:18Þ

R̂
ðgbÞ
ij ¼ 1

HðgÞ
�� ��

Z
HðgÞ

~R
ðbÞ
ij ðyÞdy; ð4:19Þ

eP ðgÞijklðyÞ ¼
Z

HðgÞ
gph

ijklðy; ŷÞdŷ; ð4:20Þ

eRðaÞij ðyÞ ¼
Z

�SðaÞ
gint

ijpðy; ŷÞN
ðaÞ
int ðŷÞêpðŷÞdŷ; ð4:21Þ
where êp are the basis vectors in the local normal and tan-
gential directions along the interface. Summation conven-
tion is not applied for the repeated superscripts.

Substituting Eqs. (4.1), (4.2) into Eq. (3.30), premulti-
plying the result by uðaÞint , and integrating over the interface
gives

t̂ðaÞðx; tÞ þ
XM
b¼1

bDðabÞ � d̂ðbÞðx; tÞ þ
Xn

c¼1

F̂
ðacÞ
ij lðcÞij ðx; tÞ

¼ �Ĉ
ðaÞ
ij ��ijðx; tÞ; ð4:22Þ

where

t̂ðaÞðx; tÞ � 1

jSðaÞj

Z
SðaÞ

t̂ðx; y; tÞdy ð4:23Þ

in which t̂ ¼ ½tNðtTÞT�T is the traction vector in local co-
ordinates; and

bCðaÞij ¼
1

jSðaÞj

Z
SðaÞ

Z
H

gint
mnpðy; ŷÞLmnklðyÞAklijðyÞêpðŷÞdy dŷ;

ð4:24Þ

bDðabÞ ¼ 1

jSðaÞj

Z
SðaÞ

Z
H

gint
mnpðy; ŷÞLmnklðyÞeRðbÞkl ðyÞ 	 êpðŷÞdy dŷ;

ð4:25Þ

bFðacÞ
ij ¼

1

jSðaÞj

Z
SðaÞ

Z
H

gint
mnpðy; ŷÞLmnklðyÞðeP ðcÞklijðyÞ

� IklijN
ðcÞ
ph ðyÞÞêpðŷÞdy dŷ: ð4:26Þ

We now turn our attention to the contact, adhesion and
friction conditions along the interfaces. The adhesion con-
ditions in the normal direction are expressed in terms of
tN(a) and dN(a) by employing Eqs. (4.2), integrating with
respect to uðaÞint , using the orthonormality, and positivity
of the weight functions give

tNðaÞðx; tÞ � 1� xðaÞint ðx; tÞ
h i

kðaÞN dNðaÞðx; tÞ 6 0;

dNðaÞðx; tÞP 0; ð4:27Þ

where

kðaÞN ¼
1

SðaÞ
�� ��

Z
S

kNðyÞdy ð4:28Þ

and the consistency condition is given as

tNðaÞðx; tÞ � 1� xðaÞint ðx; tÞ
h i

kðaÞN dNðaÞðx; tÞ
n o

dNðaÞðx; tÞ ¼ 0:

ð4:29Þ

In the tangential direction, the adhesion condition may be
obtained similar to the expressions in the normal direction:

tTaðaÞ ¼ 1� xðaÞint ðx; tÞ
h i

kðaÞT dTðaÞðx; tÞ; ð4:30Þ

where kðaÞT is defined analogous to kðaÞN . The friction condi-
tion along the interfaces is given by
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ktTfðaÞk 6 lF tNðaÞðx; tÞ � 1� xðaÞint ðx; tÞ
h i

kðaÞN dNðaÞðx; tÞ
��� ���

ð4:31Þ

ktTfðaÞ < lFktNðaÞðx; tÞ � 1� xðaÞint ðx; tÞ
h i

kðaÞN dNðaÞðx; tÞ
��� ���

) _dTðaÞðx; tÞ ¼ 0 ð4:32Þ

ktTfðaÞk ¼ lF tNðaÞðx; tÞ � 1� xðaÞint ðx; tÞ
h i

kðaÞN dNðaÞðx; tÞ
��� ���

) _dTðaÞ ¼ jtTfðaÞ; j P 0: ð4:33Þ
Eqs. (4.16), (4.22), (4.27), (4.29), and (4.30)–(4.33) constitute

a discrete system of equations in terms of lðcÞij and d̂ðbÞi , with
contact constraints. The resulting reduced order model is
termed thereafter as (m + n) point model, in which m and n

denote the number of interface and phase partitions, respec-
tively. The (m + n) point model is summarized in Box 4.

Box 4 (m + n) point model
Given: coefficient tensors and material parameters:
P ðgcÞ

ijkl , AðgÞijkl, R̂
ðgbÞ
ij , Ĉ

ðaÞ
ij , bDðabÞ, F̂

ðacÞ
ij , kðaÞN , kðaÞT , lF and the

macroscopic strain, ��ij.
Find: lðcÞij ; c = 1,2, . . . ,n and dðaÞi ; a = 1,2, . . . ,m

which satisfy on x 2 X and t 2 [0, t0]

• Kinetics

t̂ðaÞðx; tÞ þ
Xm

b¼1

bDðabÞ � d̂ðbÞðx; tÞ þ
Xn

c¼1

F̂
ðacÞ
ij lðcÞij ðx; tÞ

¼ �bCðaÞij ��ijðx; tÞ:

• KinematicsXn

c¼1

dK
gcI ijkl�P ðgcÞ

ijkl x
ðgÞ
ph ðx;tÞ

h i
lðcÞkl ðx;tÞ

�xðgÞph ðx;tÞ
Xm

b¼1

R̂
ðgbÞ
ij � d̂ðbÞðx;tÞ

h i
¼xðgÞph ðx;tÞA

ðgÞ
ijkl��klðx;tÞ:

• Unilateral contact and adhesion conditions in the
normal direction

tNðaÞðx; tÞ � ð1� xðaÞint ðx; tÞÞk
ðaÞ
N dNðaÞðx; tÞ 6 0;

dNðaÞðx; tÞP 0;

tNðaÞðx; tÞ � ð1� xðaÞint ðx; tÞÞk
ðaÞ
N dNðaÞðx; tÞ

n o
dNðaÞðx; tÞ ¼ 0:

• Friction and adhesion conditions in the tangential
direction

tTðaÞðx;tÞ¼ tTaðaÞðx;tÞþtTfðaÞðx;tÞ;
tTaðaÞðx;tÞ¼ð1�xðaÞint ðx;tÞÞk

ðaÞ
T dTðaÞðx;tÞ;

ktTfðaÞk6 tðaÞcritðx;tÞ;
ktTfðaÞk< tðaÞcritðx;tÞ ) _dTðaÞðx;tÞ¼0;

ktTfðaÞk¼ tðaÞcritðx;tÞ ) _dTðaÞðx;tÞ¼jtTfðaÞðx;tÞ; jP0;

tðaÞcritðx;tÞ¼lF tNðaÞðx;tÞ�ð1�xðaÞint ðx;tÞÞk
ðaÞ
N dNðaÞðx;tÞ

��� ���:
• Evolution equations for xðcÞph ðx; tÞ and xðaÞint ðx; tÞ.
The constitutive relation for the macroscopic problem is
obtained by substituting Eq. (3.9) into Eq. (3.11), and using
the decompositions given by Eqs. (4.1) and (4.2)

�rijðx; tÞ ¼ �Lijkl��klðx; tÞ þ
Xm

b¼1

R
ðbÞ
ij � d̂ðbÞðx; tÞ þ

Xn

c¼1

M ðcÞ
ijkll

ðcÞ
kl ðx; tÞ

ð4:34Þ

in which

Lijkl ¼
1

kHk

Z
H

LijmnðyÞAmnklðyÞdy; ð4:35Þ

R
ðbÞ
ij ¼

1

kHk

Z
H

LijklðyÞeRðbÞkl ðyÞdy; ð4:36Þ

�M ðcÞ
ijkl ¼

1

jHk

Z
H

LijmnðyÞðeP ðcÞklijðyÞ � IklijN
ðcÞ
ph ðyÞÞdy: ð4:37Þ

The formulation of homogenized tangent moduli Lijkl ¼
o�rij=o��kl is given in Section 5.2.

4.1. A nonlocal damage evolution

It is well known [41,42] that strain softening caused by
evolution of damage gives rise to loss ellipticity and con-
sequently discrete solutions are mesh-dependent. This
deficiency of the CDM model can be alleviated using
nonlocal formulation [43] (among several other methods),
a variant of which is adopted here.

We start by defining the nonlocal strain and stress fields
over partition H(c) as

�
ðgÞ
ij ðx; tÞ ¼

Z
HðgÞ

uðgÞph ðyÞ�0
ijðx;y; tÞdy ¼ 1

jHðgÞj

Z
HðgÞ

�0
ijðx;y; tÞdy;

ð4:38Þ

rðgÞij ðx; tÞ ¼
Z

HðgÞ
uðgÞph ðyÞr0

ijðx;y; tÞdy ¼ 1

jHðgÞj

Z
HðgÞ

r0
ijðx;y; tÞdy:

ð4:39Þ

The nonlocality of the above fields requires that the phase
partitions be constructed such that the characteristic
nonlocal volume, HC, is fully encompassed by the corres-
ponding smallest partitions, i.e., HC � H(c) for each
c = 1,2, . . . ,n. This formalism was originally proposed by
Fish and Yu [44].

We proceed by approximating stresses and strains at any
point in a unit cell in terms of the phase shape functions
and nonlocal phase stress and strain values as

�0
ijðx; y; tÞ ¼

X
c

N ðcÞph ðyÞ�
ðcÞ
ij ðx; tÞ;

r0
ijðx; y; tÞ ¼

X
c

N ðcÞph ðyÞr
ðcÞ
ij ðx; tÞ:

ð4:40Þ

Substituting Eq. (4.40) into Eq. (3.16) yields
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x0
phðx;y; tÞ

¼x0
ph

X
c

N ðcÞph ðyÞ�
ðcÞ
ij ðx; tÞ;

X
c

N ðcÞph ðyÞr
ðcÞ
ij ðx; tÞ;

X
c

N ðcÞph ðyÞs
ðcÞ
ph ðx; tÞ

 !
:

ð4:41Þ
Premultiplying Eq. (4.41) by the phase weight functions
and integrating over the unit cell yields

xðgÞph ðx; tÞ ¼
Z

H
uðgÞph ðyÞx0

ph

X
c

N ðcÞph ðyÞ�
ðcÞ
ij ðx; tÞ;

 
X

c

N ðcÞph ðyÞr
ðcÞ
ij ðx; tÞ;

X
c

N ðcÞph ðyÞs
ðcÞ
ph ðx; tÞ

!
dy:

ð4:42Þ
Note that uðgÞph is equal to 1/jH(g)j over H(g) and 0 elsewhere.
Over H(g), the only nonzero phase shape function is N ðgÞph

and its value over this partition is equal to one. Therefore,
Eq. (4.42) reduces to

xðgÞph ðx; tÞ ¼ xðgÞph ð�
ðgÞ
ij ðx; tÞ; r

ðgÞ
ij ðx; tÞ; s

ðgÞ
ph ðx; tÞÞ; ð4:43Þ

which is identical to Eq. (3.16) except that the evolution
equation is defined with respect to nonlocal quantities.
We now describe the model in detail.

The nonlocal phase damage variable, xðgÞph is taken to be
a monotonically increasing function of nonlocal phase
deformation function jðgÞph . The evolution of phase damage
may be expressed as

xðgÞph ðx; tÞ ¼ Uph jðgÞph ðx; tÞ
� 	

;
oUph jðgÞph

� 	
ojðgÞph

P 0: ð4:44Þ

The nonlocal phase deformation function, jðgÞph is a function
of phase damage equivalent strain

jðgÞph ðx; tÞ ¼ max tðgÞph ðx; sÞ � tðgÞini

D E
þ

���s 6 t

 �

; ð4:45Þ

where tðgÞph is nonlocal phase damage equivalent strain; and
tðgÞini the threshold value of tðgÞph below which no damage in

H(g) is allowed to occur. The nonlocal phase damage equiv-
alent strain is defined based on the strain-based damage
theory [45] as

tðgÞph ðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðFðgÞ�̂ðgÞÞTbLðgÞðFðgÞ�̂ðgÞÞr

ð4:46Þ

in which �̂ðgÞ is the vector of principal components of the
average strains, �ðgÞij , in H(g); bLðgÞ the tensor of elastic mod-
uli in principal directions of �(g); F(g) denotes the weighting
matrix. The purpose of the weighting matrix is to differen-
tiate between the damage accumulation in tensile and com-
pressive loading directions

FðgÞðx; tÞ ¼
hðgÞ1 0 0

0 hðgÞ2 0

0 0 hðgÞ3

2664
3775 when nsd ¼ 3; ð4:47Þ

hðgÞn ðx; tÞ ¼
1

2
þ 1

p
atan cðgÞ1 ð�̂

ðgÞ
n � cðgÞ2 Þ

h i
; ð4:48Þ
where cðgÞ1 and cðgÞ2 represent the contribution of tensile and
compressive loadings in the principal directions.

The nonlocal strain in a phase partition H(g) is given
as

�
ðgÞ
ij ðx; tÞ ¼ AðgÞijkl��klðx; tÞ þ ~�

ðgÞ
ij ðx; tÞ; ð4:49Þ

where

~�
ðgÞ
ij ðx; tÞ ¼

Xm

b¼1

R̂
ðgbÞ
ij � d̂ðbÞðx; tÞ þ

Xn

c¼1

P ðgcÞ
ijkl l

ðcÞ
kl ðx; tÞ: ð4:50Þ

The evolution of phase damage as a function of the
phase deformation function follows an arctangent law [28]

UðgÞph ¼
atanðaðgÞph jðgÞph ðx; tÞ � bðgÞph Þ þ atanðbðgÞph Þ

p=2þ atanðbðgÞph Þ
ð4:51Þ

in which aðgÞph and bðgÞph are material parameters.
The evolution equations for the interface damage are

defined in a similar fashion to those of the phases. The non-
local interface damage variable, xðbÞint , is given as

xðbÞint ðx; tÞ ¼ UintðjðbÞint ðx; tÞÞ;
oUintðjðbÞint Þ

ojðbÞint

P 0: ð4:52Þ

The nonlocal interface deformation function, jðbÞint , is a func-
tion of interface damage equivalent displacement jump

jðbÞint ðx; tÞ ¼ max tðbÞint ðx; sÞks 6 t
n o

; ð4:53Þ

where tðbÞint is the nonlocal interface damage equivalent dis-
placements in S(b) which is expressed as

tðbÞint ðx; tÞ ¼ kðbÞN dNðbÞðx; tÞ þ kðbÞT kdTðbÞðx; tÞk: ð4:54Þ

The evolution of interface damage as a function of the
interface deformation function is given by the following
law:

UðbÞint ¼
atanðaðbÞint j

ðbÞ
int ðx; tÞ=bðbÞint Þ

atanðaðbÞint Þ
; UðbÞint 6 1 ð4:55Þ

in which aðbÞint and bðbÞint are material parameters.

4.2. Influence functions

The coefficient tensors of the (m + n) point model are
functions of the elastic (Hikl), phase (hph

ikl), and interface
(hint

im ) influence functions. The influence functions are
obtained by numerically solving the three unit cell prob-
lems: (i) elastic influence function (EIF), (ii) phase damage
influence function (PDIF), and, (iii) interface damage influ-
ence function (IDIF) problems defined in Section 3. Gue-
des and Kikuchi [10] provides a comprehensive treatise
on the solution of the EIF problem. In this section, numer-
ical approximations of the PDIF and IDIF problems are
discussed.

Let Ĥ be an arbitrary subdomain of H (i.e., Ĥ � H), and
define
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d̂ĤðyÞ ¼
1

jĤj
y 2 Ĥ;

0 elsewhere:

8<: ð4:56Þ

In the limit

lim
jĤj!0

d̂ĤðyÞ ¼ dðy� ŷÞ; ŷ 2 Ĥ: ð4:57Þ

The unit cell PDIF problem is approximated by replacing
the Dirac delta function in the PDIF problem by d̂Ĥ which
gives
Discrete phase damage influence function (Discrete

PDIF) problem

Given Lijmn(y), find hph
iklðy; ŷÞ : �H� �H! R such that

LijmnðyÞðgph
mnklðy; ŷÞ þ Imnkld̂ĤðyÞÞ

n o
;yj

¼ 0; y; ŷ 2 H;

H-periodic boundary conditions on y 2 CH;

shph
ikltðy; ŷÞ ¼ 0 on y; ŷ 2 H:

Discrete interface damage influence function

(Discrete IDIF) problem

Given Lijmn(y), find hint
ip ðy; ŷÞ : �H� S ! R such that

LijmnðyÞgint
mnpðy; ŷÞ

n o
;yj

¼ 0; y 2 H; ŷ 2 S;

H-periodic boundary conditions on y 2 CH;

shph
ip tðy; ŷÞ ¼ Qipd̂ Ŝ; when y 2 S or ŷ 2 S:
The approximation to the phase influence function
(solution of Discrete PDIF problem) and the exact solution
of PDIF problem are both denoted by hph

ikl for conciseness
of the presentation. The weak form of the PDIF problem
statesZ

H
wði;yjÞðyÞLijmnðyÞgph

mnklðy; ŷÞdy

þ 1

jĤj

Z
Ĥ

wði;yjÞðyÞLijklðyÞdy ¼ 0; ŷ 2 Ĥ; ð4:58Þ

where wi 2V is the weight function; and V ¼ fwi 2
H 1ðHÞjwi H-periodicg. The above equation is discretized
and solved using the finite element method. Ĥ in Eq.
(4.56) is selected either as a domain of a single finite
element or a group of elements in the microscopic mesh.
In view of the definition of d̂Ĥ provided in Eq. (4.56), hph

ikl

may be fully computed by dividing the micro-structure into
npatch patches and solving the weak form of PDIF problem
(Eq. (4.58)) npatch times. npatch is typically selected as the
number of finite elements, nel, or number of phase parti-
tions, n. The evaluation of the phase influence function
based on element-by-element and partition-by-partition
methods is schematically illustrated in Fig. 4. When
npatch = nel, the phase influence functions can be computed
a priori and only coefficient tensors need to be recomputed
in the case of the dynamic partitioning scheme discussed in
the next section. When npatch = n, the phase influence func-
tions are recomputed when the model order is updated.
Fig. 5 illustrates the components of the phase influence
function evaluated within one element of a 2-phase unit cell.

The interface influence function is numerically approxi-
mated by considering an analogous formulation to the
evaluation of phase influence function discussed above.
Let d̂ Ŝ be an approximation to the Dirac delta function
to be subsequently defined, then the IDIF unit cell problem
is replaced by
The interface influence function is approximated using
standard finite element shape functions, Na(y);
a = 1,2, . . . ,nnd; and nnd is the total number of nodes in
the microscopic finite element mesh. The interface displace-
ment jumps are modeled by placing double nodes along the
interfaces. d̂ Ŝ is then expressed in terms of shape functions
as

d̂ ŜðŷÞ ¼
NaðŷÞZ

Ŝ
NaðŷÞdŷ

; ŷ 2 S; ð4:59Þ
where bS is the local support of Na along the interface. The
function, d̂ Ŝ , is schematically illustrated in Fig. 6. hint

ip may
be computed by solving the Discrete IDIF problem nin

times, where nin is the number of double nodes placed
along the interface. Fig. 7 depicts the components of the
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interface influence function evaluated for a pair of interface
nodes.
4.3. Model improvement strategies

The (m + n) point model results in nonlinear system of
3m + 6n equations. Selection of m and n is crucial to the
13

2

hi1

int
(y,y )a hi2

int(y,

a a

Fig. 7. Components of the in
accuracy and computational efficiency. Clearly, larger val-
ues of m and n lead to a superior accuracy at the expense of
increased computational cost. In addition to the selection
of the model degree, proper partitioning of the micro-con-
stituents affects the accuracy of the proposed models.

Much like the discretizations in the finite element
method, the optimal strategy for the selection of the model
degree and domains of each partition depend largely on the
specificities of the macroscopic problem in addition to the
micro-structural details. In this work, we study two parti-
tioning strategies termed as static domain partitioning
(SDP) and dynamic domain partitioning (DDP).

In SDP, selection of the model degree (m and n) and par-
titioning of the micro-structure is carried out prior to the
macroscopic analysis. In this approach, m and n, and cor-
responding micro-structural domain partitions, H(c) and
S(a) are functions of macroscopic spatial coordinate, x,
but do not vary in time. In static partitioning coefficient
tensors are computed once in the preprocessing stage and
remain constant throughout macroscopic analysis. Box 5
summarizes the preprocessing stage for static partitioning.
The preprocessing stage consists of the evaluation of the
influence functions, partitioning of the micro-structural
y )a hi3

int(y,y )a

a

terface influence function.



Fig. 8. Dynamic domain partitioning (DDP) strategy.

Fig. 9. Hierarchical partitioning of the micro-constituents in the dynamic domain partitioning strategy.
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domain, and computation of the corresponding coefficient
tensor, given the model order (m and n). The computation
of the elastic influence function, Hikl, interface and phase
influence functions, hint

im and hph
ikl, respectively, follows the

procedure explained in the previous section. The partition-
ing of the interface, S, and phase, H, is based on the elastic
macroscopic strains, ��el

ij , computed in a preliminary linear
analysis of the macroscopic problem. At each integration
point of the macroscopic mesh, the interface, S, is parti-
tioned into S(a), a = 1,2, . . . ,m based on the magnitude of
interface damage strain, tint. Similarly, the phase damage
equivalent strain, tph, is computed based on which the
microscopic domain, H, is partitioned into H(c),
c = 1,2, . . . ,n. The coefficient tensors are evaluated using
the integral expressions provided in the previous sections.

The dynamic domain partitioning (DDP) strategy is
based on recomputing the micro-structural domain parti-
tions as the macroscopic analysis progresses. By this
approach, the domain partitioning, as well as the model
order vary in time. The number of interface and phase par-
titions m and n are increased adaptively, as material failure
evolves. Fig. 8 illustrates the dynamic domain partitioning
algorithm. In DDP, the analysis is initiated with minimum
number of interface and phase partitions (typically, m = 1
and n = 2 for a 2-phase material). The model order is
increased adaptively as a function of normalized damage
f ðxÞ ¼ int j
x

xcrit


 �
ð4:60Þ

in which x 2 xðaÞint ;x
ðcÞ
ph

n o
; xcrit is the critical damage, above

which no more repartitioning can occur; and j is the max-
imum allowable number of repartitioning; and int denotes
the integer operator. The updated numbers of phase and
interface partitions are then expressed as

tþDtn ¼ tnþ
Xn

c¼1

dnðcÞ;

dnðcÞ ¼ f ðtþDtx
ðcÞ
ph Þ � f ðtxðcÞph Þ; ð4:61Þ

tþDtm ¼ tmþ
Xm

a¼1

dmðaÞ;

dmðaÞ ¼ f ðtþDtx
ðaÞ
int Þ � f ðtxðaÞint Þ ð4:62Þ

in which the left subscript t + Dt and t denote current and
previous values, respectively. The updated model order is
then used to recompute the coefficient tensors by invoking
the algorithm outlined in Box 5. A hierarchical repartition-
ing is adopted in which those partitions, H(c) and S(a) with
nonzero dn(c) and dm(a) are repartitioned only. The hierar-
chical repartitioning is illustrated in Fig. 9.

The DDP strategy offers certain advantages when the
number of coefficient tensors recomputations is limited
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and/or preprocessing cost is substantially lower than the
cost of nonlinear iterations. Otherwise, SDP with large n

and m might be advantageous both in terms of cost and
accuracy.

Box 5 Preprocessing
• Consider the linear elastic unit cell problem:
– Solve for the elastic influence functions, Hikl, and

corresponding traction terms along the interface
sikl.

– Compute the elastic polarization tensor, Gijkl.
– Compute the linear elastic homogenized moduli,

Lijkl using Eq. (4.35).
• Loop â over the nodes along the interface of the

unit cell mesh:
– Compute the interface influence function,

hint
im ðy; ŷâÞ.

– Compute the interface polarization function,
gint

ijmðy; ŷâÞ.
• Loop b̂ over the elements of the unit cell mesh:

– Compute the phase influence function, hph
iklðy; ŷb̂Þ.

– Compute the phase polarization function,
gph

ijklðy; ŷb̂Þ.
• Preliminary linear analysis of the macroscopic

problem to obtain ��el
ij .

• Loop B over each element of the macroscopic mesh:
– Along the interface:

tel
i ðxB; yÞ ¼ siklðyÞ��el

klðxBÞ; y 2 S;

tel
int ¼ k̂telk max

y
k̂tel

�
k:

– Identify m partitions of the interfaces based on
tel

int.
– Within the phases:

�el
ijðxB; yÞ ¼ AijklðyÞ��el

klðxBÞ; y 2 H;

tel
ph ¼ ðF�̂elÞTbLðF�̂elÞ max

y
ðF�̂elÞTbLðF�̂elÞ
n o

:

�
– Identify n partitions of the interfaces based on

tel
ph.

– Compute coefficient tensors for macroscopic ele-
ment, B.
5. Numerical implementation

5.1. Macroscopic stress update procedure

Given: Overall strain t��ij; phase and interface damage
variables, tx

ðgÞ
ph , (g = 1,2, . . . ,n) and tx

ðbÞ
int , (b = 1,2, . . . ,m),

respectively; increment of overall strain, D��ij; damage
induced displacement jumps in the local coordinate system,

td̂
ðbÞ
i ; and damage induced inelastic strains, tl

ðgÞ
ij . The left
subscript denotes increment step, i.e., te and t + Dte are
the values at the previous and current increments, respec-
tively. For simplicity, the left subscripts of the current
increments are often omitted in the following presentation.

Compute: The overall stress, �rij; current values of dam-
age variables, xðgÞph and xðbÞint ; damage induced displacement
jumps, d̂ðbÞi ; and inelastic strains, lðgÞij .

A vector of state variables, d is defined such that

d ¼ lð1Þ; lð2Þ; . . . ; lðnÞ; d̂ð1Þ; d̂ð2Þ; . . . ; d̂ðmÞ
n oT

ð5:1Þ

in which l(g) is the vector of inelastic strain components in
Voigt notation.

In view of the governing equations of the reduced micro-
scopic problem outlined in Box 4, the damage induced dis-
placement jumps and inelastic strains may be evaluated by
invoking a Newton process. The unilateral contact condi-
tion is imposed by considering a penalty algorithm. The
tangential friction model is implemented using an elastic
stick formulation [46] as described below. The resulting
nonlinear system is expressed as

W ¼ KðxðgÞph ;x
ðbÞ
int Þd� fðxðgÞph ;��ijÞ þ fcðdÞ þ ffðdÞ ¼ 0; ð5:2Þ

where fc is the contribution due to penalty method aimed at
enforcing unilateral contact constraint; ff is the contribu-
tion of the friction model; f is the force vector;

K ¼
KPPðxðgÞph Þ KPIðxðgÞph Þ

KIP KIIðxðbÞint Þ

" #
ð5:3Þ

and

KPP¼

I ijkl�P ð11Þ
ijkl xð1Þph �P ð12Þ

ijkl xð1Þph � � � �P ð1nÞ
ijkl xð1Þph

�P ð21Þ
ijkl xð2Þph I ijkl�P ð22Þ

ijkl xð2Þph � � � �P ð2nÞ
ijkl xð2Þph

..

. ..
. . .

. ..
.

�P ðn1Þ
ijkl xðnÞph �P ðn2Þ

ijkl xðnÞph � � � I ijkl�P ðnnÞ
ijkl xðnÞph

26666664

37777775;
ð5:4Þ

KPI¼

�R̂
ð11Þ
ij xð1Þph �R̂

ð12Þ
ij xð1Þph � � � �R̂

ð1mÞ
ij xð1Þph

�R̂
ð21Þ
ij xð2Þph �R̂

ð22Þ
ij xð2Þph � � � �R̂

ð2mÞ
ij xð2Þph

..

. ..
. . .

. ..
.

�R̂
ðn1Þ
ij xðnÞph �R̂

ðn2Þ
ij xðnÞph � � � �R̂

ðnmÞ
ij xðnÞph

26666664

37777775; ð5:5Þ

KIP¼

F̂
ð11Þ
ij F̂

ð12Þ
ij � � � F̂

ð1nÞ
ij

F̂
ð21Þ
ij F̂

ð22Þ
ij � � � F̂

ð2nÞ
ij

..

. ..
. . .

. ..
.

F̂
ðm1Þ
ij F̂

ðm2Þ
ij � � � F̂

ðmnÞ
ij

2666664

3777775; ð5:6Þ

KII¼

bDð11Þ þEð1Þ bDð12Þ � � � bDð1mÞbDð21Þ bDð22Þ þEð2Þ � � � bDð2mÞ

..

. ..
. . .

. ..
.

bDðm1Þ bDðm2Þ � � � bDðmmÞ þEðmÞ

266664
377775; ð5:7Þ
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where

EðbÞ ¼
ð1� xðbÞint Þk

ðbÞ
N 0 0

0 ð1� xðbÞint Þk
ðbÞ
T 0

0 0 ð1� xðbÞint Þk
ðbÞ
T

2664
3775:
ð5:8Þ

The force vector, f, is expressed as

f ¼ Að1Þijklx
ð1Þ
ph ;A

ð2Þ
ijklx

ð2Þ
ph ; . . . ;AðnÞijklx

ðnÞ
ph ;C

ð1Þ
kl ;C

ð2Þ
kl ; . . . ;C

ðmÞ
kl

h iT

��kl:

ð5:9Þ

The penalty contribution due to unilateral constraint, fc is
given as

fc ¼ 1

v
0; . . . ;0; dNð1Þ

D E
�
;0;0; dNð2Þ

D E
�
;0;0; . . . ; dNðmÞ

D E
�
;0;0

h iT

ð5:10Þ

in which v
 1 is the penalty parameter; and hei� �
(jej �e)/2.

The friction model is implemented based on the elastic
stick formulation, in which the frictional displacement
jumps, dT(b), are decomposed as follows:

dTðbÞ ¼ d
TðbÞ
el þ d

TðbÞ
slip ; ð5:11Þ

where d
TðbÞ
el is the elastic slip which is recoverable upon

unloading; and d
TðbÞ
slip is the plastic slip. The tangential trac-

tions due to friction is then expressed as

tTfðbÞ ¼ lFjtNðbÞ � ð1� xðbÞint Þk
ðbÞ
N dNðbÞj

dcrit

d
TðbÞ
el ð5:12Þ

in which dcrit is the magnitude of the maximum allowable
elastic slip. Eq. (5.12) implies that the contribution of the
frictional forces along the interface vanishes (i.e., Ff = 0)
when the normal displacement jumps, dN(b) > 0. Under
compression (i.e., dN(b) = 0)

f f ¼ 0; . . . ; 0; 0; tTfð1Þ; 0; tTfð2Þ; 0; 0; . . . ; tTfðmÞ� �T
: ð5:13Þ

In the presence of friction, d
TðbÞ
el is stored as state variable in

addition to d and damage variables.
In view of the definitions above, the stress update proce-

dure consists of the following steps:

1. Update the macroscopic strains: ��ij ¼ t��ij þ D��ij.
2. Solve Eq. (5.2) by Newton’s method:

kþ1d ¼ kd� oW
od


 ������1

k d

Wjk d: ð5:14Þ

3. Initialize the Newton procedure by setting k = 0,
kd = td, kxðgÞph ¼ tx

ðgÞ
ph , kxðbÞint ¼ tx

ðbÞ
int , and kd

TðbÞ
el ¼ td

TðbÞ
el .

4. Loop until convergence:
(a) Compute kK, kf, kfc, kff, and ðoW=odÞj�1

k d .
(b) Evaluate Eq. (5.14) to obtain k + 1d.
(c) k k + 1.
5. Compute the macroscopic stress �rij using Eq. (4.34).
kK, kf and kfc may be obtained directly using Eqs. (5.3)–
(5.10). Derivation of (oW/od) is given in Section 5.2. The
update of frictional contribution, kff, may be summarized
as follows:

Given: Displacement jumps, k d̂ðbÞ, elastic part of the tan-
gential displacement jumps, kd

TðbÞ
el , and normal tractions,

ktN(b)

Compute: kd
TðbÞ
el , ktTf(b) and kff

1. Separation along the interface: kdN(b) > 0) ktTf(b) = 0.
2. Compression along the interface: kdN(b) = 0.

(a) Compute predictor tangential displacement
jumps
dðbÞpr ¼ td
TðbÞ
el þ kDdTðbÞ ð5:15Þ

in which kDdT(b) is the tangential displacement jump
increment at iteration k.
3. Elastic stick

kdðbÞpr k
dcrit

< 1 ) ktTfðbÞ ¼ lF
ktNðbÞ

dcrit

dðbÞpr ð5:16Þ

kd
TðbÞ
el ¼ dðbÞpr ð5:17Þ

4. Plastic slip

kdðbÞpr k
dcrit

P 1 ) ktTfðbÞ ¼ lF
ktNðbÞ

kdðbÞpr k
dðbÞpr ; ð5:18Þ

kd
TðbÞ
el ¼ dðbÞpr �

ktTfðbÞ

lF
ktNðbÞ ðkd

ðbÞ
pr k � dcritÞ: ð5:19Þ

5. Construct kff using ktTf(b) as shown in Eq. (5.13).

5.2. Macroscopic tangent moduli

In this section a closed form expression for the macro-
scopic tangent moduli, Lijkl, is derived. We follow the
notation introduced in Section 5.1 for the representation
of the values of the fields at the current and previous time
steps. Recall that the macroscopic stress is expressed as

�rijðx; tÞ ¼ �Lijkl��klðx; tÞþ
Xm

b¼1

R
ðbÞ
ij � d̂ðbÞðx; tÞþ

Xn

c¼1

M ðcÞ
ijkll

ðcÞ
kl ðx; tÞ:

ð5:20Þ

The coefficient tensors, �Lijkl, R
ðbÞ
ij , and M ðcÞ

ijkl are independent
of the macroscopic strain, ��klðx; tÞ. Differentiating Eq.
(5.20) with respect to ��kl yields

Lijkl ¼
�rij

��kl
¼ �Lijkl þ

Xm

b¼1

R
ðbÞ
ij �

od̂ðbÞ

o��kl
þ
Xn

c¼1

M ðcÞ
ijmn

olðcÞmn

o��kl
:

ð5:21Þ
It remains to evaluate od=o��kl. We proceed by recalling the
nonlinear system of equations to be solved:
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Ŵ ¼ KðdÞd� fðd; ��ijÞ þ fcðdÞ þ ffðdÞ ¼ 0: ð5:22Þ

Differentiating Eq. (5.22) with respect to ��kl and using the
chain rule leads to

od

o��kl
¼ C�1 of

o��kl
; ð5:23Þ

where

C � oŴ
od
¼ oK

od
dþ K� of

od
þ ofc

od
þ of f

od
: ð5:24Þ

of=o��kl may be obtained directly from Eq. (5.9)

of

o��kl
¼ Að1Þijklx

ð1Þ
ph ;A

ð2Þ
ijklx

ð2Þ
ph ; . . . ;AðnÞijklx

ðnÞ
ph ;C

ð1Þ
kl ;C

ð2Þ
kl ; . . . ;C

ðmÞ
kl

h iT

:

ð5:25Þ

Derivative of the force vector, f, with respect to d may be
obtained using the chain rule:

of

od
¼
Xn

c¼1

of

oxðcÞph

oxðcÞph

od
; ð5:26Þ

oxðcÞph

od
¼

oxðcÞph

ojðcÞph

ojðcÞph

otðcÞph

otðcÞph

o�̂ðcÞ
o�̂ðcÞ

o�ðcÞ
o�ðcÞ

o~�ðcÞ
o~�ðcÞ

od
: ð5:27Þ

of=oxðcÞph may be obtained by differentiating Eq. (5.9) with
respect to the phase damage variable, xðcÞph

of

oxðcÞph

¼ 0; . . . ; 0;AðcÞIJ ��J ; 0; . . . ; 0
h iT

: ð5:28Þ

oxðcÞph=ojðcÞph is evaluated by differentiating Eq. (4.51)

oxðcÞph

ojðcÞph

¼
aðcÞph

p=2þ atanðbðcÞph Þ
h i

1þ ðaðcÞphjðcÞph � bðcÞph Þ
2

h i : ð5:29Þ

ojðcÞph=otðcÞph ¼ 1 for damage process and vanishes if no dam-
age is accumulated at the current time step. From Eqs.
(4.46) and (4.47) follows:

otðcÞph

o�̂ðcÞ
¼ 1

2tðcÞph

ðFðcÞ�̂ðcÞÞTbLðcÞ oðFðcÞ�̂ðcÞÞ
o�̂ðcÞ

; ð5:30Þ

where

oðFðcÞ�̂ðcÞÞ
o�̂ðcÞ

¼

oðhðcÞ1 �̂
ðcÞ
1 Þ

o�̂
ðcÞ
1

0 0

0
oðhðcÞ2 �̂

ðcÞ
2 Þ

o�̂
ðcÞ
2

0

0 0
oðhðcÞ3 �̂

ðcÞ
3 Þ

o�̂
ðcÞ
3

2666666666664

3777777777775
ð5:31Þ

and
oðhðcÞn �̂
ðcÞ
n Þ

o�̂
ðcÞ
n

¼ cðcÞ1 =p

1þ cðcÞ1 ð�̂
ðcÞ
n � cðcÞ2 Þ

h i2
�̂
ðcÞ
n þ hðcÞn : ð5:32Þ

No summation is implied for superscripts and for Greek
indices. The derivative of the principal strain, �̂ðcÞ, with re-
spect to total strain, �(c) is evaluated by considering the
Hamilton’s Theorem

ð�̂ðcÞi Þ
3 � I1ð�̂ðcÞi Þ

2 þ I2�̂
ðcÞ
i � I3 ¼ 0 ð5:33Þ

in which I1, I2, and I3 are the three strain invariants. Differ-
entiating Eq. (5.33) with respect to total strain yields

o�̂
ðcÞ
i

o�
ðcÞ
kl

¼ 3ð�̂ðcÞi Þ
2�2I1�̂

ðcÞ
i þ I2

h i�1 oI1

o�
ðcÞ
kl

ð�̂ðcÞi Þ
2� oI2

o�
ðcÞ
kl

ð�̂ðcÞi Þþ
oI3

o�
ðcÞ
kl

" #
:

ð5:34Þ

The derivatives of the invariants are obtained as

oI1

o�
ðcÞ
ij

¼ dK
ij ; ð5:35Þ

oI2

o�
ðcÞ
ij

¼ traceð�ðcÞÞdK
ij � �

ðcÞ
ij ; ð5:36Þ

oI3

o�
ðcÞ
ij

¼ �ðcÞik �
ðcÞ
kj � traceð�ðcÞÞ�ðcÞij �

1

2
�
ðcÞ
kl �
ðcÞ
lk dK

ij

þ 1

2
ðtraceð�ðcÞÞÞ2dK

ij : ð5:37Þ

In view of Eq. (3.4) and the derivative of Eq. (3.25),
o�ðcÞ=o~�ðcÞ is equal to the identity tensor.

It is easy to show that phase average damage induced
strains, ~�ðcÞ may be expressed in terms of the damage
induced strains and displacements jumps:

~�
ðcÞ
ij ¼

Xm

b¼1

R̂
ðcbÞ
ij � d̂ðbÞ þ

Xn

g¼1

P ðcgÞijkl l
ðgÞ
kl : ð5:38Þ

Differentiating ~�ðcÞ with respect to d

o~�ðcÞ

od
¼ P ðc1Þ

ijkl P ðc2Þ
ijkl � � � P ðcnÞ

ijkl R̂
ðc1Þ
ij R̂

ðc2Þ
ij � � � R̂

ðcmÞ
ij

h i
;

ð5:39Þ

which completes the evaluation of of/od.
The derivative of the contact constraint penalty contri-

bution fc with respect to d may be evaluated directly from
Eq. (5.10) in the form

oFc

od
¼ � 1

2v

0 0

0 dfc

� �
; ð5:40Þ

where



dfc ¼

1� sgnðdNð1ÞÞ 0 0 0 0 0 � � � 0 0 0

0 0 0 0 0 0 � � � 0 0 0

0 0 0 0 0 0 � � � 0 0 0

0 0 0 1� sgnðdNð2ÞÞ 0 0 � � � 0 0 0

0 0 0 0 0 0 � � � 0 0 0

0 0 0 0 0 0 � � � 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
. ..

. ..
.

0 0 0 0 0 0 � � � 1� sgnðdNðmÞÞ 0 0

0 0 0 0 0 0 � � � 0 0 0

0 0 0 0 0 0 � � � 0 0 0

266666666666666666666666664

377777777777777777777777775

ð5:41Þ
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in which sgn(e) = jej/e is the sign operator.

K is a function of phase and interface damage variables,
xðcÞph and xðbÞint as shown in Eqs. (5.2)–(5.8). Using the chain
rule

oK

od
¼
Xn

c¼1

oK

oxðcÞph

oxðcÞph

od
þ
Xm

b¼1

oK

oxðbÞint

oxðbÞint

od
: ð5:42Þ

Eq. (5.3) reveals that the nonzero components of the
derivatives of K with respect to damage variables are
oKPP=oxðcÞph ; oKPI=oxðcÞph ; and oKII=oxðbÞint

oKPP

oxðcÞph

¼

0 0 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 0

�P ðc1Þ
ijkl �P ðc2Þ

ijkl � � � �P ðcnÞ
ijkl

0 0 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 0

2666666666666664

3777777777777775
; ð5:43Þ

oKPI

oxðcÞph

¼

0 0 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 0

�R̂
ðc1Þ
ij �R̂

ðc2Þ
ij � � � �R̂

ðcnÞ
ij

0 0 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 0

2666666666666664

3777777777777775
: ð5:44Þ

The only nonzero component in oKII=oxðbÞint is oEðbÞ=oxðbÞint ,
given by

oEðbÞ

oxðbÞint

¼
�kðbÞN 0 0

0 �kðbÞT 0

0 0 �kðbÞT

2664
3775: ð5:45Þ
The derivative of the interface damage variables, xðbÞint , with
respect to d may be expanded using the chain rule

oxðbÞint

od
¼ oxðbÞint

ojðbÞint

ojðbÞint

otðbÞint

otðbÞint

od
; ð5:46Þ

where

oxðbÞint

ojðbÞint

¼ bðbÞ2int

atanðaðbÞint Þ
h i

bðbÞ2int þ ða
ðbÞ
int j

ðbÞ
int Þ

2
h i ð5:47Þ

ojðbÞint =otðbÞint ¼ 1 for damage process and vanishes if no
damage is accumulated at the time step.

otðbÞint

od
¼ 0; . . . ; 0; kðbÞN ;

dTðbÞ
1

kdTðbÞk
kðbÞT ;

dTðbÞ
2

kdTðbÞk
kðbÞT ; 0; . . . ; 0

" #
:

ð5:48Þ
We now turn our attention to the last term in C. When the
elastic stick condition is in effect, consistent linearization of
the friction algorithm presented in Section 5.1 leads to

otTfðbÞ ¼ lFtNðbÞ

dcrit

odTðbÞ þ n
lF

2v
1� sgnðdNðbÞÞ
h i

odNðbÞ ð5:49Þ

in which n = tTf(b)/tN(b). In the presence of plastic slip the
final result is

otTfðbÞ ¼ ðdK�n	nÞlFtNðbÞ

kdðbÞpr k
odTðbÞ þn

lF

2v
1� sgnðdNðbÞÞ
h i

odNðbÞ:

ð5:50Þ

Eqs. (5.49) and (5.50) are sufficient to evaluate the deriva-
tive of ff with respect to d in view of Eq. (5.13).

5.3. Extension to large macro-deformation

In Section 5.1 it was assumed that stress at the current
increment �rij can be computed from strain t��ij and state
of damage td in the previous increment as well as the cur-
rent strain increment, D��ij that drives the evolution of
eigenstrains and interface decohesion. In other words, only



Fig. 10. Geometry and the finite element mesh of the fibrous unit cell.
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material response was accounted for, while the effect of
large deformation has been neglected. In this section we
discuss the effect of large deformation. For this purpose
it is convenient to split the effect of large deformation into
two parts. One is due to large deformation within a local
coordinate system attached to a unit cell. The second is
due to large rotation of the entire unit cell as a rigid body.
The former gives rise to unit cell distortion, while the latter,
termed as macro-mechanical rotation, does not affect stres-
ses in the material or so-called co-rotational frame. While
in principle, the proposed model reduction approach can
handle the two sources of deformation, accounting for unit
cell distortion requires repeated calculation of the influence
functions. This in turn requires solution of the unit cell
problems at every increment and at every iteration, making
the computational cost comparable to that of the direct
homogenization method.

On the other hand, accounting for macro-mechanical
rotation increment, denoted as D�R, can be easily accommo-
dated within the existing computational framework either
by using a two-step stress update approach or by utilizing
co-rotational formulation [47,48]. For instance, in the two-
step approach, stresses are first rotated to the material
frame using macro-rotation increment, D�R. This is fol-
lowed by material stress update as described in Section
5.1. Finally, updated stresses are rotated back to the global
Cartesian frame. For micro-structures with obvious defini-
tion of material coordinate system, such as in the case of
fibrous composites, D�R is an incremental rotation of the
specific material coordinate system. On the other hand, in
case of particles randomly distributed in the micro-struc-
ture, the incremental rotation, D�R can be computed from
either the incremental vorticity [49] or from polar
decomposition.

6. Verification and validation

Our numerical experimentation agenda includes three
test problems: (i) verification for a single scale (one unit
cell) problem; (ii) verification for a two-scale problem,
and; (iii) validation problem. For verification, comparison
is made to direct homogenization, while, for validation,
comparison is made to physical experiment.

6.1. Single-scale verification studies

We consider a single fibrous unit cell subjected to static
loading. The geometry of the micro-structure is illustrated
in Fig. 10. The unit cell consists of a fiber with a circular
cross section. The volume fraction of the fiber in the unit
cell is 19.6%. The finite element mesh of the unit cell,
depicted in Fig. 10, consists of 930 hexahedral elements.
The fiber phase consists of 270 elements and the material
properties are taken to be Young’s Modulus = 200 GPa
and Poisson’s ratio = 0.3. The fiber material is assumed
to be isotropic elastic with no damage accumulation. The
elastic properties of the matrix material are taken as
Young’s Modulus = 60 GPa and Poisson’s ratio = 0.3.
The phase damage evolution parameters of the matrix
material are aph = 32, and bph = 16.3. The compressive
principal strain components do not contribute to damage
accumulation. The weighting matrix (Eq. (4.48)) parame-
ters are therefore chosen as c1 = 1 · 105 and c2 = 0. The
interface between the fiber and the matrix phase consists
of 176 double nodes. The interface damage evolution
parameters are aint = 6.67, and bint = 6.67 · 10�4.

The macroscopic finite element mesh consists of a single
eight node hexahedral element. The coefficient tensors are
computed a priori based on the elastic properties of the
matrix and fiber materials. The finite element analysis of
the unit cell configuration using the original system of
equations provided by Eqs. (2.4)–(2.6), (2.10)–(2.13), and
(2.15)–(2.24) are evaluated as the reference solution for ver-
ification purposes. Verification simulations consist of

C1. biaxial expansion in the directions orthogonal to the
fiber in the presence of interface damage only;

C2. uniaxial expansion in a direction orthogonal to the
fiber in the presence of interface damage only;

C3. biaxial expansion in the directions orthogonal to the
fiber in the presence of interface and matrix damage;

C4. uniaxial expansion in the directions orthogonal to the
fiber in the presence of interface and matrix damage;

C5. uniaxial expansion along the fiber direction in the
presence of interface and matrix damage.

In C1, The matrix and the fiber are assumed to be linear
and elastic with damage accumulation only along the inter-
faces. The simulations were conducted until full separation
along the matrix–fiber interface as shown in Fig. 11a.
Fig. 11b displays the force–displacement curves as com-
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Fig. 11. Interface debonding in the fibrous unit cell under biaxial expansion (C1).

0 0.005 0.01 0.015 0.02
0

500

1000

1500

Displacement [mm]

Fo
rc

e 
[N

]

(1+0) point model
(2+0) point model
unit cell solution

Fig. 12. Interface debonding in the fibrous unit cell under uniaxial tension (C2).
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Fig. 13. Force–displacement curve under biaxial expansion orthogonal to
the fiber direction (C3).
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puted using the reference and a (1 + 0) point model. Note
that number of phase partitions, n, is set to zero since dam-
age is not allowed to accumulate within phases and does
not contribute to damage induced fields. The force–dis-
placement curves show an excellent agreement between
the reference solution and the (1 + 0) point model. Next,
failure under uniaxial loading is considered (C2). Similar
to C1, the phase materials are assumed to be elastic.
Fig. 12a displays a nonuniform loading along the interface.
Therefore, characterization of the interface calls for multi-
ple partitions. Fig. 12b shows the force–displacement com-
parison of the (1 + 0) and (2 + 0) point models against the
reference solution. Improved results can be seen as the
model is refined. Simulations C3 and C4 employ identical
loading conditions with C1 and C2, respectively. In the
present simulations, the matrix material is allowed to accu-
mulate damage in addition to interface debonding. The
force–displacement curves (Figs. 13 and 14) in both config-
urations are in reasonable agreement with the reference
configurations for low point models such as (1 + 1),
(2 + 2) and (2 + 5) point models. In the last series of simu-
lations (C5), uniaxial loading is applied in the direction of
the elastic fibers. Upon degradation of the phase materials,
loading is expected to be transferred by the fibers only.
Fig. 15 shows the force–displacement diagram for configu-
ration C5. The (1 + 1) point model successfully predicts the
failure in the matrix and the post failure stiffness.
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Fig. 17. Fibrous micro-structure of the panel with a blunt notch.
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6.2. Two scale verification study

We consider a crack propagation problem in a square
panel with a blunt notch. Fig. 16 illustrates the macro-
scopic geometry and the finite element mesh of the compos-
ite panel. An initial notch of length, a0, is introduced such
that a0/l = 0.5, where l is the width of the panel. The thick-
ness to width ratio of the panel is t/l = 0.125. The macro-
scopic mesh is composed of 509 hexahedral reduced
integration elements. Finite elements far away from the
crack tip are modeled as elastic with homogenized proper-
ties computed using classical linear elastic homogenization
theory. The inelastic zone shown in Fig. 16 is composed of
320 elements. The composite material fibrous micro-struc-
ture is shown in Fig. 17. The fiber is assumed to be elastic
with Young’s modulus, E = 200 GPa and Poisson’s ratio,
m = 0.3. The matrix material is assumed to behave accord-
ing to nonlocal damage model presented in Section 4.1.
The initial elastic properties of the matrix materials are:
E = 60 GPa and Poisson’s ratio, m = 0.3. The phase dam-
age evolution parameters of the matrix material are
aph = 32, and bph = 16.3. The weighting matrix parameters
are chosen such that no damage is accumulated when the
material is under pure compression: c1 = 1 · 105 and
c2 = 0. The fiber volume fraction of the micro-structure is
28.2%. The interface between the matrix and fiber is
assumed to be perfect. The micro-scale mesh is composed
of 351 tetrahedral elements.

A number of (0 + n) point models were verified against
the direct homogenization method for the notched panel
problem. In the direct homogenization method, the entire
unit cell problem as outlined in Box 1 is repeatedly solved
at every increment and at every integration point of the
macroscopic finite element mesh (see for instance [11,16]).
In the limit, as the (3n + 2m) approach the number of
degrees of freedom in the direct homogenization approach



Fig. 18. Crack paths of the (0 + n) point models and the reference solution for 90� lay-up.

Fig. 19. Crack paths by the variable point model and dynamic domain partitioning method.
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the results of the two methods will provide comparable
results. Therefore, the direct homogenization approach is
used as a reference solution. The errors associated with
the direct homogenization approach are well documented
(see for instance [10]) and the discussion on this subject is
outside the scope of this manuscript.

In the first set of simulations, the 90� lay-up (i.e., fibers
lie in the direction perpendicular to the notch) of the micro-
structure is considered. The panel is subjected to uniform
loading along the fiber direction. Fig. 18 depicts the crack
propagation paths as calculated using (0 + 1), (0 + 5), and
(0 + 10) point models, in comparison to the direct homog-
enization method. It can be seen that the crack tends to
propagate close to the fiber direction with elastic fibers
serving as ‘‘barriers’’ against mode I propagation. Fig. 19
illustrates crack propagation paths computed using a vari-
able point model and dynamic domain partitioning strat-
egy. In the variable point model, damage zone is divided
into three zones, and modeled with (0 + 10) point model
immediately around the notch, (0 + 5) point model in the
intermediate zone, and (0 + 1) point model away from
the notch using the static partitioning technique (Fig. 19).
In the dynamic domain partitioning, the highest order
model is chosen to be (0 + 10). The crack length versus
loading (time) plots, illustrated in Fig. 20, indicates that
(0 + 5) and (0 + 10) point models, in addition to the vari-
able point and dynamic domain partitioning are in reason-
able agreement with the direct homogenization method.
Table 1 summarizes the computational cost of various
models in terms of total CPU time, number of iterations



Table 1
Performance of the (m + n) point models and direct homogenization
method

Model # of incr. # of iter. incr./iter CPU time

(0 + 1) point 32 57 1.78 �1 min
(0 + 5) point 32 122 3.81 �3 min
Variable point 32 109 3.41 �5 min
(0 + 10) point 32 112 3.50 �25 min
Reference 9 81 9.00 �6 days
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and average number of iterations per increment. The com-
putational cost of the (0 + 5) point model is roughly 3000
times lower than that of direct homogenization, and the
Fig. 21. Crack paths of the (0 + n) point mode
crack growth is within 85% accuracy which is acceptable
from the engineering standpoint.

In the second set of simulations, we consider a 0� lay-up,
in which the fibers are parallel to the notch. The panel is
loaded orthogonal to the fiber direction. Fig. 21 displays
the snapshots of the simulations conducted using (0 + 1),
(0 + 2), and (0 + 5) point models compared to the direct
homogenization method. It can be seen that all models pre-
dict crack propagation in mode I. Fig. 22 illustrates the
crack length-versus load comparison for various (0 + n)
point models and the direct homogenization method. As
in the previous example, the (0 + 5) point model was found
to be in excellent agreement with the reference solution.
ls and the reference solution for 0� lay-up.



Fig. 23. Snapshots of the tube specimen at the beginning, during and at the end of loading. Experiment conducted by Starbuck et al. [50].

Fig. 24. The finite element mesh of the woven carbon fiber composite micro-structure of the tube specimen.
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7. Validation study

For model validation, we study fragmentation failure of
a composite tube subjected to impact loading. The tube
crush experiment was conducted by Starbuck et al. [50].
The experiment is concerned with the characterization of
the energy absorption capabilities of carbon fiber rein-
forced composite tubes under intermediate rate crushing
loads. The specimen is a 10 cm · 10 cm square tube with
a 2 mm thickness. The composite material consists of 0–
90 woven T300B carbon fiber tows (with a tow size of
3000 individual fibers) and epoxy resin. The weight per-
centage of the fiber tows is 58%. The tube specimen was
subjected to 4 m/s constant velocity compressive loading
and crushing behavior was monitored. Fig. 23 shows snap-
shots of the specimen at the beginning, during, and at the
end of the loading.

The micro-structure of the carbon fiber composite is ide-
alized using the finite element mesh depicted in Fig. 24. The
micro-structural mesh of the woven composite system
includes 370 and 1196 tetrahedra in the fiber and matrix
phases, respectively. The discretization of the 0–90 woven
carbon fiber is shown in Fig. 24b. We consider a (1 + 3)
point model where the matrix–fiber interface is represented
with a single point; one point for matrix phase, and two
points for fiber phase, one in each direction. The (1 + 3)
point model is considered throughout the tube geometry
and no adaptivity is employed in this simulation.

Static tension and compression coupon test data, pro-
vided by Starbuck et al. [50], is employed to calibrate the
failure properties of the interface and phase materials.
The material properties used in the simulation is summa-
rized in Table 2. The total number of material parameters
is 19, which include the elastic properties of the matrix
and the fiber, interface and phase failure parameters. The
provided coupon tests fail to adequately span all possible
failure modes the material may exhibit. Therefore, a num-
ber of assumptions were made for some of the material



Table 2
Material property values used in the tube crush simulation

E(F) m(F) E(M) m(M)

235 GPa 0.26 3.2 GPa 0.35

kN kT aint bint

1.E5 GPa/mm 1.E5 GPa/mm 6.67 1.7E3

aðFTÞ
ph aðFTÞ

ph cðFTÞ
1 cðFTÞ

2 tðFTÞ
ini

0.5 1.0 �100.0 0.0 0.0

aðMÞph aðMÞph cðMÞ1 cðMÞ2 tðMÞini

4.0 1.0 �100.0 0.0 0.0
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parameters. The elastic properties of the fiber tows are
obtained by considering them as fibrous composite.
(Fig. 25). The Young’s modulus and Poisson’s ratio of the
individual fibers (E(F), m(F)) as well as the matrix material
(E(M), m(M)) were calibrated based on the elastic properties
provided by the coupon tests and the virgin properties
of the fiber tows. The interface behavior is assumed to be
isotropic (kN = kT). The frictional forces in the tangen-
tial direction are assumed to be due to adhesion only
(lF = 0). Within phases, the damage is set to accumulate
at the onset of loading: tðFTÞ

ini ¼ tðMÞini ¼ 0, where tðFTÞ
ini and

tðMÞini are threshold values for the damage equivalent strains
in the fiber tows and matrix phases, respectively. The failure
Fig. 25. Calibration of the elastic properties by mo
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parameters were then set by minimizing the discrepancy
between the experimental and simulated stress–strain
curves. Fig. 26 illustrates the stress-strain curves provided
by the experiments and calibrated multiscale model.

The tube mesh consists of 17,908 quadrilateral shell ele-
ments. Plane stress conditions were imposed. The proposed
model is incorporated into ABAQUS EXPLICIT finite ele-
ment code. Fragmentation of the composite tube was mod-
eled using element deletion technique. By this approach,
the elements were set to vanish provided that one of the
two criteria is satisfied: (a) full damage within the matrix
phase and in the circumferential fiber direction; (b) full
damage within the matrix phase and debonding along the
matrix fiber interface.

Fig. 27 illustrates the snapshots of the tube crush simu-
lation prior to, during, and at the end of the loading. Com-
parison of the experimental and simulated snapshots
reveals a similar fragmentation and failure pattern.
Force–displacement curves are presented in Fig. 28. The
simulated and the experimental curves were found to be
reasonable agreement; energy absorption (area under
force–displacement curve) predicted by the simulation
was approximately 20% lower than in the actual experi-
ment. This discrepancy can be attributed to variety of fac-
tors including: uncertainty in material data, material
calibration error, strain rate sensitivity and others. The
deling elastic homogenization of the fiber tows.

0.5 1 1.5
Strain [%]

xperiment
imulation

compressive loading

experimental ultimate strength: 61.4 ksi
simulated ultimate strength: 53.7 ksi

periments and calibrated multiscale model.



Fig. 27. Snapshots of the tube simulation at the beginning, during and at the end of loading.
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tube specimen.

C. Oskay, J. Fish / Comput. Methods Appl. Mech. Engrg. 196 (2007) 1216–1243 1241
computational cost of the tube crush simulations with the
(1 + 3) point model is approximately 14 days using a single
3.16 GHz Pentium 4 processor. In view of the performance
results of the two-scale verification study presented in Sec-
tion 6.2, tube crush simulation using the direct homogeni-
zation method is clearly computationally exhaustive with
the allocated computational resources.
8. Summary and future research directions

We presented a new mesomechanical homogenization
approach, which combines salient features of multiple scale
asymptotic expansion method with the transformation field
analysis in attempt to reduce the computational cost of
a direct homogenization approach without significantly
compromising on solution accuracy. The method avoids
repeated consideration of unit cell equilibrium equations
by means of residual-free influence functions computed at
the preprocessing stage. The basic idea is that residual-free
deformation is expressed in terms of eigendeformation,
which is subsequently expressed in terms of state variables.
The reduced model is obtained by defining average or non-
local state variables. It is effective because of two main rea-
sons. First and the principal one is that the quantities of
interest are at a macroscopic level, which in turn depend
on fine scale averages. Secondly, the averages are anyway
needed due to loss of ellipticity of governing equations sta-
ted on the fine scale. Adaptivity is employed to control the
accuracy of the reduced order model. We presented a heu-
ristic approach to adaptivity, but certainly a more rigorous
framework based on error analysis in quantities of interest
would be advantageous [51]. Several challenges, however,
remain. First is the experimental calibration issue. Should
the material properties of the direct homogenization model



1242 C. Oskay, J. Fish / Comput. Methods Appl. Mech. Engrg. 196 (2007) 1216–1243
be calibrated or that of reduced order model? In the present
manuscript we have done the latter. The second is with
respect to the generality of the proposed approach; how
to account for unit cell distortion, the strain rate sensitivity
and the multiplicative decomposition of deformation ten-
sor into elastic and inelastic parts? And finally, how is
the existing framework can be extended to more than
two scales? A 3-scale mathematical homogenized approach
with eigenstrains was developed in [44], but the lingering
issue of multiple scale model calibration requires further
investigation.
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